

Land Northeast of Junction 10, M42 Motorway

Phase II Ground Investigation Report

September 2021

Hodgetts Estates CORE 42 Dordon Tamworth Staffordshire B78 1SZ

Final Report

Report No. 70530-2 Rev 2

Document Verification

Prepared for	Prepared by	
Hodgetts Estates	Ground and Project Consultants Ltd,	
CORE 42	The Hub	
Dordon	First Floor	
Tamworth	19-23 Stamford New Road	
Staffordshire Altrincham		
B78 1SZ	Greater Manchester	
	WA14 1BN	

Signatures and Approvals					
Author	S Chan-Fitzpatrick			Date	12/11/2020
Checker and Approver	O Hawes			Date	12/11/2020

Report Number	Revision	Date	Comments
70530-2	0	12/11/20	First Issue.
70530-2	1	11/03/21	Update regarding earthworks proposals
70530-2	2	30/09/21	Removal of earthworks proposals.

Disclaimer

Copyright of this Report is vested in Ground and Project Consultants Ltd and no part of it may be copied or reproduced by any means without prior written permission from Ground and Project Consultants Ltd. If you have received this Report in error, please destroy all copies in your possession and control and notify Ground and Project Consultants Ltd.

This report has been prepared by Ground and Project Consultants Ltd, with reasonable skill, care and diligence within the agreed scope and terms of contract and taking account of the manpower and resources devoted to it by agreement with its client, and is provided by Ground and Project Consultants Ltd solely for the use of its client, Hodgetts Estates.

The advice and opinions in this report should be read and relied on only in the context of the report as a whole, taking account of the terms of reference agreed with the client. The findings are based on the information made available to Ground and Project Consultants Ltd at the date of the report (and will have been assumed to be correct) and on current UK standards, codes, technology and practices as at that time. They do not purport to include any manner of legal advice or opinion. New information or changes in conditions and regulatory requirements may occur in future, which will change the conclusions presented here.

This report is confidential to the client. Unless otherwise agreed in writing by Ground and Project Consultants Ltd, no other party may use, make use of or rely on the contents of the report. No liability is accepted by Ground and Project Consultants Ltd for any use of this report, other than for the purposes for which it was originally prepared and provided.

Table of Contents

1	Intro	oduction1
2	Site	Information2
	2.1	Site Location
	2.2	Proposals 2
	2.3	Site Description and Topography2
	2.4	Site History
	2.5	Geology
	2.6	Hydrology and Hydrogeology3
	2.7	UXO Risk
	2.8	Environmental Information
3	Prel	iminary Contamination Risk Assessment5
4	Gro	und Investigation6
	4.1	Fieldwork and Laboratory Testing
	4.2	Ground Model
	4.3	Topsoil
	4.4	Completely Weathered Halesowen Formation – Granular7
	4.5	Completely Weathered Halesowen Formation - Cohesive
	4.6	Halesowen Formation - Sandstone
	4.7	Groundwater and Ground Gas Monitoring9
5	Geo	-environmental Assessment10
	5.1	Human Health Risk Assessment
	5.2	Controlled Waters Risk Assessment
	5.3	Soil Waste10
6	Geo	technical Assessment11
	6.1	Foundations11
	6.2	Floor Slabs
	6.3	Earthworks
	6.4	Pavement Design
	6.5	Soakaway Design

	6.6	Concrete Classification	12
7	Con	clusions and Recommendations	14
8	Refe	erences	.15

Tables and Figures

Figure 1: Site Location (Ordnance Survey Data © Crown copyright and database right 2020) ... 2

Table 1: Conceptual Site Model	5
Table 2: Summary of Ground Conditions	7
Table 3: Characteristic Values for Assessing the Design of Concrete 1	.3

Appendices

Appendix A: Drawings

Appendix B: Utility Drawings

Appendix C: Factual Ground Investigation Data

1 Introduction

Ground and Project Consultants Ltd (GPCL) has been instructed by Hodgetts Estates to carry out a Phase II Ground Investigation for a plot of land to the northeast of Junction 10 on the M42 Motorway.

A Desk Study and Preliminary Risk Assessment was previously carried out by GPCL, reported under Reference 70530-1. The most relevant information is included in this report, however, the Desk Study should be referred to for more detail.

The objectives of this report are to ascertain the expected ground conditions at the site and to assess the implications for the proposed development.

The scope of this report is as follows:

- A ground investigation including window trial pits and cable percussive boreholes;
- Develop a ground model that summarises the ground investigation data, and highlight any uncertainties;
- Provide a geo-environmental appraisal for the site;
- Provide a geotechnical appraisal of the proposals for the site.

1

2 Site Information

The information on the site and surrounding area has been summarised from the Desk Study Report (Reference 70530-1). Where appropriate, figures and tables have been provided throughout the report for ease of assessment.

2.1 Site Location

The site is located at Watling Street (A5), Dordon, B78 1TB. The National Grid Reference for the site is 424850 300921. The site is adjacent to J10 of the M42, approximately 5km to the southeast of Tamworth town centre. The location of the site is indicated on Figure 1 below.

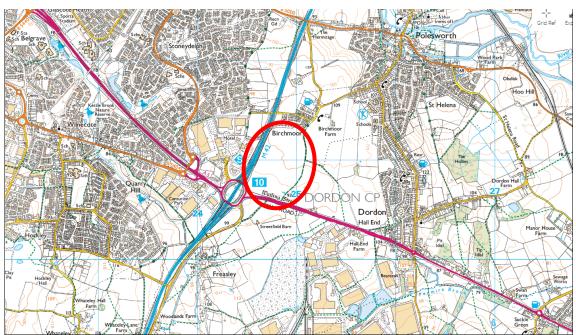


Figure 1: Site Location (Ordnance Survey Data © Crown copyright and database right 2020)

2.2 Proposals

The site is proposed to be developed for a logistics end-use. However, no layout plans or proposed loads are available.

2.3 Site Description and Topography

The site has dimensions of approximately 750m by 450m (32.36ha) and comprises agricultural land with a small area of hardstanding to the southeast of the site off the A5 at the site entrance. From the Ordnance Survey plan the site is at 105m AOD in the northeast and 95m in the southwest, giving a slope angle of less than 1 degree.

The site is bounded by the A5 to the south, the M42 to the west, the village of Birchmoor to the north and agricultural land to the east. The A5 has a layby adjacent to the south of the site.

2.4 Site History

The earliest available historical map records indicate that the site has been recorded as agricultural land from pre-1883. Present on-site in 1883 are two barns towards the centre of the site and a pond towards the north western boundary of the site. From 1901, it is shown that a barn described as 'Leisure Barn' is present towards the centre of the site. From 1925, a sheepwash is shown to have been developed towards the southeast of the site, before being removed by 1971. From 1989, the barns and pond present on site have been removed and the site at present currently lies undeveloped.

The area surrounding the site has been predominantly used for agricultural land and mining, with collieries present 400m both north and south of the site in 1883. There is also an old marl pit 300m south of the site during the same period. By 1901, the colliery to the north of the site has been marked as disused, and by 1971 the colliery is now labelled as a disused tip. From 1971 residential properties with an associated electricity substation have been developed as part of Birchmoor towards the northern boundary of the site. By 1989 the M42 has now been developed along the west of the site, and from 1993 an associated services area with a petrol station is now present from 60m towards the southwest of the site.

2.5 Geology

The site is on the boundary of BGS sheets 154 Lichfield and 155 Coalville. The available geological maps indicate the site is underlain by Halesowen Formation (mudstone, siltstone and sandstone) with no superficial deposits. The Halesowen Formation is recorded to be 60m to 120m thick, overlying the Pennine Middle Coal Measures. A fault is shown close to the southern boundary, and is downthrown to the north.

The Coal Authority Report for the site indicates that it is within the potential zone of influence of seven recorded coal seams from 60m to 200m bgl. There are no coal mine entries or coal outcrops in the proximity of the site. The report states that the site is free from coal mining related risk and no further action is required.

The site is in a very low radon risk zone, with less than 1% of properties above the action level.

2.6 Hydrology and Hydrogeology

The closest waterbody is Kettle Brook located 325m to the southwest of the site, which is a recorded Local Nature Reserve. The site is outside of a flood risk zone from rivers. A high surface water flooding risk is indicated in the south of the site. In this location a rainfall event is anticipated in 30-year period that results in surface water flooding with a depth greater than 1m.

The Halesowen Formation is designated as a Secondary A Aquifer. There are no groundwater abstraction licenses within proximity to the site and the site is not in a Source Protection Zone.

2.7 UXO Risk

The freely available Zetica UXO risk map indicates that the site is in a low risk area from potential unexploded bombs. No further action is considered necessary.

3

2.8 Environmental Information

There are four recent industrial land uses within 250m of the site. These include an electricity substation 125m to the north, a windscreen repair company 140m to the northeast, a petrol station and motorway service station 180m (to its centre point) to the northwest.

There are no historical or active landfill sites within 250m the site. The historical landfills associated with the collieries are over 350m away and are therefore unlikely to impact the site. There are no waste treatment sites near the site.

There are no pollution incidents in proximity to the site.

Environmentally sensitive sites include deciduous woodland 44m to the west and 84m to the southwest.

3 Preliminary Contamination Risk Assessment

This section comprises a conceptual site model and preliminary risk assessment for the site. A full description of the model can be found in the Desk Study Report.

Source / Hazard		Pathway	Receptor	Risk Rating	
Made Ground on site from the demolished barn		Inhalation, dermal contact, ingestion	Construction workers	Medium	
		Inhalation (dust), dermal contact, ingestion from limited landscaping to the perimeter of the site.	Future workers	Low	
		Migration / leaching	Secondary A Aquifer	Low	
		Direct contact	Water Supply Pipes	Low	
		Direct contact	Concrete	Medium	
		Inhalation, dermal contact, ingestion	Construction workers	Medium	
Chemicals from the historical sheep wash		Inhalation, dermal contact, ingestion from potential landscaping	Future workers	Low	
		Migration / leaching	Secondary A Aquifer	Low	
Ground gases from on and off site Made Ground sources, mine gas and radon.		Inhalation	Future workers	Low	
Coal Mining		Ground movement	Settlement of building structures	Low	
UXO		Direct contact	Construction workers	Low	
Risk Rating (probabil				•	
Negligible	Unlikely to be a source, pathway or receptor and insignificant consequence.				
Low	Possible to likely source with insignificant consequence or unlikely to possible source with				
Medium	minor to moderate consequences. Certain source with insignificant consequence to unlikely source with major consequence.				
High	Likely to certain source and minor to moderate consequence or likely source with moderate to high consequence				
Very High	Certain source with major consequence.				

Table 1: Conceptual Site Model

The conceptual site model indicates that there is a medium risk to human health receptors and a low risk to controlled waters from potential contaminants from the historical site uses. The risk to human health is a consequence of potential direct contact with contaminants from the historical sheep wash and potential Made Ground on site.

4 Ground Investigation

4.1 Fieldwork and Laboratory Testing

The ground investigation works were undertaken by Applied Geology Ltd on 17th to 22nd September 2020 and a copy is included in Appendix B. The scope of the ground investigation included the following:

- 8 No. cable percussive boreholes to depths of up to refusal at depths of between 1.94m and 2.63m bgl (4 No. installed for ground gas and groundwater monitoring);
- 31 No. machine excavated trial pits to depths of between 2.3m and 2.9m bgl.

Geotechnical testing included the following:

- 5 No. Atterberg Limit and moisture content tests;
- 28 No. particle size distribution tests;
- 3 No. compaction tests;
- 34 No. BRE sulphate tests.

Thirty samples of Topsoil and shallow Halesowen Formation were sent for a generic suite of common contaminants including organic content, metals, polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, and xylenes (BTEX), Total Petroleum Hydrocarbon Criteria Working Group (TPH CWG) and an asbestos screen.

Four ground gas and groundwater monitoring visits have been carried out between 29th September and 21st October 2020.

4.2 Ground Model

The ground investigation revealed the geology comprises Topsoil up to 0.4m bgl, overlying the Halesowen Formation. Groundwater was encountered in the very south of the site at between 0.9m and 2.6m bgl.

Strata	Description	Depth to base of strata (m bgl)	Thickness of Strata (m)	SPT N Values
Topsoil	Brown clayey gravelly sand with frequent rootlets. Gravel consists of fine to medium subangular to subrounded sandstone, mudstone and occasional quartzite. Slightly gravelly sandy clay in TP6.	0.20 - 0.40	0.20 - 0.40	N/A
Weathered Halesowen Formation - granular	Light brown slightly clayey gravelly sand. Gravel is fine to coarse subangular to rounded mudstone, sandstone and siltstone.	1.00 - 2.90	0.60-2.70	25 - 50
Weathered Halesowen Formation – cohesive	Firm to stiff slightly gravelly sandy clay. Gravel is fine to coarse subangular to subrounded mudstone and sandstone	1.00 - 2.70	0.40 - >0.90	30-35
Halesowen Formation- sandstone	Extremely weak to weak Sandstone.	>2.9	>0.30 - >1.50	>50
Groundwater	Groundwater encountered in TP11 and TP27. Groundwater encountered at 1.90m and 2.0m bgl respectively. Monitoring indicated groundwater levels of between 0.9m and 1.0m bgl in CP7 and 2.6m bgl in CP1.	0.9->2.6	N/A	N/A

Table 2: Summary of Ground Conditions

4.3 Topsoil

Topsoil was encountered in each exploratory hole location up to a depth of between 0.2m-0.4m bgl. The Topsoil typically consisted of clayey gravelly sand with frequent rootlets. Gravel consisted of fine to medium subangular to subrounded sandstone, mudstone and occasional quartzite. The depth to the base of the Topsoil is shown to be relatively uniform across the site, with a typical depth of between 0.35m-0.40m bgl.

Topsoil comprising of clay was encountered at one location at exploratory hole TP6 to a depth of 0.35m bgl, towards the northwest corner of the site. The strata consisted of brown slightly gravelly sandy clay with frequent rootlets. Gravel was recorded as being fine to coarse subangular to subrounded mudstone.

4.4 Completely Weathered Halesowen Formation – Granular

Unlithified sand forming part of the Halesowen Formation underlies the Topsoil and was present in all exploratory hole locations, with the exception of TP1 and TP12 towards the southwest corner of the site, which contained cohesive material underlying the Topsoil. The base of the strata is typically between 1.5-1.7m bgl, thickening towards the southeast of the site in TP27-31 to depths of between 1.8m-2.9m bgl where it overlies the sandstone. It is typically described as being light brown slightly clayey gravelly sand. Gravel is fine to coarse subangular to rounded mudstone, sandstone and siltstone.

Seventeen particle size distribution tests were conducted on the Weathered Halesowen granular deposits, which gave proportions between of 0% and 15% cobbles, between 6% and 77% gravel, between 3% and 72% sand and between 6% and 50% silt and clay. The typical proportions were 1% cobbles, 23% gravel, 51% sand and 25% silt and clay, being slightly gravelly silty/clayey sand with a low cobble content

SPT N-values for the granular Halesowen Formation ranged from N=25-50 correlating to medium dense to very dense.

Three compaction tests were carried out on the shallow Halesowen Formation, typically comprising slightly gravelly clayey sand. The maximum dry density was given as between 1.90Mg/m³ and 1.94Mg/m³ and an optimum moisture content of 11% and 12%.

4.5 Completely Weathered Halesowen Formation - Cohesive

Cohesive deposits forming part of the Halesowen Formation were encountered in exploratory holes CP1, TP1, TP4, TP9, TP12, TP25 and TP26 towards the southern area of the site, as well as in CP2 and TP4 along the northwestern site boundary. The depth to the base of the strata was 1.0m-2.3m bgl towards the south of the site, with a thickness of between 0.4m-2.3m. The clay appears to be a northwest-southeast trending band encountered initially beneath the topsoil (CP1, TP1, TP12 and TP26) becoming deeper and thinner to the north, encountered at 1.2-1.3m bgl. Towards the northwest, in CP2, the cohesive stratum was encountered from beneath the Topsoil, and was 1.5m thick. In TP4, the clay was encountered from 1.8m bgl, and was >0.9m thick.

The cohesive bands of the Halesowen Formation were described as being firm to stiff slightly gravelly sandy clay. Gravel was fine to coarse subangular to subrounded mudstone, siltstone and sandstone lithorelicts.

SPT testing gave N-values of N=30-35, correlating to a very stiff clay.

Five Atterberg test results in the cohesive Halesowen Formation recorded liquid limits of between 22% and 52% (corrected to 21% and 51%), plastic limits of between 17% and 28% (corrected to 13% and 27%) and a plasticity index of between 5% and 24% (corrected to 4% and 24%). The test results indicate that samples from TP1, TP12, TP25 and TP26 in the south of the site are clays of low plasticity and low volume change potential. The sample from TP9 is described as being a low plasticity silt. Results from TP4 in the northwest of the site indicate that the clay is of high plasticity and has a medium volume change potential. The moisture contents were recorded between 9% and 18%, having a very stiff consistency.

4.6 Halesowen Formation - Sandstone

The Halesowen Formation became rock strength sandstone from depths of between 1.8m-2.5m bgl. Within the boreholes it was described as extremely weak sandstone recovered as silty sand. Within the trial pits it was recovered as a sandy gravel with frequent cobbles of angular to rounded sandstone. The gravel was described as fine to coarse angular sandstone and siltstone.

The stratum is interpreted as being a highly weathered sandstone with siltstone bands. Below the depth to which the exploratory holes could penetrate, i.e. below 1.9m-2.9m bgl, the grade is likely to be moderately to slightly weathered.

SPT N-values for the extremely weathered sandstone were all N>50, classifying the Sandstone as rock.

Six particle size distribution tests were carried out on disturbed samples of the Halesowen Formation Sandstone. These gave proportions of between 0% and 27% cobbles, between 25% and 60% gravel, between 13% and 54% sand and between 6% and 21% silt and clay. The typical proportions were 12% cobbles, 44% gravel, 32% sand and 12% silt and clay, indicating the excavated material is slightly sandy clayey/silty gravel with a medium cobble content.

4.7 Groundwater and Ground Gas Monitoring

Groundwater strikes were encountered in TP11 and TP27 towards the southern boundary of the site, to depths of 1.9m and 2.0m bgl respectively within the granular weathered Halesowen Formation. During ground monitoring water levels were recorded up to 0.88m in CP7 and 2.61m bgl in CP1, both in the south of the site. CP4 and CP6 in the north of the site remained dry.

Ground gas monitoring has been carried out on four occasions between 29th September and 21st October 2020. Ground gas readings have recorded methane volumes as less than detection, carbon dioxide between 0.2% and 1.9% and oxygen levels at near atmospheric levels between 19.3% and 20.7%. Gas flow has been recorded at between 0I/h and 0.1I/h. Based on the highest flow rate and carbon dioxide readings the site has a gas screening value of 0.0019 I/hr.

5 Geo-environmental Assessment

The site is proposed to be developed for a logistics end-use. Therefore, the results of the chemical testing carried out by Applied Geology Ltd have been assessed against criteria assuming a proposed land use scenario being commercial/ industrial and a 1% soil organic matter. Results from the laboratory chemical testing are included in Appendix C.

5.1 Human Health Risk Assessment

In total, twenty-three samples of Topsoil and six samples of the Halesowen Formation were analysed for a suite of contaminants. The results of chemical testing on all twenty-nine samples within the Topsoil and Halesowen Formation, showed no exceedances in screening values for metals, Polycyclic Aromatic Hydrocarbons (PAHs), Benzene, Toluene, Ethylbenzene and Xylene (BTEX) and Total Petroleum Hydrocarbons (TPHs).

Recorded concentration levels of TPHs, BTEX and PAHs were all below detection levels within all sample locations, except low concentrations of PAH in the Topsoil at TP11 in the very southwest of the site.

No asbestos was recorded within all twenty-nine samples on site.

There is negligible risk to human health receptors.

5.2 Controlled Waters Risk Assessment

Based on the recorded contaminant concentrations described in Section 5.1 and the proposals for the site to comprise widely of hard standing, it is considered that the site presents a negligible risk to any surrounding controlled waters.

5.3 Soil Waste

Results from the chemical analysis of soil samples on site indicate that the Topsoil and Halesowen granular material would be suitable for re-use. The Topsoil was typically described as clayey gravelly sand. No sharps or plastic were recorded. The chemical test results of the Topsoil gave organic matter at between 1.5% and 4.1% and a pH between 6.3 and 7.2. Full testing following BS 3882:2015 "Specification for topsoil" should be carried out for any Topsoil that is to be reused off site.

It is not anticipated that soil will be sent for off-site disposal for this development, however, should soils be required to be disposed of, then it would be necessary to determine the waste classification of the material in accordance with current legislation. The chemical results indicate that the Topsoil and Halesowen granular soils are likely to meet inert waste criteria.

6 Geotechnical Assessment

It is understood that the proposal for the site is to be the construction of a commercial development for the logistics end-use. No proposed drawings have been provided. The final loadings and structures to be constructed on site are currently unknown. Earthworks are proposed to level the site, with a maximum cut and fill of 5m.

The general ground conditions across the site comprise of Topsoil to depths of between 0.2m-0.4m bgl, overlying medium to very dense sand with clay bands to depths of 0.4m-2.7m bgl, overlying sandstone to an unknown depth. Groundwater was encountered at depths of between 0.9m and 2.6m bgl towards the south of the site.

6.1 Foundations

It is considered that the likely structural loads could be supported by conventional shallow foundations bearing upon the dense to very dense clayey sand. The estimated bearing capacity for these deposits is approximately 300kN/m². The minimum depth of the foundations is recommended to be at 0.75m. In areas where excavations encounter clays at the proposed foundation level, excavations should be extended to a minimum depth of 1.0m bgl into stiff clay.

If shallow foundations are not appropriate for the structural loads, then it is recommended that deeper trench fill foundations will be possible, bearing onto the sandstone anticipated at depths of between 1.8m and 2.5m bgl. The estimated bearing capacity for the sandstone is approximately 500kN/m².

It is anticipated that some earthworks will be carried out at the site. Where there is fill, the material will be required to be engineered to a high specification to allow the required bearing capacity. The use of other ground improvement techniques or piles should be considered as an alternative.

The ground investigation and results should be reviewed by a geotechnical engineer once the detailed drawings of the proposed structures and development are available.

Groundwater is not expected to be encountered during excavations towards the north of the site, however, groundwater may be encountered at depths from 0.9m bgl towards the southern boundary of the site. From the Ordnance Survey plan the site is at approximately 95m in the southwest where groundwater was encountered and therefore groundwater can be assumed to be encountered from approximately 94m AOD. It is noted that the ground investigation was carried out in dryer months and therefore shallower groundwater may be anticipated during wet weather conditions. In addition, the area to the south of the site is in a lower topographical area to the rest of the site with a high risk of surface water flooding.

6.2 Floor Slabs

It is considered that the medium to very dense granular sand, or very stiff clay of the Halesowen Formation would be a competent bearing stratum for a floor slab in a commercial development. The concrete floor slabs and underlying sub-base should be designed to accommodate the design loads once known. Any fill material will be required to be appropriately engineered to support floor slabs.

The gas monitoring has indicated the site is characteristic situation 1 and no radon risk has been identified. Therefore, no ground gas protection measures are considered necessary at the site.

6.3 Earthworks

It is anticipated that earthworks will be required at the site. It is anticipated that the **completely weathered** Halesowen Formation would be suitable for re-use as general fill within the development using conventional earthmoving and compaction techniques.

Compaction tests within the granular Halesowen Formation give optimum moisture contents at 11% and 12%. Moisture contents of the cohesive Halesowen Formation were typically between 9% and 12%, with one at 18%, generally dry of plastic limit. This suggests that the granular Halesowen Soils are likely to be acceptable as a Class 1A general fill. The cohesive soils are likely to be acceptable as a Class 1A general fill. The cohesive soils are likely to be acceptable as a Class 1A general fill. The cohesive soils are likely to be acceptable as a Class 1A general fill. The cohesive soils are likely to be acceptable as a class 1A general fill. The cohesive soils are likely to be acceptable as Class 2B dry cohesive general fill. It is recommended that further compaction testing and possibly earthworks trials are carried out to assess the acceptability and classification of the soils to be reused in more detail.

Trial pit records from the ground investigation show that groundwater can be expected towards the south of the site to depths of 0.9m and 2.6m bgl. If the development proposals require excavation to depths of greater than 1m bgl in the south or perched groundwater is encountered in the coarse-grained strata, it will be necessary to adopt a dewatering technique. In addition, the groundwater level in the north of the site is unknown and should be confirmed not to be within the range of any proposed cut depth.

6.4 Pavement Design

The access road and subgrade bearing paved areas is likely to consist of medium to very dense clayey sand or firm to stiff sandy clay. A preliminary design CBR value of 5% is recommended for the cohesive deposits, and 20% for the granular deposits. In-situ testing should be undertaken during construction to confirm that the design values adopted have been achieved.

6.5 Soakaway Design

Soakaway testing at the site was not conducted during the ground investigation. Should soakaways be adopted as part of the proposal, it is considered that the slightly gravelly silty/clayey sands may be suitable for the adoption of soakaway drainage. Based on BS8004, a fine sand with silt and clay laminae typically has a permeability range of between $1 \times 10^{-4.5}$ and $1 \times 10^{-6.5}$ m/s which is within the lower range of good to poor permeability.

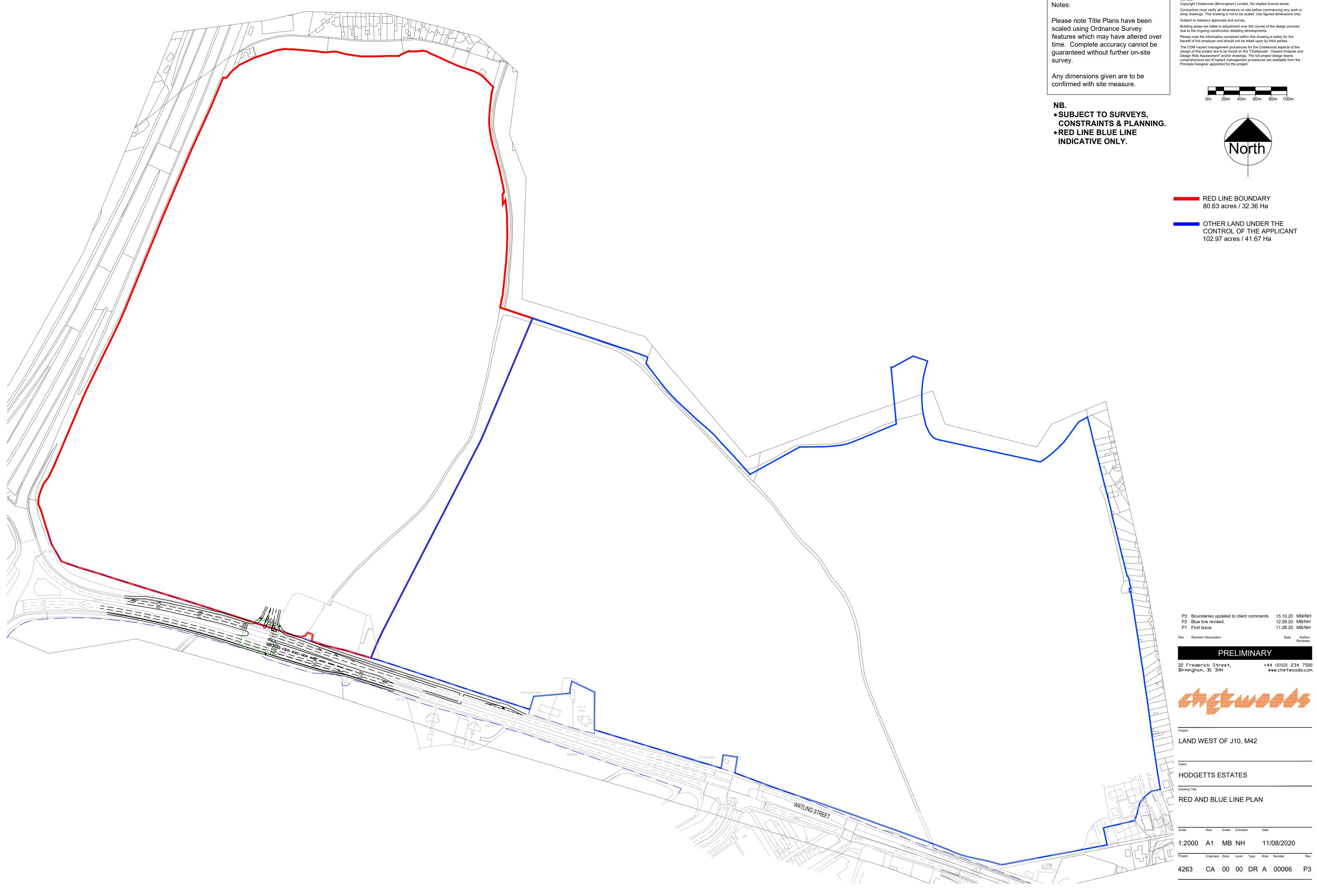
6.6 Concrete Classification

The results from the chemical analysis on samples indicate the site has a concrete design designation of DS-1 and an Aggressive Chemical Environment for Concrete of AC-1 according to BRE Special Digest 1:2005 Design Sulphate Class. Therefore, no special precautions are considered necessary for the site. A summary of the characteristic values and design class for each stratum is presented below in Table 3.

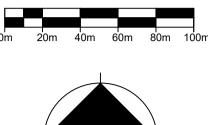
Strata	Sulphate – 2:1 water soluble (mg/l)	Total Potential Sulphate (%)	рН	Design Sulphate Class	ACEC Class
Halesowen Formation	50	0.03	5.3	DS-1	AC-1

Table 3: Characteristic Values for Assessing the Design of Concrete

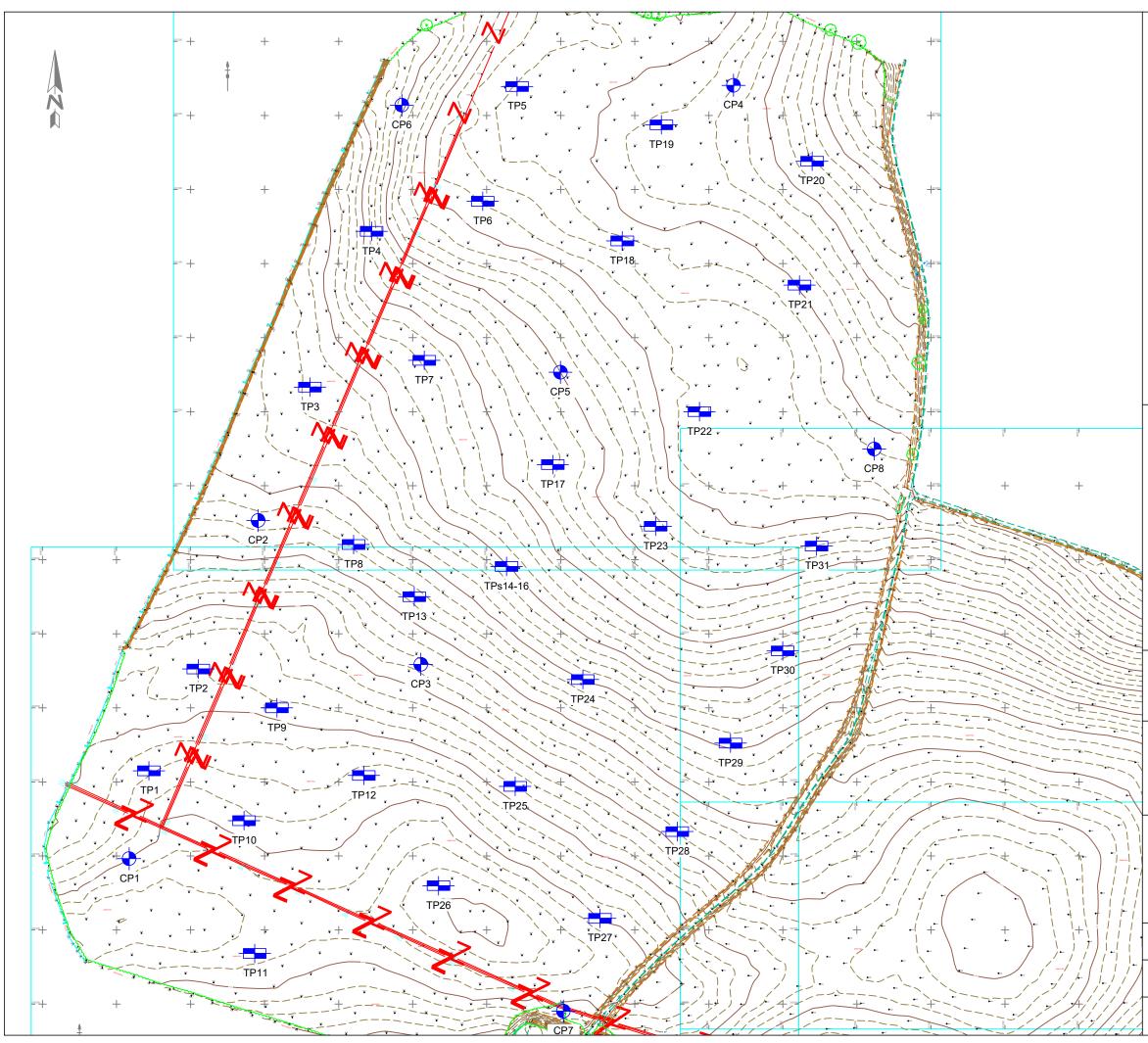
7 Conclusions and Recommendations


- Topsoil was encountered up to 0.4m bgl, overlying the Halesowen Formation. The Halesowen Formation was weathered to a sand or clay, becoming rock strength sandstone from 1.8m and 2.5m bgl.
- Groundwater was encountered towards the south of the site from 0.9m. A surface water flooding risk was also identified in south of the site from the desk study data. Groundwater level should be confirmed in the north of the site to the depth of the proposed cut levels.
- The geo-environmental assessment of the site found that all samples of Topsoil and Halesowen Formation recorded contaminant concentrations well below their relevant screening criteria.
- The site is characterised as characteristic situation 1, where no ground gas protection measures are considered necessary for the site.
- It is considered that the Halesowen Formation would be a suitable bearing stratum for shallow foundations.
- An allowable bearing capacity of 500kN/m² is considered appropriate for the sandstone, assuming a foundation width of 1m.
- Where there is fill, the material will be required to be engineered to a high specification to allow the required bearing capacity.
- A design CBR value of 5% is considered appropriate for the cohesive deposits and 20% for the granular deposits.
- Based on the results from the BRE SD-1 Suite testing, it is considered the site has a concrete classification of Design Sulphate Class DS-1 and an Aggressive Chemical Environment for Concrete as AC-1. Therefore, no special precautions are necessary at the site.

8 References


- BGS Sheet 1:50000 scale Sheet 123 Stoke.
- Ordnance Survey mapping. <u>https://www.bing.com/maps</u>
- The Coal Authority interactive map.
 <u>http://mapapps2.bgs.ac.uk/coalauthority/home.html</u>
- Government flood risk map. <u>https://flood-warning-information.service.gov.uk/long-term-flood-risk/map</u>
- Public Health England radon risk map. <u>https://www.ukradon.org/information/ukmaps</u>
- DEFRA MAGIC map. <u>https://magic.defra.gov.uk/</u>
- Zetica UXO risk map. <u>https://zeticauxo.com/downloads-and-resources/risk-maps/</u>
- Contaminated Land Report 11 (CLR11). Model Procedures for the Management of Land Contamination. DEFRA/EA. September 2004.
- CIRIA, 2014. Asbestos in Soil and Made Ground: A Guide to Understanding and Managing Risks. 2014
- BRE Special Digest 1 (SD1). Concrete in Aggressive Ground. Building Research Establishment 2005.
- BRE365: 1991 revised 2003. Soakaway Design. BRE Digest.
- BS 10175:2011. Investigation of Potentially Contaminated Sites Code of Practice. British Standards Institution (BSI). 2011.
- C552. Contaminated Land Risk Assessment A Guide to Good Practice. CIRIA, London. 2001.
- C665. Assessing risks posed by hazardous ground gases to buildings. CIRIA, London. 2007.
- Guidance within Waste Sampling and Testing for Disposal to Landfill. Environment Agency. 2013.
- The LQM/CIEH S4ULS for Human Health Risk Assessment. Land Quality Press. 2015.
- SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination Policy Companion Document. DEFRA. December 2014.
- United Kingdom Water Industry Research (UKWIR) Report 'Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites' 2011. Waste (England and Wales) Regulations. 2014.

Appendix A Drawings and Plots



NOTES:

Trial Pit

Cable Percussion Borehole

Drawing based on Malcolm Hughes drawing No: 56080_01_01 dated 01/09/2020.

APPLIED GEOLOGY

First Floor, Lowton Business Park Newton Road Lowton St. Mary's Warrington WA3 2AN

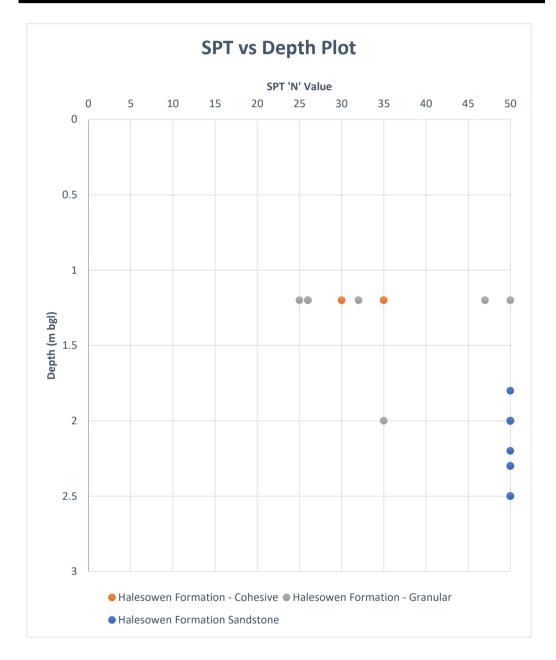
Tel: 01925 738599 email:admin@appliedgeology.co.uk

Client:

GROUND AND PROJECT CONSULTANTS

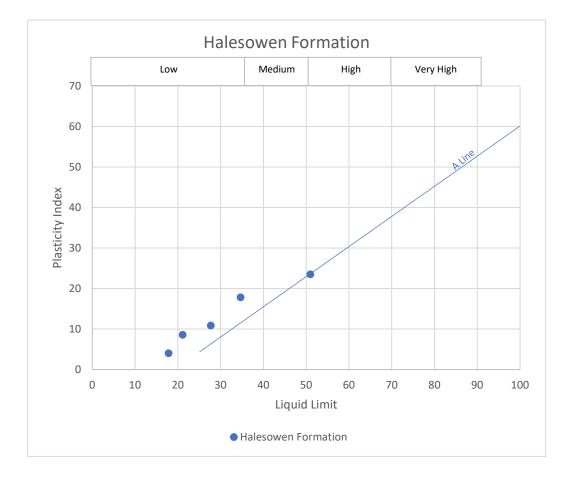
Project:

TAMWORTH


Title:

EXPLORATORY HOLE LOCATION PLAN

Drawn By: FD	Checked By: CS	Paper Size: A3
Scale: 1:2500	Date: 13	3.10.2020
Drawing No: AG3185-2	20-02	Revision: 0



Project:	Jn 10 M42			
Project No.	70530			
Calc Title:	SPT vs Depth Plot			
Date:	22 October 2020	Rev	0	

Project:	Jn 10 M42	
Project No.	70530	
Calc Title:	Plasticity Chart - corrected	
Date:	04 November 2020 Rev	0

Ground and Project

Project:	Jn 10 M42	
Project No.	70530	
Calc Title:	Chemical test results against screening value	es
Date:	22 October 2020 Rev	1

Location Reference		TP14	TP15	TP16	TP17	TP27	TP27	TP1	TP4	TP3	TP4	TP5	TP7	TP2	TP10	TP11						
Depth (m bgl)		0.20	0.20	0.20	0.20	0.20	1.00	0.20	0.80	0.20	0.20	0.20	0.20	0.80	0.20	0.20		Residential			Public Open	
							Halesown		Halesowen					Halesown			- Residential with	without Plant	Allotments	Commercial /	Space	Public Open
Stratum		Topsoil	Topsoil	Topsoil	Topsoil	Topsoil	Formation	Topsoil	Formation	Topsoil	Topsoil	Topsoil	Topsoil	Formation	Topsoil	Topsoil	Plant Uptake	Uptake		Industrial	(Residential)	Space (Parks)
Determinand	Units																					
Organic Matter (%)	%	2.3	4.1	1.8	1.9	2.4	< 0.1	2.3	0.3	1.8	1.5	1.7	1.7	< 0.1	1.8	2.3						
Arsenic	mg/kg	7.1	7.8	6.9	7.4	5.5	4.3	6.7	6.1	6.3	5.9	6.6	7.3	3.1	8.5	8.7	37	40	43	640	79	170
Beryllium	mg/kg	0.78	0.86	0.8	0.86	0.93	0.71	0.91	0.68	0.8	0.67	0.78	0.84	0.86	0.78	1.1	1.7	1.7	35	12	2.2	63
Boron	mg/kg	5.9	4.9	4.3	4.8	5.1	4.6	4.8	2.8	4.9	3.4	4.3	4.4	1.8	3.3	3.8	290	11000	45	240000	21000	46000
Cadmium	mg/kg	0.3	0.3	0.2	0.3	0.3	< 0.2	0.3	0.2	0.4	0.2	0.3	0.3	0.3	0.3	0.4	11	85	1.9	190	120	532
Chromium VI	mg/kg	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	6	6	1.8	33	7.7	220
Chromium III	mg/kg	21	34	56	23	27	16	25	20	25	21	22	23	21	25	29	910	910	18000	8600	1500	33000
Chromium (total)	mg/kg	21	36	57	25	28	16	28	20	27	22	23	24	21	27	30						
Copper	mg/kg	19	16	11	13	12	9.6	11	4.6	9.8	9.1	12	11	6.7	7.8	13	2400	7100	520	68000	12000	44000
Lead	mg/kg	38	40	32	27	24	8.6	34	40	38	31	29	32	84	37	51	200	310	80	2330	630	1300
Mercury (total)	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	1.2	1.2	2.1	58	16	30
Nickel	mg/kg	19	21	21	22	23	17	20	25	22	20	22	22	27	21	22	180	180	230	980	230	3400
Selenium	mg/kg	1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	250	430	88	12000	1100	1800
Vanadium	mg/kg	28	30	29	31	35	22	38	21	35	28	31	32	22	34	43	410	1200	91	9000	2000	5000
	mg/kg	89	81	71	72	71	30	71	68	91	72	69	73	120	67	83	3700	40000	620	730000	81000	170000
Naphthalene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.3	2.3	4.1	190	4900	1200
Acenaphthylene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	210	3000	34	84000	15000	29000
Acenaphthene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	170	2900	28	83000	15000	29000
Fluorene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	170	2800	27	63000	9900	20000
Phenanthrene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	95	1300	15	22000	3100	62000
Anthracene	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	2400	31000	380 52	520000	74000	150000
Fluoranthene Pyrene	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.44	280 620	1500 3700	110	23000 54000	3100 7400	6300 15000
Benzo[a]anthracene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.26	7.2	11	2.9	170	29	49
Chrysene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.29	15	30	4.1	350	57	93
Benzo[b]fluoranthene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.6	3.9	0.99	<u> </u>	7 1	13
Benzo[k]fluoranthene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	77	110	37	1200	190	370
Benzo[a]pyrene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.2	3.2	0.97	35	5.7	11
Indeno[1,2,3-cd]pyrene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	27	45	9.5	500	82	150
Dibenzo[a,h]anthracene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.24	0.31	0.14	3.5	0.57	1.1
Benzo[g,h,i]perylene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	320	360	290	3900	640	1400
C4SL BaP surrogate marker	mg/kg																5	5.3	5.7	77	10	21
Phenols	mg/kg																280	750	66	760	760	760
Benzene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.087	0.38	0.017	27	72	90
Toluene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	130	880	22	56000	56000	870000
Ethylbenzene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	47	83	16	5700	24000	17000
m&p Xylene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	56	79	29	5900	41000	17000
o-Xylene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	60	88	28	6600	41000	17000
Aliphatic EC >C5-C6	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	42	42	730	3200	570000	95000
Aliphatic EC >C6-C8	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	100	100	2300	7800	600000	150000
Aliphatic EC >C8-C10	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	27	27	320	2000	13000	14000
Aliphatic EC >C10-C12	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	130	130	2200	9700	13000	21000
Aliphatic EC >C12-C16	mg/kg	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1100	1100	11000	59000	13000	25000
Aliphatic EC >C16-C21	mg/kg	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	-	-	-	-	-	-
Aliphatic EC >C21-C35	mg/kg	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	65000	65000	260000	1600000	250000	450000
Aliphatic EC >C35-C44	mg/kg	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	65000	65000	260000	1600000	250000	450000
Total Aliphatic Hydrocarbons	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10						
Aromatic EC >C5-C7 (benzene)	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	70	370	13	26000	56000	76000
Aromatic EC >C7-C8 (toluene)	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	130	860	22	56000	56000	87000
Aromatic EC >C8-C10	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	34	47	8.6	3500	5000	7200
Aromatic EC >C10-C12	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	74	250	13	16000	5000	9200
Aromatic EC >C12-C16	mg/kg	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	140	1800	23	36000	5100	10000
Aromatic EC >C16-C21	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	260	1900	46	28000	3800	7600
Aromatic EC >C21-C35	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	1100	1900	370	28000	3800	7800
Aromatic EC >C35-C44	mg/kg	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	1100	1900	370	28000	3800	7800
Total Aromatic Hydrocarbons	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	Į

from LQM / CIEH Suitable 4 Use Levels (S4ULs), 2015, as an initial screen to

_

Public Health England recommends the use of a surrogate marker approach for

C4SL has been used for lead since there is no S4UL

Ground and Project

Project:	Jn 10 M42	
Project No.	70530	
Calc Title:	Chemical test results against screening values	
Date:	22 October 2020 Rev	1

Location Reference		TP12	TP13	TP18	TP16	TP20	TP21	TP21	TP23	TP24	TP14	TP26	TP28	TP30	TP31						Τ
Depth (m bgl)		0.20	0.20	0.20	0.60	0.20	0.20	0.80	0.20	0.20	0.50	0.20	0.20	0.20	0.20	– Residential with	Residential		Commercial /	Public Open	Bublic Open
		Topsoil	Topsoil	Topsoil	Halesown	Topsoil	Topsoil	Halesown	Topsoil	Topsoil	Halesown	Topsoil	Topsoil	Topsoil	Topsoil	Plant Uptake	without Plant	Allotments	Industrial	Space	Public Open Space (Parks)
Stratum		ropson	Topson	1003011	Formation	торзоп	1003011	Formation	1003011	Topson	Formation	TOPSOI	Topson	ropson	горзон		Uptake		maastriar	(Residential)	
Determinand	Units			4 7						1.0											
Organic Matter (%)	%	2	1.7	1.7	0.2	1.9	2	0.2	1.9	1.9	1.1	2.6	1.9	1.6	1.7	27	10	10	640	70	170
Arsenic	mg/kg	7.1	6.5	6.8	3	6.4	6.9	3.6	6.2	5.8	4.3	8	5.8	6.8	7.2	37	40	43	640	79	170
Beryllium	mg/kg	0.97	0.8	0.77	0.83	0.82	0.86	0.87	0.82	0.82	0.72	1.2	0.85	0.93	0.99	1.7	1.7	35	12	2.2	63
Boron Cadmium	mg/kg	3.4	3.2 0.3	2.2 0.3	< 0.2	<u> </u>	3.6 0.4	< 0.2	3.3 0.3	3.9 0.3	3.6 < 0.2	5.5 0.4	4.3	4.2	4.6 0.3	290	<u> </u>	45 1.9	240000	21000	46000 532
Chromium VI	mg/kg mg/kg	< 4.0	< 4.0	< 4.0	< 0.2	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	0.3 < 4.0	< 4.0	< 4.0	6	6	1.9	190 33	120 7.7	220
Chromium III	mg/kg	27	24	24	22	24	23	22	23	25	21	35	26	27	27	910	910	1.8	8600	1500	33000
Chromium (total)	mg/kg	28	25	24	22	26	25	22	25	26	23	37	27	27	28	510	510	18000	0000	1500	35000
Copper	mg/kg	11	10	13	6	16	14	7.2	12	12	7.3	13	12	13	12	2400	7100	520	68000	12000	44000
Lead	mg/kg	54	31	26	12	23	26	5.1	21	21	21	48	20	19	23	200	310	80	2330	630	1300
Mercury (total)	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	1.2	1.2	2.1	58	16	30
Nickel	mg/kg	18	21	20	26	21	22	27	20	21	22	26	20	24	24	180	180	230	980	230	3400
Selenium	mg/kg	< 1.0	< 1.0	1	< 1.0	< 1.0	1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2	1.1	250	430	88	12000	1100	1800
Vanadium	mg/kg	38	36	34	20	34	33	22	32	34	24	49	35	35	37	410	1200	91	9000	2000	5000
Zinc	mg/kg	81	71	66	47	69	72	46	66	70	59	100	68	68	74	3700	40000	620	730000	81000	170000
Naphthalene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.3	2.3	4.1	190	4900	1200
Acenaphthylene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	210	3000	34	84000	15000	29000
Acenaphthene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	170	2900	28	83000	15000	29000
S Fluorene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	170	2800	27	63000	9900	20000
Phenanthrene Phenanthrene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	95	1300	15	22000	3100	62000
Anthracene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2400	31000	380	520000	74000	150000
Fluoranthene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	280	1500	52	23000	3100	6300
Pyrene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	620	3700	110	54000	7400	15000
Benzo[a]anthracene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	7.2	11	2.9	170	29	49
Chrysene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	15	30	4.1	350	57	93
Benzo[b]fluoranthene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	2.6	3.9	0.99	44	/.1	13
Benzo[k]fluoranthene	mg/kg	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	77	110 3.2	37 0.97	1200 35	190 5.7	370
¥Benzo[a]pyrene↓Indeno[1,2,3-cd]pyrene	mg/kg	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05	< 0.05	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	2.2	3.2 45	9.5	500	82	11 150
Dibenzo[a,h]anthracene	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.24	0.31	0.14	3.5	0.57	1.1
Benzo[g,h,i]perylene	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	320	360	290	3900	640	1400
C4SL BaP surrogate marker	mg/kg	< 0.05	< 0.05	(0.05	0105	0.00	< 0.05	× 0.05	0.05	< 0.05	< 0.05	< 0.05	(0.05	0.05	0.05	5	5.3	5.7	77	10	21
Phenols	mg/kg															280	750	66	760	760	760
Benzene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.087	0.38	0.017	27	72	90
Toluene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	130	880	22	56000	56000	870000
Ethylbenzene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	47	83	16	5700	24000	17000
m&p Xylene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	56	79	29	5900	41000	17000
o-Xylene	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	60	88	28	6600	41000	17000
Aliphatic EC >C5-C6	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	42	42	730	3200	570000	95000
Aliphatic EC >C6-C8	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	100	100	2300	7800	600000	150000
Aliphatic EC >C8-C10	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	27	27	320	2000	13000	14000
Aliphatic EC >C10-C12	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	130	130	2200	9700	13000	21000
Aliphatic EC >C12-C16	mg/kg	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1100	1100	11000	59000	13000	25000
Aliphatic EC >C16-C21	mg/kg	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	-	-	-	-	-	-
Aliphatic EC >C21-C35	mg/kg	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	65000	65000	260000	1600000	250000	450000
Aliphatic EC >C35-C44	mg/kg	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	65000	65000	260000	1600000	250000	450000
Total Aliphatic Hydrocarbons	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	_					
Aromatic EC >C5-C7 (benzene)	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	70	370	13	26000	56000	76000
Aromatic EC >C7-C8 (toluene)	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	130	860	22	56000	56000	87000
Aromatic EC >C8-C10	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	34	47	8.6	3500	5000	7200
Aromatic EC >C10-C12	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	74	250	13	16000	5000	9200
Aromatic EC >C12-C16	mg/kg	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	140	1800	23	36000	5100	10000
Aromatic EC >C16-C21	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	260	1900	46	28000	3800	7600
Aromatic EC >C21-C35	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	1100	1900	370	28000	3800	7800
Aromatic EC >C35-C44	mg/kg	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4	1100	1900	370	28000	3800	7800
Total Aromatic Hydrocarbons	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10						

from LQM / CIEH Suitable 4 Use Levels (S4ULs), 2015, as an initial screen to

_

Public Health England recommends the use of a surrogate marker approach for

C4SL has been used for lead since there is no S4UL

Appendix B Utility Drawings

Enquiry Confirmation LSBUD Ref: 19850841

Enquirer							
Name	Miss J	lanice Sheldon	Phone				
Company	Applie	d Geology Ltd	Mobile		Not Supp	lied	
Address		3 Abbey Park, Stareton vorth Warwickshire 2LY					
Email							
Enquiry D	Details						
Scheme/Re	ference	AG3185-20					
Enquiry type)	Planned Works	W	/ork cate	gory	Develop	oment Projects
Start date		14/09/2020	W	ork type		Comme	ercial/industrial
End date		30/11/2020	Si	ite size		341146	metres square
Searched lo	cation	XY= 424850, 300921	W	ork type	buffer*	75 metr	res
Confirmed lo	ocation	424827 300883	1				
Site Contact	Name	Not Supplied			Site Pho	one No	Not Supplied

* The WORK TYPE BUFFER is a distance added to your search area based on the Work type you have chosen.

Asset Owners

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at www.linesearchbeforeudig.co.uk ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

Notes. Please ensure your contact details are correct and up to date on the system in case the LSBUD Members need to contact you.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Asset Owners & Responses. Please note the enquiry results include the following:

- 1. "LSBUD Members" who are asset owners who have registered their assets on the LSBUD service.
- 2. "Non LSBUD Members" are asset owners who have not registered their assets on the LSBUD service but LSBUD is aware of their existence. Please note that there could be other asset owners within your search area.

Below are three lists of asset owners:

- 1. LSBUD Members who have assets registered within your search area. ("Affected")
 - a.These LSBUD Members will either:
 - i. Ask for further information ("Email Additional Info" noted in status). The additional information includes: Site contact name and number, Location plan, Detailed plan (minimum scale 1:2500), Cross sectional drawings (if available), Work Specification.
 - ii. Respond directly to you ("Await Response"). In this response they may either send plans directly to you or ask for further information before being able to do so, particularly if any payments or authorisations are required.
- 2. LSBUD Members who do not have assets registered within your search area. ("Not Affected")
- 3. Non LSBUD Members who may have assets within your search area. Please note that this list is not exhaustive and all details are provided as a guide only. It is your responsibility to identify and consult with all asset owners before proceeding.

National Grid. Please note that the LSBUD service only contains information on National Grid's Gas above 7 bar asset, all National Grid Electricity Transmission assets and National Grid's Gas Distribution Limited above 2 bar asset.

For National Grid Gas Distribution Ltd below 2 bar asset information please go to <u>www.beforeyoudig.nationalgrid.com</u>

LSBUD Members who have assets registered on the LSBUD service within the vicinity of your search area.

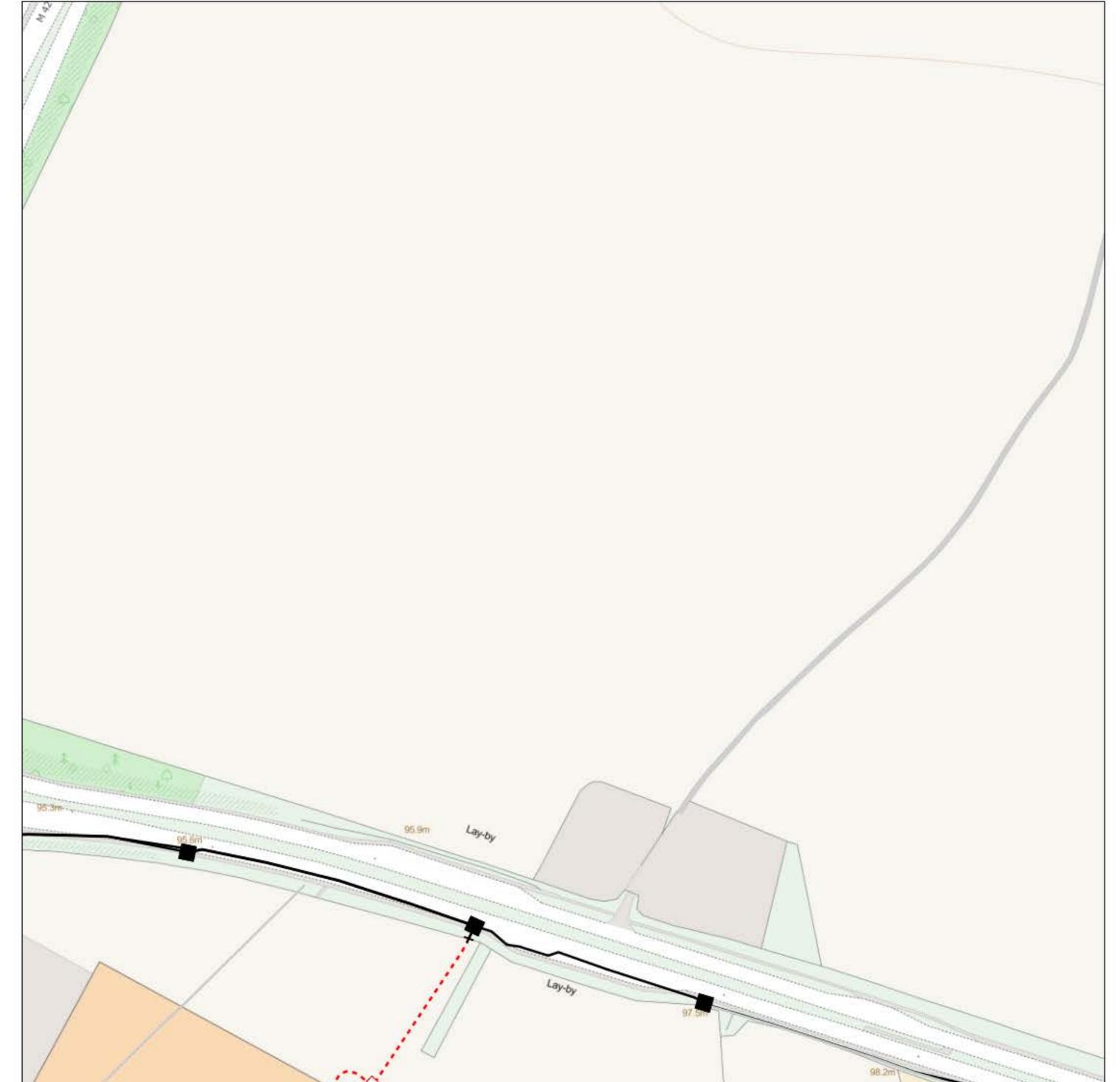
List of affect	ed LSBUD members		
Asset Owner	Phone/Email	Emergency Only	Status
ESP Utilities Group	01372227560	01372227560	Await response
Mainline Pipelines Limited	08454378293 mainlinepipelines@fishergerman.co. uk	08007560804	Email Additional Info
National Grid Gas (Above 7 bar), National Grid Gas Distribution Limited (Above 2 bar) and National Grid Electricity Transmission	0800688588 plantprotection@cadentgas.com	Gas 0800111999 Electricity 0800404090	Email Additional Info
Western Power Distribution	08000963080	08006783105	Await response

LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area. Please be aware that LSBUD Members make regular changes to their assets and this list may vary for new enquiries in the same area.

	List of not affected LSBUD members	
AWE Pipeline	Balfour Beatty Investments Limited	BOC Limited (A Member of the Linde Group)
BP Exploration Operating Company Limited	ВРА	Carrington Gas Pipeline
CATS Pipeline c/o Wood Group PSN	Cemex	Centrica Storage Ltd
Chrysaor Production (UK) Limited	CLH Pipeline System Ltd	CNG Services Ltd
Concept Solutions People Ltd	ConocoPhillips (UK) Teesside Operator Ltd	Diamond Transmission Corporation
DIO (MOD Abandoned Pipelines)	Drax Group	E.ON UK CHP Limited
EirGrid	Electricity North West Limited	ENI & Himor c/o Penspen Ltd
EnQuest NNS Limited	EP Langage Limited	ESSAR
Esso Petroleum Company Limited	Fulcrum Pipelines Limited	Gamma
Gas Networks Ireland (UK)	Gateshead Energy Company	Gigaclear Ltd
Gtt	Heathrow Airport LTD	Humbly Grove Energy
IGas Energy	INEOS FPS Pipelines	INEOS Manufacturing (Scotland and TSEP)
INOVYN Enterprises Limited	Intergen (Coryton Energy or Spalding Energy)	Jurassic Fibre Ltd
Manchester Jetline Limited	Manx Cable Company	Marchwood Power Ltd (Gas Pipeline)
Melbourn Solar Limited	Murphy Utility Assets	Northumbrian Water Group
NPower CHP Pipelines	NYnet Ltd	Oikos Storage Limited
Ørsted	Perenco UK Limited (Purbeck Southampton Pipeline)	Petroineos
Phillips 66	Portsmouth Water	Premier Transmission Ltd (SNIP)
Redundant Pipelines - LPDA	RWE - Great Yarmouth Pipeline (Bacton to Great Yarmouth Power Station)	RWEnpower (Little Barford and South Haven)
SABIC UK Petrochemicals	Scottish and Southern Electricity Networks	Scottish Power Generation
Seabank Power Ltd	SES Water	SGN
Shell	Shell NOP	SSE (Peterhead Power Station)
SSE Enterprise Telecoms	SSE Generation Ltd	SSE Utility Solutions Limited
Tata Communications (c/o JSM Construction Ltd)	Total (Colnbrook & Colwick Pipelines)	Total Finaline Pipelines

Transmission Capital	UK Power Networks	Uniper UK Ltd
University of Cambridge Granta Backbone Network	Vattenfall	Veolia ES SELCHP Limited
Veolia ES Sheffield Ltd	Wales and West Utilities	West of Duddon Sands Transmission Ltd
Westminster City Council	Zayo Group UK Ltd c/o JSM Group Ltd	

Enquiry Confirmation LSBUD Ref: 19850841


The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding. Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.

Non-LSBUD r	nembers (Asset owners not registered o	n LSBUD)	
Asset Owner	Preferred contact method	Phone	Status
BT	https://www.swns.bt.com/pls/mbe/welcome.home	08000232023	Not Notified
Cadent Gas	plantprotection@cadentgas.com	0800688588	Not Notified
CenturyLink Communications UK Limited	plantenquiries@instalcom.co.uk	02087314613	Not Notified
CityFibre	asset.team@cityfibre.com	033 3150 7282	Not Notified
Colt	plantenquiries@catelecomuk.com	01227768427	Not Notified
Energetics Electricity	plantenquiries@lastmile-uk.com	01698404646	Not Notified
ENGIE	nrswa.uk@engie.com	01293 549944	Not Notified
GTC	https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified
KPN (c/-Instalcom)	kpn.plantenquiries@instalcom.co.uk	n/a	Not Notified
Mobile Broadband Network Limited	mbnlplantenquiries@turntown.com	01212 621 100	Not Notified
	www.stwater.co.uk/building-and-		
Severn Trent Water	developing/estimators-and-maps/request-a-water-	03456016616	Not Notified
	sewer-map		
Sky UK Limited	nrswa@sky.uk	02070323234	Not Notified
Sota	SOTA.plantenquiries@instalcom.co.uk		Not Notified
Utility assets Ltd	assetrecords@utilityassets.co.uk		Not Notified
Verizon Business	osp-team@uk.verizonbusiness.com	01293611736	Not Notified
Virgin Media	http://www.digdat.co.uk	08708883116	Not Notified
Vodafone	osm.enquiries@atkinsglobal.com	01454662881	Not Notified
Warwickshire CC (St Lighting)	streetlighting@warwickshire.gov.uk	01926736573	Not Notified
Warwickshire CC (Traffic Signals)	signals@warwickshire.gov.uk	01926412810	Not Notified

Disclaimer

Please refer to LinesearchbeforeUdig's Terms of Use for full terms of use available at www.linesearchbeforeudig.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LinesearchbeforeUdig will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LinesearchbeforeUdig, including but not exclusively those set out above. Therefore, LinesearchbeforeUdig cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LinesearchbeforeUdig and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

IMPORTANT WARNING

Information regarding the location of BT apparatus is given for your assistance and is intended for general guidance only. No guarantee is given of its accuracy. It should not be relied upon in the event of excavations or other works being made near to BT apparatus which may exist at various depths and may deviate from the marked route.

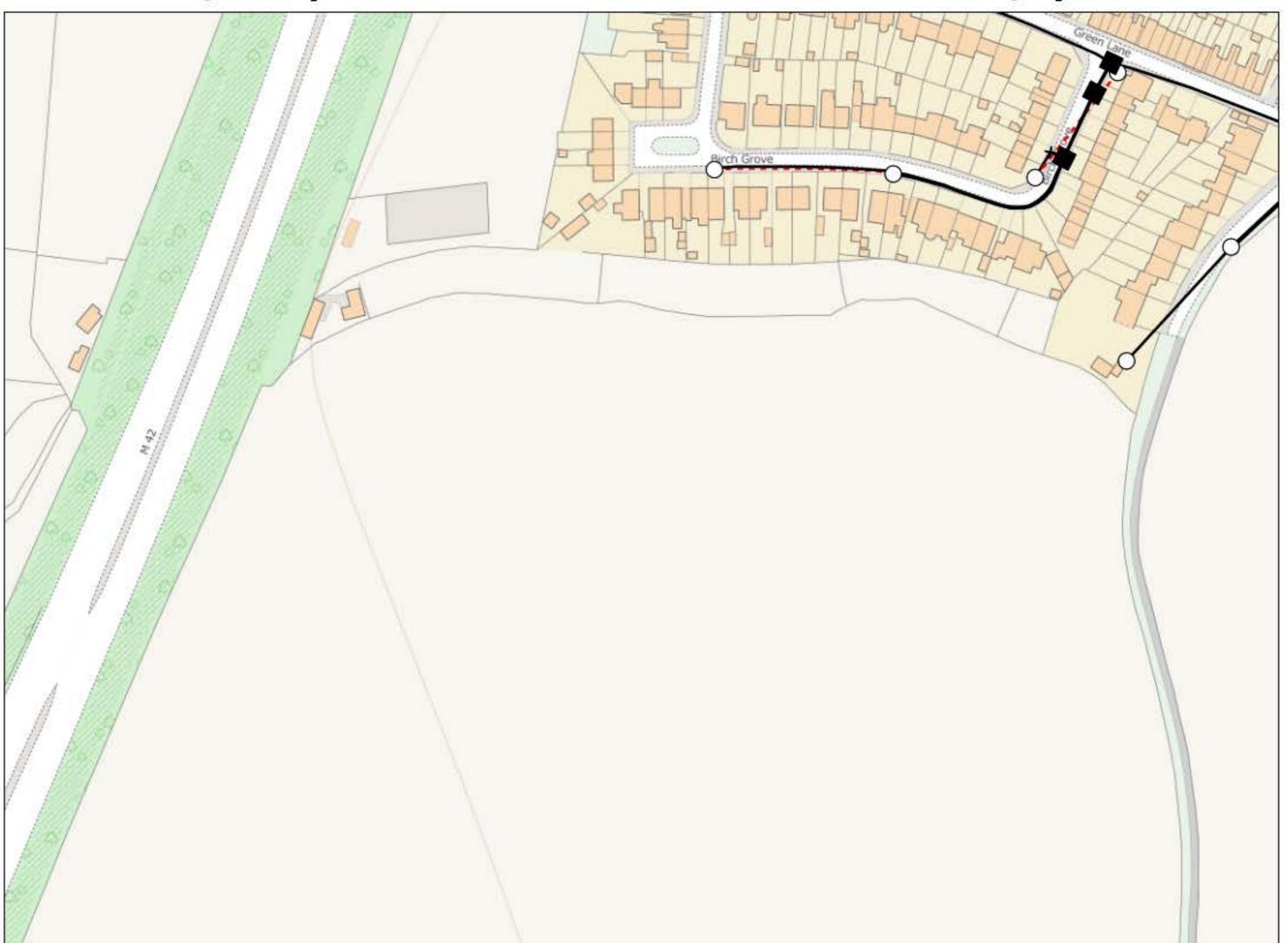
openreach

CLICK BEFORE YOU DIG

FOR PROFESSIONAL FREE ON SITE ASSISTANCE PRIOR TO COMMENCEMENT OF EXCAVATION WORKS INCLUDING LOCATE AND MARKING SERVICE

email cbyd@openreach.co.uk

ADVANCE NOTICE REQUIRED (Office hours: Monday - Friday 08.00 to 17.00) www.openreach.co.uk/cbyd


Accidents happen

If you do damage any Openreach equipment please let us know by calling 0800 023 2023 (opt 1 + opt 1) and we can get it fixed ASAP

Reproduced from the Ordnance Survey map by BT by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (C) Crown Copyright British Telecommunications plc 100028040

KEY	TO BT SYMI	BOLS	Change Of State	+	Hatchings	\otimes
	Planned	Live	Split Coupling	\times	Built	~
РСР		⊠	Duct Tee		Planned	
Pole	0	0	Building		Inferred	1
Вох			Kiosk	ĸ	Duct	
Manhole					shown using da	
Cabinet		Û	Existi	ng <mark>BT Pl</mark> ant m	oove may be di ay not be reco of preparation	rded.
*						
				or 90 days aft	er the date of p	
	Pending Add	In Place	Pending Remove	or 90 days aft Not In Use		
Power Cable	Pending Add	In Place	Pending			

BT Ref : DSX02374Y Map Reference : (centre) SK2481200748 Easting/Northing : (centre) 424812,300748 Issued : 07/09/2020 14:37:53

IMPORTANT WARNING

Information regarding the location of BT apparatus is given for your assistance and is intended for general guidance only. No guarantee is given of its accuracy. It should not be relied upon in the event of excavations or other works being made near to BT apparatus which may exist at various depths and may deviate from the marked route.

openreach

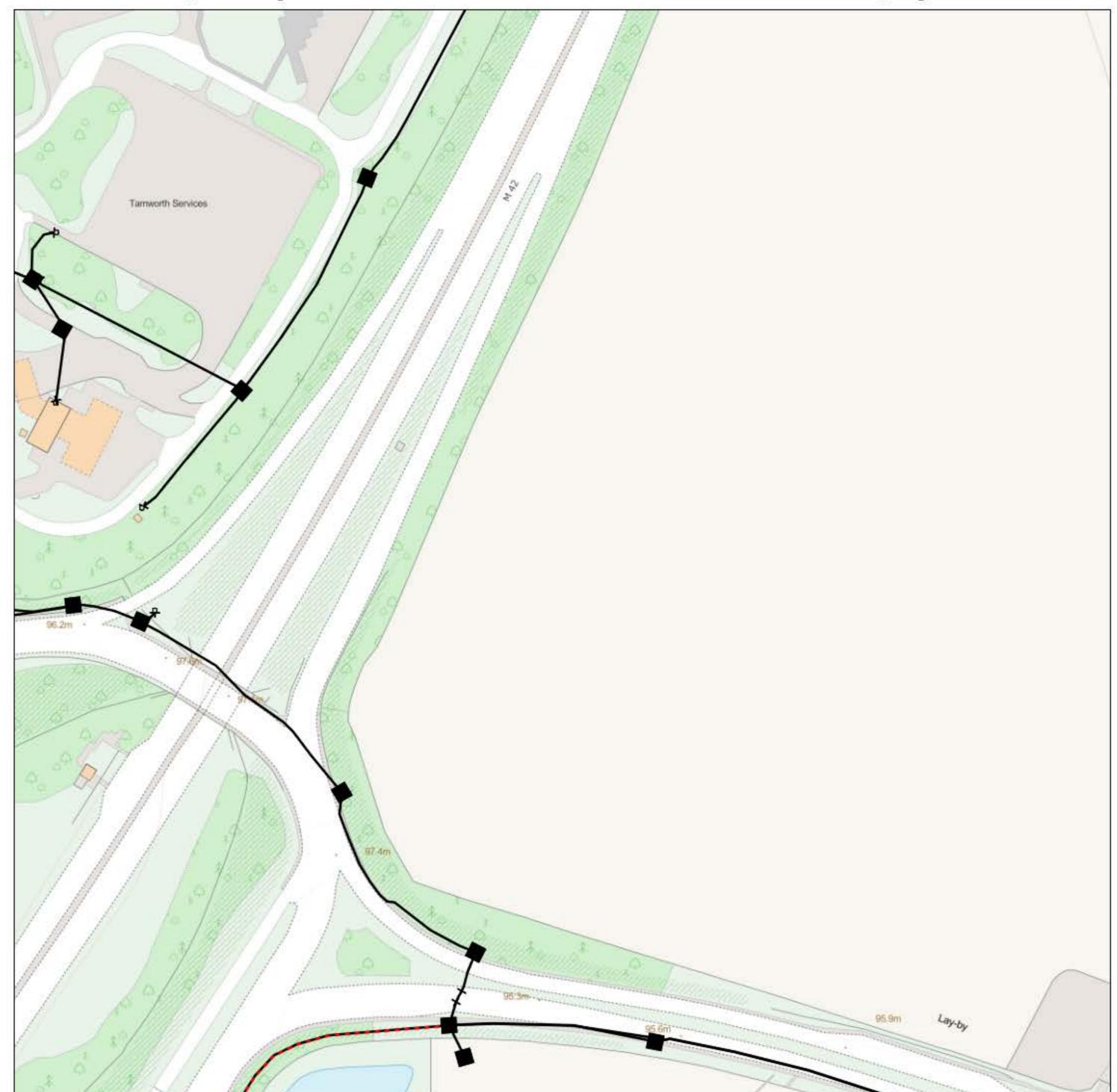
CLICK BEFORE YOU DIG

FOR PROFESSIONAL FREE ON SITE ASSISTANCE PRIOR TO COMMENCEMENT OF EXCAVATION WORKS INCLUDING LOCATE AND MARKING SERVICE

email cbyd@openreach.co.uk

ADVANCE NOTICE REQUIRED (Office hours: Monday - Friday 08.00 to 17.00) www.openreach.co.uk/cbyd

Accidents happen


If you do damage any Openreach equipment please let us know by calling 0800 023 2023 (opt 1 + opt 1) and we can get it fixed ASAP

Reproduced from the Ordnance Survey map by BT by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (C) Crown Copyright British Telecommunications plc 100028040

KEY	TO BT SYMI	BOLS	Change Of State	+	Hatchings	***
	Planned	Live	Split Coupling	\times	Built	~
РСР		⊠	Duct Tee		Planned	
Pole	0	0	Building		Inferred	~
Box			Kiosk	ĸ	Duct	
200000000000		-	Other erens			ale and there a
Manhole				State of the state of the state	shown using da	
Manhole Cabinet		Û	BT Symbols Existin	not listed al	bove may be di nay not be reco	sregarded. rded.
	~	Û	BT Symbols Existin Information	not listed al ng BT Plant m valid at time	bove may be di	sregarded. rded. n. <mark>Maps are</mark>
	~	In Place	BT Symbols Existin Information	not listed al ng BT Plant m valid at time	bove may be dis nay not be reco e of preparation	sregarded. rded. n. <mark>Maps a</mark> re
		Û	BT Symbols Existin Information only valid fo Pending	not listed al ng BT Plant m valid at time or 90 days aft	bove may be dis nay not be reco e of preparation	sregarded. rded. n. <mark>Maps a</mark> re

Track

BT Ref : GFK02378K Map Reference : (centre) SK2488201189 Easting/Northing : (centre) 424882,301189 Issued : 07/09/2020 14:37:06

IMPORTANT WARNING

Information regarding the location of BT apparatus is given for your assistance and is intended for general guidance only. No guarantee is given of its accuracy. It should not be relied upon in the event of excavations or other works being made near to BT apparatus which may exist at various depths and may deviate from the marked route.

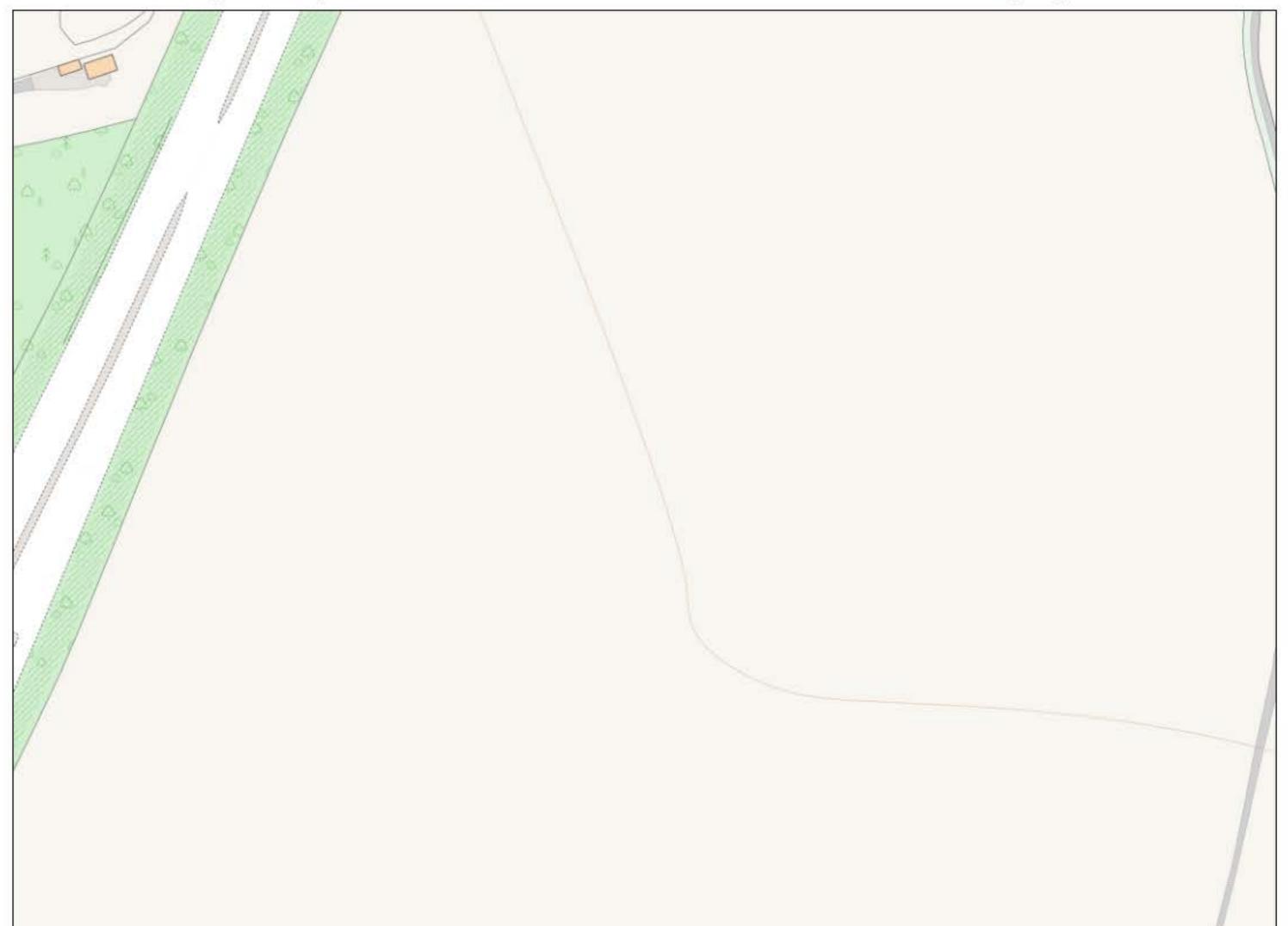
openreach

CLICK BEFORE YOU DIG

FOR PROFESSIONAL FREE ON SITE ASSISTANCE PRIOR TO COMMENCEMENT OF EXCAVATION WORKS INCLUDING LOCATE AND MARKING SERVICE

email cbyd@openreach.co.uk

ADVANCE NOTICE REQUIRED (Office hours: Monday - Friday 08.00 to 17.00) www.openreach.co.uk/cbyd


Accidents happen

If you do damage any Openreach equipment please let us know by calling 0800 023 2023 (opt 1 + opt 1) and we can get it fixed ASAP

Reproduced from the Ordnance Survey map by BT by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (C) Crown Copyright British Telecommunications plc 100028040

KEY	TO BT SYME	BOLS	Change Of State	+	Hatchings	***
	Planned	Live	Split Coupling	\times	Built	~
РСР		ً	Duct Tee		Planned	
Pole	0	0	Building		Inferred	~
Box			Kiosk	ĸ	Duct	
Manhole					shown using da bove may be di	
Cabinet		Û	Existi		may not be reco	a contractor a secondaria da
cability					e of preparation fter the date of p	n. Maps are
Cabinet	Pending Add	In Place			e of preparation fter the date of p	n. Maps are
Power Cable	Pending Add	In Place	only valid fo	or 90 days af	e of preparation fter the date of p	n. Maps are

BT Ref : LMF02394U Map Reference : (centre) SK2459600826 Easting/Northing : (centre) 424596,300826 Issued : 07/09/2020 14:40:02

IMPORTANT WARNING

Information regarding the location of BT apparatus is given for your assistance and is intended for general guidance only. No guarantee is given of its accuracy. It should not be relied upon in the event of excavations or other works being made near to BT apparatus which may exist at various depths and may deviate from the marked route.

openreach

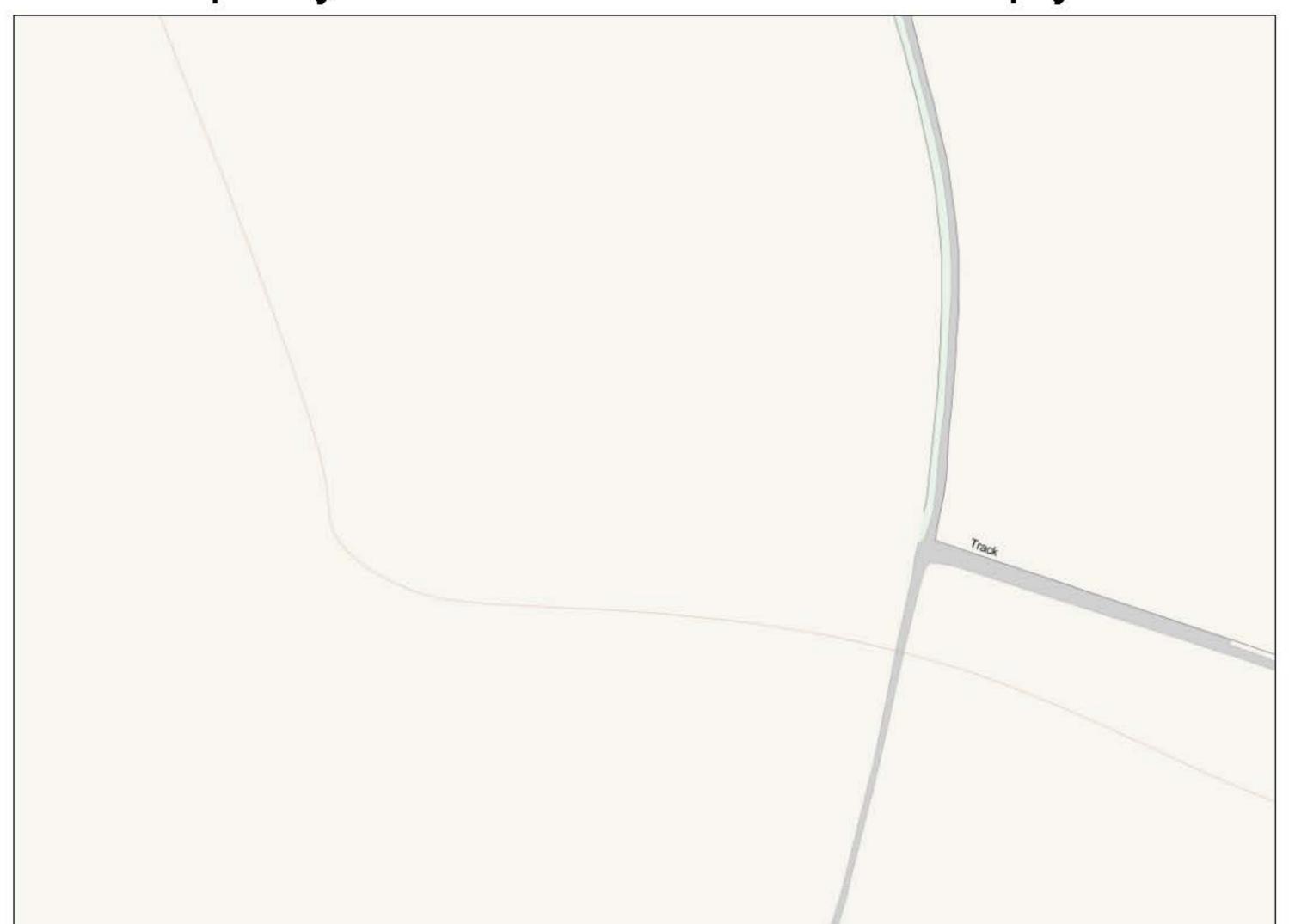
CLICK BEFORE YOU DIG

FOR PROFESSIONAL FREE ON SITE ASSISTANCE PRIOR TO COMMENCEMENT OF EXCAVATION WORKS INCLUDING LOCATE AND MARKING SERVICE

email cbyd@openreach.co.uk

ADVANCE NOTICE REQUIRED (Office hours: Monday - Friday 08.00 to 17.00) www.openreach.co.uk/cbyd

Accidents happen


If you do damage any Openreach equipment please let us know by calling 0800 023 2023 (opt 1 + opt 1) and we can get it fixed ASAP

Reproduced from the Ordnance Survey map by BT by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (C) Crown Copyright British Telecommunications plc 100028040

KEY TO BT SYMBOLS			Change Of State	+	Hatchings	\otimes
	Planned	Live	Split Coupling	\times	Built	1
РСР		Ŵ	Duct Tee		Planned	
Pole	0	0	Building		Inferred	~
Вох			Kiosk	ĸ	Duct	
Manhole			Other proposed plant is shown using dashed lines.			
Cabinet		Û	BT Symbols not listed above may be disregarded. Existing BT Plant may not be recorded. Information valid at time of preparation. Maps are only valid for 90 days after the date of publication.			
	Pending Add	In Place	Pending Remove	Not In Use		
Power Cable	++	NN	11.	NN		
	ALC: NOT THE REAL PROPERTY OF	1	4 4			

BT Ref : RKT02374Z Map Reference : (centre) SK2483400998 Easting/Northing : (centre) 424834,300998 Issued : 07/09/2020 14:37:28

Maps by email Plant Information Reply

IMPORTANT WARNING

Information regarding the location of BT apparatus is given for your assistance and is intended for general guidance only. No guarantee is given of its accuracy. It should not be relied upon in the event of excavations or other works being made near to BT apparatus which may exist at various depths and may deviate from the marked route.

openreach

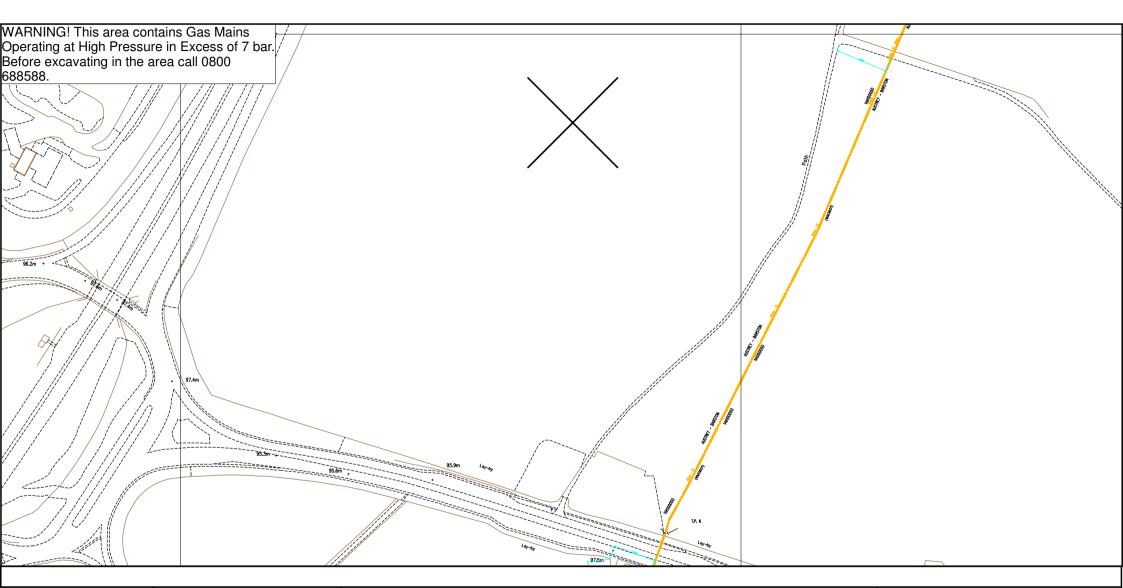
CLICK BEFORE YOU DIG

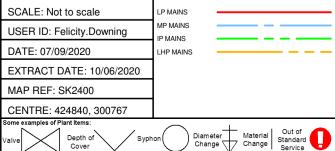
FOR PROFESSIONAL FREE ON SITE ASSISTANCE PRIOR TO COMMENCEMENT OF EXCAVATION WORKS INCLUDING LOCATE AND MARKING SERVICE

email cbyd@openreach.co.uk

ADVANCE NOTICE REQUIRED (Office hours: Monday - Friday 08.00 to 17.00) www.openreach.co.uk/cbyd

Accidents happen

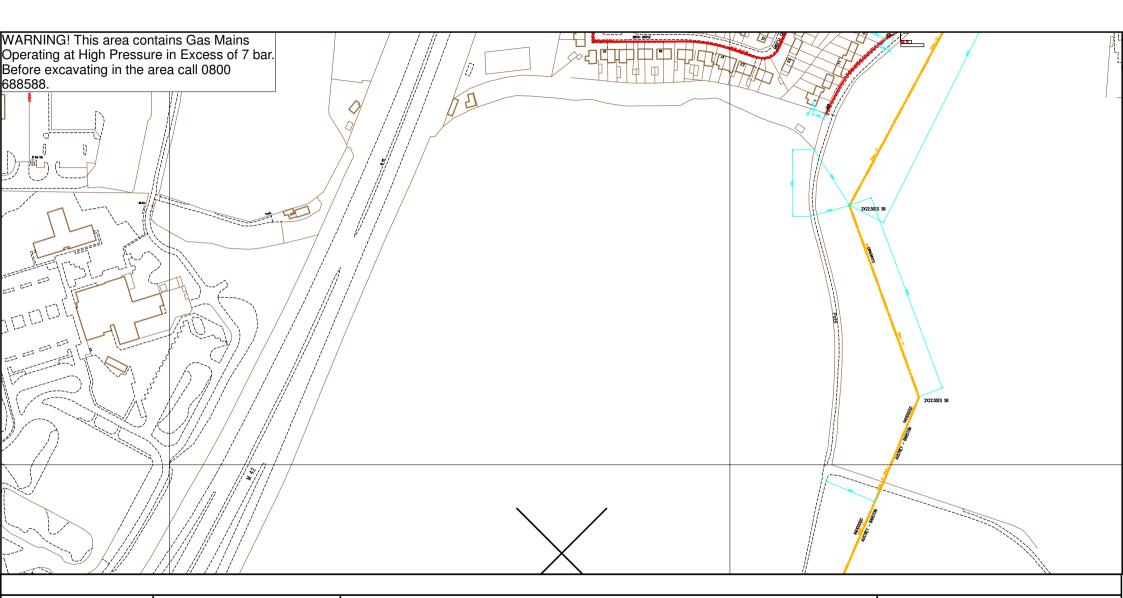

If you do damage any Openreach equipment please let us know by calling 0800 023 2023 (opt 1 + opt 1) and we can get it fixed ASAP

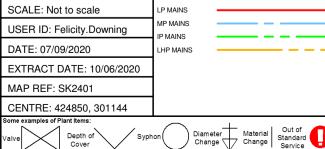

Reproduced from the Ordnance Survey map by BT by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (C) Crown Copyright British Telecommunications plc 100028040

KEY	TO BT SYM	BOLS	Change Of State	+	Hatchings	\otimes	
	Planned	Live	Split Coupling	\times	Built	~	
РСР		囟	Duct Tee		Planned		
Pole	0	0	Building		Inferred	~	
Box			Kiosk	ĸ	Duct		
Manhole				Other proposed plant is shown using dashed line			
Cabinet	Û	Û	Exist	ing BT Plant m	bove may be di nay not be reco	rded.	
					e of preparation ter the date of p		
	Pending Add	In Place	Pending Remove	Not In Use			
Power Cable	++	××	11.	N N			
	al al		44	N/A	1		

BT Ref : TYN02407F Map Reference : (centre) SK2497600958 Easting/Northing : (centre) 424976,300958 Issued : 07/09/2020 14:40:17

WARNING: IF PLANNED WORKS FALL INSIDE HATCHED AREA IT IS ESSENTIAL BEFORE PROCEEDING THAT YOU CONTACT THE NATIONAL NOTICE HANDLING CENTRE. PLEASE SEND E-MAIL TO: nnhc@openreach.co.uk


This plan shows those pipes owned by Cadent Gas Ltd in their role as a


Licensed Gas Transporter (GT). Gas pipes owned by other GTs, or otherwise privately owned, may be present in this area. Information with regard to such pipes should be obtained from the relevant owners. The information shown on this plan is given without warranty, the accuracy thereof cannot be guaranteed. Service pipes, valves, syphons, stub connections, etc. are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Cadent Gas Ltd or their agents, servants or contractors for any error or omission. Safe digging practices, in accordance with HS(G)47, must be used to verify and establish the actual position of mains, pipes, services and other apparatus on site before any mechanical plant is used. It is your responsibility to ensure that this information is provided to all persons (either direct labour or contractors) working for you on or near gas apparatus. The information included on this plan should not be referred to beyond a period of 28 days from the date of issue. Further information on all DR4s can be determined by calling the DR4 hotline on 01455 892426 (9am-5pm) A DR4 is where a potential error has been identified within the asset record and a process is currently underway to investigate and resolve the error as appropriate.

MAPS Viewer Version 5.8.0.1

Local Machine

This plan is reproduced from or based on the OS map by Cadent Gas Ltd, with the sanction of the controller of HM Stationery Office. Crown Copyright Reserved.

This plan shows those pipes owned by Cadent Gas Ltd in their role as a

Licensed Gas Transporter (GT). Gas pipes owned by other GTs, or otherwise privately owned, may be present in this area. Information with regard to such pipes should be obtained from the relevant owners. The information shown on this plan is given without warranty, the accuracy thereof cannot be guaranteed. Service pipes, valves, syphons, stub connections, etc. are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Cadent Gas Ltd or their agents, servants or contractors for any error or omission. Safe digging practices, in accordance with HS(G)47, must be used to verify and establish the actual position of

mains, pipes, services and other apparatus on site before any mechanical plant is used. It is your responsibility to ensure that this information is provided to all persons (either direct labour or contractors) working for you on or near gas apparatus. The information included on this plan should not be referred to beyond a period of 28 days from the date of issue. Further information on all DR4s can be determined by calling the DR4 hotline on 01455 892426 (9am-5pm) A DR4 is where a potential error has been identified within the asset record and a process is currently underway to investigate and resolve the error as appropriate.

MAPS Viewer Version 5.8.0.1

Local Machine

This plan is reproduced from or based on the OS map by Cadent Gas Ltd, with the sanction of the controller of HM Stationery Office. Crown Copyright Reserved.

Cadent Reference WM_GW2B_3WL_1264971-2 Customer Reference AG3185-20

Tajinder.Bhamra <Tajinder.Bhamra@cadentgas.com>

Tue 9/8/2020 11:14 AM

To: Janice Sheldon <janice.sheldon@appliedgeology.co.uk>

Dear Janice,

We've completed our investigations and confirm we need to carry out a site visit before you start <u>any</u> work. The site visit is a critical part in our assessment. This allows us to inspect the area and agree safe working methods whilst working near our pipes.

Please contact us via email or phone to arrange a site visit. 0121 333 2387.

Your work can't proceed until a site visit has been arranged and the works in question have been discussed.

If you need any further information or have any questions about this, please give us a call on 0121 333 2387.

Yours sincerely

Plant Protection Team

This e-mail, and any attachments are strictly confidential and intended for the addressee(s) only. The content may also contain legal, professional or other privileged information. If you are not the intended recipient, please notify the sender immediately and then delete the e-mail and any attachments. You should not disclose, copy or take any action in reliance on this transmission.

Please ensure you have adequate virus protection before you open or detach any documents from this transmission. Cadent Gas Limited does not accept any liability for viruses. An e-mail reply to this address may be subject to monitoring for operational reasons or lawful business practices.

Cadent Gas Limited is a limited liability company, registered in England and Wales (registered no. 10080864) with its registered office at Ashbrook Court, Prologis Park, Central Boulevard, Coventry CV7 8PE.

Janice Sheldon Applied Geology Ltd Unit 23 Abbey Park Stareton Kenilworth CV8 2LY Plant Protection Cadent Block 1; Floor 1 Brick Kiln Street Hinckley LE10 0NA E-mail: <u>plantprotection@cadentgas.com</u> Telephone: +44 (0)800 688588

National Gas Emergency Number: 0800 111 999*

National Grid Electricity Emergency Number: 0800 40 40 90* * Available 24 hours, 7 days/week. Calls may be recorded and monitored.

www.cadentgas.com

Date: 07/09/2020 Our Ref: WM_GW2B_3WL_1264971 Your Ref: LSBUD-200907-19850841 RE: Scheduled Works, Location N/A

Thank you for your enquiry which was received on 07/09/2020. Please note this response is valid for 28 days.

An assessment has been carried out with respect to Cadent Gas Limited, National Grid Electricity Transmission plc's and National Grid Gas Transmission plc's apparatus. Please note it does not cover the items listed in the section "Your Responsibilities and Obligations", including gas service pipes and related apparatus. For details of Network areas please see the Cadent website (<u>http://cadentgas.com/Digging-safely/Dial-before-you-dig</u>) or the enclosed documentation.

Your proposal as currently specified is in proximity to Cadent and/or National Grid apparatus, which may impact, and possibly prevent, your proposed activities for safety and/or legal reasons.

Please log in to the Cadent self-service Plant Enquiries system

(https://www.beforeyoudig.cadentgas.com) to continue with your enquiry. The details from your Linesearch enquiry will already be on the system. Use the search function to find it, and you can base your full enquiry on the same details, while marking up a more precise location.

You must not commence any work until you have complied with all of the guidance provided and been contacted by all teams (if any) listed in the response to your full enquiry.

Your Responsibilities and Obligations

It is your responsibility to ensure that the information you have submitted is accurate and that all relevant documents including links are provided to all persons (either direct labour or contractors) working for you near Cadent and/or National Grid's apparatus, e.g. as contained within the Construction (Design and Management) Regulations.

This assessment solely relates to Cadent Gas Limited, National Grid Electricity Transmission plc (NGET) and National Grid Gas Transmission plc (NGGT) and apparatus. This assessment does **NOT** include:

- Cadent and/or National Grid's legal interest (easements or wayleaves) in the land which restricts activity in proximity to Cadent and/or National Grid's assets in private land. You must obtain details of any such restrictions from the landowner in the first instance and if in doubt contact Plant Protection.
- I Gas service pipes and related apparatus
- Recently installed apparatus
- Apparatus owned by other organisations, e.g. other gas distribution operators, local electricity companies, other utilities, etc.

It is **YOUR** responsibility to take into account whether the items listed above may be present and if they could be affected by your proposed activities. Further "Essential Guidance" in respect of these items can be found on either the <u>National Grid</u> or <u>Cadent</u> website.

This communication does not constitute any formal agreement or consent for any proposed development work; either generally or with regard to Cadent and/or National Grid's easements or wayleaves nor any planning or building regulations applications.

Cadent Gas Limited, NGGT and NGET or their agents, servants or contractors do not accept any liability for any losses arising under or in connection with this information. This limit on liability applies to all and any claims in contract, tort (including negligence), misrepresentation (excluding fraudulent misrepresentation), breach of statutory duty or otherwise. This limit on liability does not exclude or restrict liability where prohibited by the law nor does it supersede the express terms of any related agreements.

If you require further assistance please contact the Plant Protection team via e-mail (<u>click here</u>) or via the contact details at the top of this response.

Yours faithfully

Plant Protection Team

ENQUIRY SUMMARY

Received Date 07/09/2020

Your Reference LSBUD-200907-19850841

Location Centre Point: 424827, 300925 X Extent: 656 Y Extent: 758

Map Options Paper Size: A3 Orientation: PORTRAIT Requested Scale: 2500 Actual Scale: N/A Real World Extents: N/A

Start Date 14/09/2020

Enquirer Details Organisation Name: Applied Geology Ltd Contact Name: Janice Sheldon Address: Unit 23,Abbey Park, Stareton,Kenilworth,CV8 2LY

Description of Works Development Projects

Enquiry Type Scheduled Works

Activity Type Development Project

Work Types Work Type: Piling (Vibration) Our Ref: MLP//LSBUD-200907-19850841 Your Ref: AG3185-20

Date: 08-09-2020

For the attention of Miss Janice Sheldon Applied Geology Ltd Abbey Park Stareton Kenilworth Warwickshire CV8 2LY

Fisher German LLP Mainline Pipelines Limited PO BOX 9856 Ashby de la Zouch LE65 9BZ

0845 4378293 mainlinepipelines@fishergerman.co.uk fishergerman.co.uk

Dear Sir/Madam

MAINLINE PIPELINES LIMITED – Kingsbury to Nottingham **SCHEME:** AG3185-20

Thank you for your notice dated 07-09-2020 with regard to the above proposed works. We can confirm that it would appear from your plan/s that your works will affect our client's apparatus. Prior to any works commencing, you should contact Mr Richard Gent or Mr Harry Fromant on 0845 4378293 so that a site meeting can be arranged to discuss these works in more detail.

IN ORDER FOR THESE WORKS TO PROCEED SAFELY YOU MUST DO THE FOLLOWING:

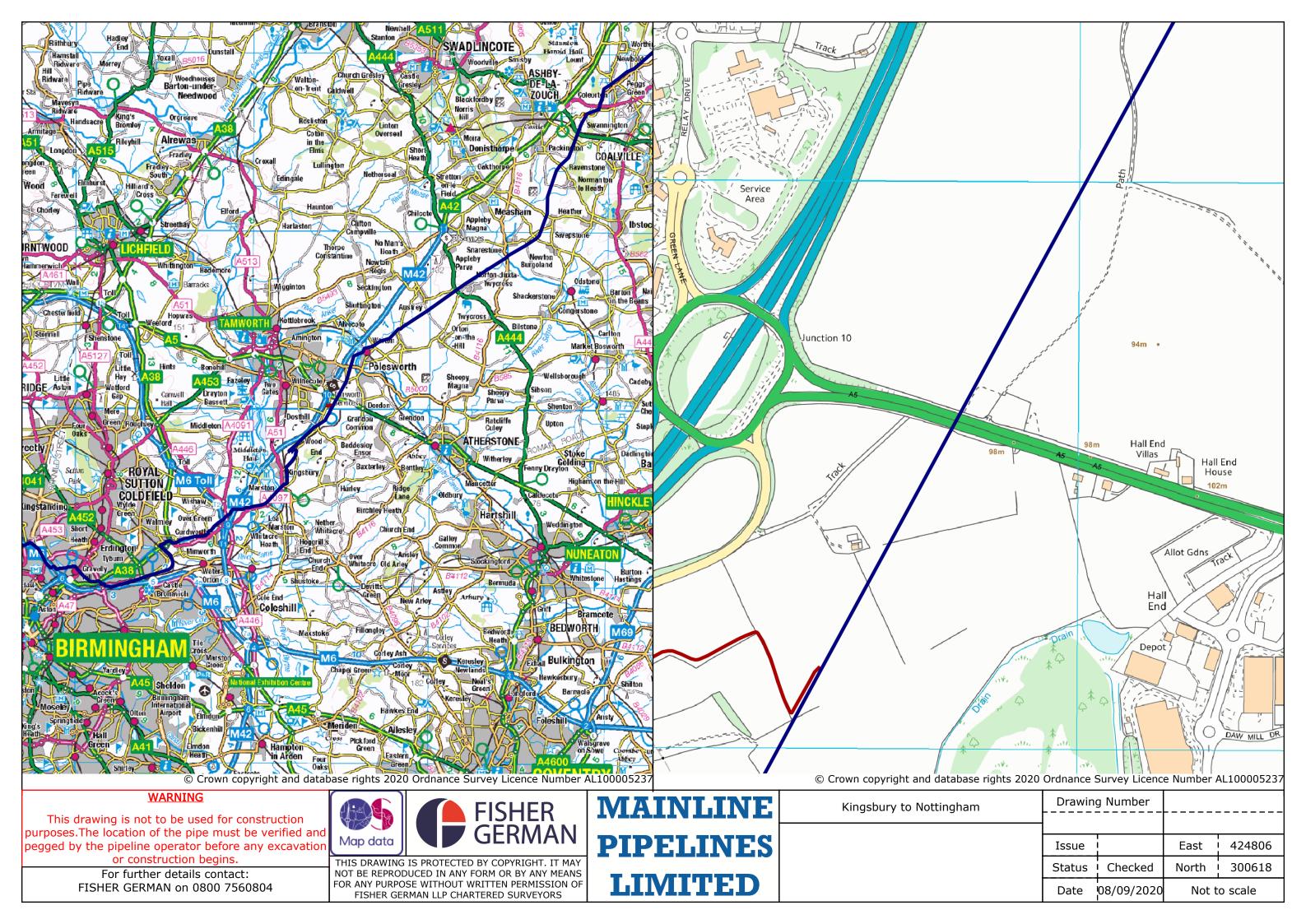
- ARRANGE SUPERVISION THROUGH THIS OFFICE AT LEAST 48 HOURS IN ADVANCE.
- PROVIDE DETAILS OF THE JOB TO BE CARRIED OUT, INCLUDING A METHOD STATEMENT, SITE LOCATION, DETAILED PLANS AND SITE CONTACT INFORMATION IN ADVANCE OF THE WORKS.

YOU SHOULD NOTE THAT NO WORKS OF ANY KIND. EITHER BY HAND OR MACHINE IS PERMITTED WITHIN OUR CLIENT'S 6 METRE "SAFETY ZONE" (3M EITHER SIDE OF THE PIPELINE) WITHOUT PRIOR NOTIFICATION TO OURSELVES TO ENSURE THE INTEGRITY OF OUR CLIENT'S APPARATUS.

We enclose for your information an A3 plan showing the approximate location of our client's apparatus where it crosses your area of concern. In addition, please refer to https://www.linesearchbeforeudig.co.uk/linesearchbeforeudig-support for a copy of our client's "Special Requirements for Safe Working in Close Proximity to High Pressure Oil Pipelines" booklet a guidelines booklet detailing the sorts of precautions that should be taken when in the vicinity of our client's apparatus - together with a copy of the Marker Post brochure. Hard copies of these documents are available on request.

Fisher German LLP is a limited liability partnership. Registered in England and Wales, Registered Number: OC317554, Registered Office: In Head Office, Ivanhoe Office Park, Ivanhoe Park Way, Ashby De La Zouch LESS 2AB. A list of members' names is available for inspection at the registered office.

Regulated by RICS.



THIS RESPONSE AND ANY RELATED INFORMATION MUST BE FORWARDED TO THE PERSON RESPONSIBLE FOR THESE WORKS.

Yours faithfully

Mr Richard Gent / Mr Harry Fromant For and on behalf of FISHER GERMAN LLP

Fisher German, as agents acting on behalf of our client, as detailed above, will store and process your data in full compliance with our legal obligations. Our client may need to share this information with other third parties to support their operational activities. This information will not be sold or made available for marketing purposes. Further details about how your data will be used can be found on our client's website, https://www.valero.com/en-us/PrivacyStatement or by contacting us by email: dataprotection@fishergerman.co.uk or telephone: 01530 410813.

Fw: LSBUD-200907-19850841

Felicity Downing <Felicity.Downing@appliedgeology.co.uk>

Good afternoon

We are planning on undertaking a ground investigation at the below site from Monday 14th September 2020, and the LSBUD search we have undertaken has shown that Mainline Pipelines Limited are an affected Asset Owner and that we should contact yourselves with more information. Site Address (please see attached site location plan): -Land off Watling Street Dordon Warwickshire B78 1TB (nearest postcode) -424850,300921 (approx centre of site) We are planning on undertaking 8No Cable Percussion Boreholes and 32No Trial Pits to c. 3m bgl- as shown in the attached Proposed Exploratory Hole Location Plan. Please let me know if you require any further information. Kind regards Felicity Downing BSc (Hons) Graduate Geologist

Unit 23, Abbey Park, Stareton, Kenilworth, Warwickshire CV8 2LY. tel: 02476 511822 First Floor, Lowton Business Park, Newton Road, Lowton St. Mary's, Warrington, WA3 2AN. tel: 01925 738599

web: www.appliedgeology.co.uk

Company Registration No. 6882453. Unit 23, Abbey Park, Stareton, Kenilworth, Warwickshire CV8 2LY From: noreply@linesearchbeforeudig.co.uk <noreply@linesearchbeforeudig.co.uk>

Subject: LSBUD-200907-19850841

Thank you for using our service - please find attached your LSBUD enquiry confirmation. Please ensure that this document is passed to those undertaking the works (if relevant).

Please DO NOT respond directly to this email. If you have any queries contact LSBUD by email or phone quoting your LSBUD reference number.

LinesearchbeforeUdig Limited Tel: 0845 437 7365 Email: enquiries@linesearchbeforeudig.co.uk

To improve the satisfaction of our customers, we have partnered with the online review community, Trustpilot, to collect reviews.

Would you kindly spare a minute to review how our service has been?

Fw: LSBUD-200907-19850841

Felicity Downing <Felicity.Downing@appliedgeology.co.uk>

https://www.trustpilot.com/evaluate/www.lsbud.co.uk All reviews will be visible immediately.

Scanned by the Trustwave Secure Email Gateway - Trustwave's comprehensive email content security solution. Download a free evaluation of Trustwave SEG at

www.trustwave.com

Enquiry Confirmation LSBUD Ref: 19850841

Enquirer			
Name	Miss Janice Sheldon	Phone	
Company	Applied Geology Ltd	Mobile	Not Supplied
Address	Unit 23 Abbey Park, Stareton Kenilworth Warwickshire CV8 2LY		
Email			

Enquiry Details					
Scheme/Reference	AG3185-20				
Enquiry type	Planned Works	anned Works Work categ		egory Development Projects	
Start date	14/09/2020	Work type		Commercial/industrial	
End date	30/11/2020	Site size		341146 metres square	
Searched location	XY= 424850, 300921	Work type buffer*		75 metres	
Confirmed location	424827 300883	1		1	
Site Contact Name	Not Supplied		Site Ph	one No	Not Supplied
Description of Works					1

Asset Owners

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at www.linesearchbeforeudig.co.uk ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

Notes. Please ensure your contact details are correct and up to date on the system in case the LSBUD Members need to contact you.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Asset Owners & Responses. Please note the enquiry results include the following:

- 1. "LSBUD Members" who are asset owners who have registered their assets on the LSBUD service.
- 2. "Non LSBUD Members" are asset owners who have not registered their assets on the LSBUD service but LSBUD is aware of their existence. Please note that there could be other asset owners within your search area.

Below are three lists of asset owners:

- 1. LSBUD Members who have assets registered within your search area. ("Affected")
 - a.These LSBUD Members will either:
 - i. Ask for further information ("Email Additional Info" noted in status). The additional information includes: Site contact name and number, Location plan, Detailed plan (minimum scale 1:2500), Cross sectional drawings (if available), Work Specification.
 - ii. Respond directly to you ("Await Response"). In this response they may either send plans directly to you or ask for further information before being able to do so, particularly if any payments or authorisations are required.
- 2. LSBUD Members who do not have assets registered within your search area. ("Not Affected")
- 3. Non LSBUD Members who may have assets within your search area. Please note that this list is not exhaustive and all details are provided as a guide only. It is your responsibility to identify and consult with all asset owners before proceeding.

National Grid. Please note that the LSBUD service only contains information on National Grid's Gas above 7 bar asset, all National Grid Electricity Transmission assets and National Grid's Gas Distribution Limited above 2 bar asset.

For National Grid Gas Distribution Ltd below 2 bar asset information please go to <u>www.beforeyoudig.nationalgrid.com</u>

LSBUD Members who have assets registered on the LSBUD service within the vicinity of your search area.

List of affected LSBUD members				
Asset Owner	Phone/Email	Emergency Only	Status	
ESP Utilities Group	01372227560	01372227560	Await response	
Mainline Pipelines Limited	08454378293 mainlinepipelines@fishergerman.co. uk	08007560804	Email Additional Info	
National Grid Gas (Above 7 bar), National Grid Gas Distribution Limited (Above 2 bar) and National Grid Electricity Transmission	0800688588 plantprotection@cadentgas.com	Gas 0800111999 Electricity 0800404090	Email Additional Info	
Western Power Distribution	08000963080	08006783105	Await response	

LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area. Please be aware that LSBUD Members make regular changes to their assets and this list may vary for new enquiries in the same area.

	List of not affected LSBUD members	
AWE Pipeline	Balfour Beatty Investments Limited	BOC Limited (A Member of the Linde Group)
BP Exploration Operating Company Limited	ВРА	Carrington Gas Pipeline
CATS Pipeline c/o Wood Group PSN	Cemex	Centrica Storage Ltd
Chrysaor Production (UK) Limited	CLH Pipeline System Ltd	CNG Services Ltd
Concept Solutions People Ltd	ConocoPhillips (UK) Teesside Operator Ltd	Diamond Transmission Corporation
DIO (MOD Abandoned Pipelines)	Drax Group	E.ON UK CHP Limited
EirGrid	Electricity North West Limited	ENI & Himor c/o Penspen Ltd
EnQuest NNS Limited	EP Langage Limited	ESSAR
Esso Petroleum Company Limited	Fulcrum Pipelines Limited	Gamma
Gas Networks Ireland (UK)	Gateshead Energy Company	Gigaclear Ltd
Gtt	Heathrow Airport LTD	Humbly Grove Energy
IGas Energy	INEOS FPS Pipelines	INEOS Manufacturing (Scotland and TSEP)
INOVYN Enterprises Limited	Intergen (Coryton Energy or Spalding Energy)	Jurassic Fibre Ltd
Manchester Jetline Limited	Manx Cable Company	Marchwood Power Ltd (Gas Pipeline)
Melbourn Solar Limited	Murphy Utility Assets	Northumbrian Water Group
NPower CHP Pipelines	NYnet Ltd	Oikos Storage Limited
Ørsted	Perenco UK Limited (Purbeck Southampton Pipeline)	Petroineos
Phillips 66	Portsmouth Water	Premier Transmission Ltd (SNIP)
Redundant Pipelines - LPDA	RWE - Great Yarmouth Pipeline (Bacton to Great Yarmouth Power Station)	RWEnpower (Little Barford and South Haven)
SABIC UK Petrochemicals	Scottish and Southern Electricity Networks	Scottish Power Generation
Seabank Power Ltd	SES Water	SGN
Shell	Shell NOP	SSE (Peterhead Power Station)
SSE Enterprise Telecoms	SSE Generation Ltd	SSE Utility Solutions Limited
Tata Communications (c/o JSM Construction Ltd)	Total (Colnbrook & Colwick Pipelines)	Total Finaline Pipelines

Transmission Capital	UK Power Networks	Uniper UK Ltd
University of Cambridge Granta Backbone Network	Vattenfall	Veolia ES SELCHP Limited
Veolia ES Sheffield Ltd	Wales and West Utilities	West of Duddon Sands Transmission Ltd
Westminster City Council	Zayo Group UK Ltd c/o JSM Group Ltd	

Enquiry Confirmation LSBUD Ref: 19850841

The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding. Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.

Non-LSBUD members (Asset owners not registered on LSBUD)			
Asset Owner	Preferred contact method	Phone	Status
BT	https://www.swns.bt.com/pls/mbe/welcome.home	08000232023	Not Notified
Cadent Gas	plantprotection@cadentgas.com	0800688588	Not Notified
CenturyLink Communications UK Limited	plantenquiries@instalcom.co.uk	02087314613	Not Notified
CityFibre	asset.team@cityfibre.com	033 3150 7282	Not Notified
Colt	plantenquiries@catelecomuk.com	01227768427	Not Notified
Energetics Electricity	plantenquiries@lastmile-uk.com	01698404646	Not Notified
ENGIE	nrswa.uk@engie.com	01293 549944	Not Notified
GTC	https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified
KPN (c/-Instalcom)	kpn.plantenquiries@instalcom.co.uk	n/a	Not Notified
Mobile Broadband Network Limited	mbnlplantenquiries@turntown.com	01212 621 100	Not Notified
	www.stwater.co.uk/building-and-		
Severn Trent Water	developing/estimators-and-maps/request-a-water-	03456016616	Not Notified
	sewer-map		
Sky UK Limited	nrswa@sky.uk	02070323234	Not Notified
Sota	SOTA.plantenquiries@instalcom.co.uk		Not Notified
Utility assets Ltd	assetrecords@utilityassets.co.uk		Not Notified
Verizon Business	osp-team@uk.verizonbusiness.com	01293611736	Not Notified
Virgin Media	http://www.digdat.co.uk	08708883116	Not Notified
Vodafone	osm.enquiries@atkinsglobal.com	01454662881	Not Notified
Warwickshire CC (St Lighting)	streetlighting@warwickshire.gov.uk	01926736573	Not Notified
Warwickshire CC (Traffic Signals)	signals@warwickshire.gov.uk	01926412810	Not Notified

Disclaimer

Please refer to LinesearchbeforeUdig's Terms of Use for full terms of use available at www.linesearchbeforeudig.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LinesearchbeforeUdig will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LinesearchbeforeUdig, including but not exclusively those set out above. Therefore, LinesearchbeforeUdig cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LinesearchbeforeUdig and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

Please send payments & correspondence to:

Severn Trent Searches PO Box 10155 Nottingham NG1 9HQ

DX 723860 Nottingham 43

Tel: 0115 971 3550 Fax: 0115 971 3551

Account Number: **520167** Order Number: **60100346**

Company No: 2562471 VAT Number: GB486985565 Tax Point: 10 September 2020

Your Ref: AG3185-20

Applied Geology Ltd Unit 23 Abbey Park

Stareton Kenilworth

CV8 2LY

Search Enquiry

Thank you for your enquiry of: 9 September 2020 - Completed on 10 September 2020

The Water and Sewerage records have been checked and the findings are enclosed for your information. If you need to discuss any of the points raised within the attached, please contact the Customer Service Team at the above address.

Search Completed on:

Land off Watling Street Warwickshire Dordon B78 1TB

£47.00 + £9.40 (VAT)

Total excl. VAT	£47.00
VAT @ 20.0 %	£9.40

Total incl. VAT Payment received with thanks. £56.40

Applied Geology Ltd	Order Date:Wednesday, 9 September 2020Order No:60100346Customer Ref:AG3185-20
Unit 23 Abbey Park Stareton Kenilworth CV8 2LY	Severn Trent Searches has carried out enquiries into the following property, in line with its published terms of sale upon request from Applied Geology Ltd
	Land off Watling Street Warwickshire Dordon

B78 1TB

In response to the enquiry for drainage and water information, this search report was prepared following examination of either the following original records or summary records derived from the original: the Map of Public Sewers, the Map of Waterworks, Water and Sewer Billing Records, Adoption of Public Sewer Records, Building Over Public Sewer Records, the Register of Properties subject to Internal Foul Flooding, the Register of Properties subject to Poor Water Pressure and the Drinking Water Register. Should the property not fall entirely within the Severn Trent Water or Hafren Dyfrdwy Regions, a copy of the records held by South Staffordshire Water or other relevant Water Company will be searched also. Severn Trent Searches is responsible for the accuracy of the information contained within the search report.

From 1st October 2011 ownership of private sewers and lateral drains changed in accordance with The Water Industry (Schemes for Adoption of Private Sewers) Regulations 2011. The contents of this search reflect these changes.

For further information please visit: www.severntrentsearches.com/category/Sewer-Transfer/

Interpretation of Drainage and Water Enquiry.

Appendix 1 of this report contains definitions of terms and expressions identified.

Enquiries and Responses.

The Search Report on the above property was completed on 10 Sep, 2020 by Camilla Soames, a technician employed by Severn Trent Searches. In the event of any queries about the preparation of this search report, enquiries should be directed to:

enquiries@severntrentsearches.com

Or the Customer Service Manager, Severn Trent Searches at the address below.

Severn Trent Searches	or	Severn Trent Searches
PO Box 10155		DX 723860
Nottingham		Nottingham 43
NG1 9HQ		
Tel: 0115 971 3550		

If you have any general enquires regarding the information provided in a search report please visit:

www.searchfaqt.com

Severn Trent Searches has put in place procedures to ensure that customers receive support in the event of any complaint . Our formal Complaints Procedure is set out in Appendix 2 and our Terms and Conditions of sale are set out in Appendix 4.

Land off, Watling Street, Warwickshire, Dordon, B78 1TB

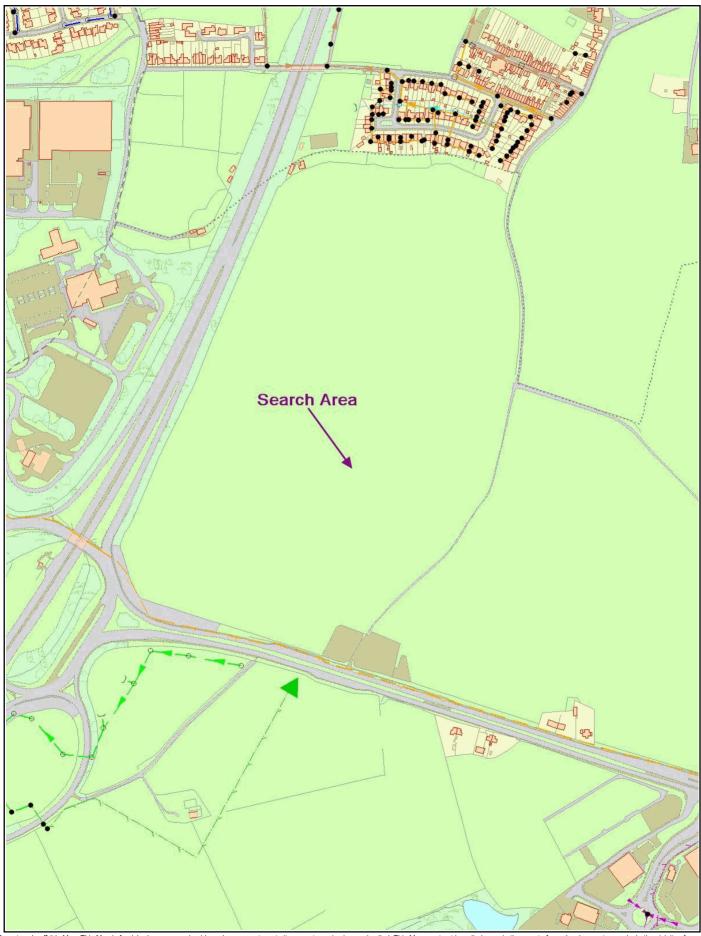
ORDER SUMMARY

To help understand the implications of the Drainage and Water Enquiries Report a summary guide to the content of the full report is provided below. This guide should be read in the context of and with reference to the full report and associated guidance notes.

The following 3 classifications have been used to highlight whether or not the response to a particular question is something that would normally be expected or otherwise. The classifications are intended purely as a guide to assist in the understanding of the Report and do not imply that the property is fit to purchase or otherwise and this decision will rest with the prospective purchaser and their professional advisers.

 \checkmark This response represents the typical situation for a residential property.

The attention of the purchaser is drawn to this response. Further information can be found in the Guidance Notes accompanying the relevant question, the purchaser may wish to make further investigations into this situation.


* This response represents an uncommon situation for a residential property and the purchaser should carefully consider its implications.

Land off, Watling Street, Warwickshire, Dordon, B78 1TB

Мар		Ans
	S	
1.1	Where relevant, please include a copy of an extract from the public sewer map.	Map Provided
1.2	Where relevant, please include a copy of an extract from the map of waterworks.	Map Provided
Drai	nage	
2.1	Does foul water from the property drain to a public sewer?	No
2.2	Does surface water from the property drain to a public sewer?	No
2.3	Is a surface water drainage charge payable?	No
2.4	Does the public sewer map indicate any public sewer, disposal main or lateral drain within the boundaries of the property?	Yes
2.4.1	Does the public sewer map indicate any public pumping station or any other ancillary apparatus within the boundaries of the property?	No
2.5	Does the public sewer map indicate any public sewer within 30.48 metres (100 feet) of any buildings within the property?	Yes
2.5.1	Does the public sewer map indicate any public pumping station or any other ancillary apparatus within 50 metres of any buildings within the property?	No
2.6	Are any sewers or lateral drains serving, or which are proposed to serve the property, the subject of an existing adoption agreement or an application for such an agreement?	No
2.7	Has a Sewerage Undertaker approved or been consulted about any plans to erect a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain?	No
2.8	Is the building which is or forms part of the property at risk of internal flooding due to overloaded public sewers?	No
2.9	Please state the distance from the property to the nearest boundary of the nearest sewage treatment works.	See Details
Wate	er	
3.1	Is the property connected to mains water supply?	No
3.2	Are there any water mains, resource mains or discharge pipes within the boundaries of the property?	No
3.3	Is any water main or service pipe serving, or which is proposed to serve the property, the subject of an existing adoption agreement or an application for such an agreement?	No
3.4	Is the property at risk of receiving low water pressure or flow?	No
3.5	What is the classification of the water supply for the property?	See Details
3.6	Please include details of the location of any water meter serving the property.	N/A
Cha	rging	
	Who is responsible for providing the sewerage services for the property?	See Answer
4.1.2	Who is responsible for providing the water services for the property?	See Answer
4.2	Who bills the property for sewerage services?	N/A
	Who bills the property for water services?	N/A
4.3		
4.3 4.4	What is the current basis for charging for sewerage and water services at the property?	Not Charged

SEWER RECORD Land off, Watling Street, Warwickshire, Dordon, B78 1TB

1. Do not scale off this Map. This Map is furnished as a general guide and no warranty as to its correctness is given or implied. This Map must not be relied upon in the event of any development or works in the vicinity of Severn Trent Water's assets. 2. On 1 October 2011 most private sewers and private lateral drains transferred to the ownership of Water Companies. Severn Trent Water does not possess complete records of these assets. These assets may not be displayed on this map. 3. Reproduction by permission of Ordnance Survey on behalf of HMSO. © Crown Copyright and database right 2020. All rights reserved. Ordnance Survey licence number 0100031673. Document users other than Severn Trent Water business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

SEVERN

WATER RECORD Land off, Watling Street, Warwickshire, Dordon, B78 1TB

1. Do not scale off this Map. This Map is furnished as a general guide and no warranty as to its correctness is given or implied. This Map must not be relied upon in the event of any development or works in the vicinity of Severn Trent Water's assets. 2. Reproduction by permission of Ordnance Survey on behalf of HMSO. © Crown Copyright and database right 2020. All rights reserved. Ordnance Survey licence number 0100031673. Document users other than Severn Trent Water business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

MAP KEYS

Sewer Record

\longmapsto	Public Combined Gravity Sewer	
•····•	Public Foul Gravity Sewer	
••	Public Surface Water Gravity Sewer	
<u> </u>	Combined Use Pressurised Sewer	
<u> </u>	Foul Use Pressurised Sewer	
<u>xxx.</u>	Surface Water Pressurised Sewer	
-x -x -x -x	Abandoned Gravity Sewer	
••	Private Gravity Sewer	
••	Section 104 Gravity Sewer	
••	Transferred Gravity Sewer	
→→→	Highway Drain (Not STW)	
	Vent Column	
	Waste Water Storage	<u>N</u>
	Culverted Watercourse (Not STW)	o\ pi
	Protective Strip	S
	Sewage Pumping Facility	P
\boxtimes	Sewage Facility Connection Inlet / Outlet	P B
		Б

—	Hyrdrobrake	•	Sewerage Air Valve
	Lamphole		Sewerage Hatch Box Point
	Outfall	-	Sewerage Isolation Valve
	0	Ŷ	Soakaway
	Overflow	0	Surface Water Manhole
_	Penstock	-	Blind Shaft
۲	Petrol Interceptor	-	blind Shan
		•	Combined Use Manhole
STW	Sewage Treatment Works	DS	Disposal Site
*	Sewer Blockage	100000	
	Ũ		Flushing Chamber
☆	Sewer Collapse		Foul Use Manhole
	Sewer Chemical Injection Point	•	
		0	Grease Trap
•	Sewer Junction	+	Head Node

Votes

The majority of private gravity sewers and lateral drains shown in magenta transferred into public ownership in October 2011, providing they met the relevant criteria. Please note that private pressurised sewers and drains within the boundary of the property they serve remain private. Sewers shown in green which remain the subject of an adoption agreement under Section 102 or 104 of the Water Industry Act (1991) are not the responsibility of the Sewearge Undertaker. Please refer to response to Question 2.6 in search report to check current status of the sewers. All Sewers that have been transferred to the Sewerage Undertaker after 1st October 2011, which they have a record of but have not surveyed and confirmed, are shown in orange. Please note, the full extent and route of these sewers may not be plotted on the sewer map. By October 1st 2016 any private pumping station and associated apparatus serving a lateral drain or sewer which was operational before July 1st 2011 will have transferred over to the Sewerage Undertaker's responsibility and become a public asset (subject to any appeals).

Water Record

	Distribution Main		Pumping Facility		Water Isolation Valve (Closed)	00	Change in Characteristic
	Trunk Main (local/primary)	\bigtriangleup	Booster Facility		Water Isolation Valve (Open)	<u>Ŷ</u>	Marker Post
	Strategic Main		Potable Water Storage	-0-	Water Isolation Valve (Partially Open)	>	Cable Junction
	Fire Supply Main	\bullet	Water Tower	-	Water Air Valve	_ P	Anode
	Fire Main	•	Well / Borehole	-₩	Pressure Reducing Valve	\boxtimes	Boundary Box
	Non-Domestic Customer Service Pipe	\diamond	Intake	+	Pressure Sustaining Valve	×	Stop Tap
	Domestic Customer Service Pipe		Water Treatment Works / Chamber		Non-Return Valve	٠	Cross Piece
< x x x	Abandoned Main	٠	Draw-off Tower		Float Valve	0	Strainer
	Elevated Main	Ο	Bowser Point	•	Hydrant (Single/Double)	<u> </u>	Listening Post
	Aqueduct	\boxtimes	Water Facility Connection	0	Washout (Single/Double)		Revenue Meter
	Duct	\frown	Pipe Support Structure	-	Bulk Meter	В	Housing, Building
-++++	Pre-1937 Properties	-(Open Pipe		Water Hatch Box	K	Housing, Kiosk
(2222222)	SSSI Area	-(Discharge	\diamond	Pressure Tapping		Housing, Other
	Protective Strip	E	End Cap	٠	Insertion Flow Meter Point	\Rightarrow	Quality Sample Point

For a detailed glossary of the above terminology please visit:

Question 1.1

Where relevant, please include a copy of an extract from the public sewer map.

A copy of an extract from the public sewer map is included in which the location of the property is identified.

Guidance Notes

Pipes that are shown on the public sewer map as sewers, disposal mains or lateral drains are defined as those for which the Sewerage Undertaker holds statutory responsibility under the Water Industry Act 1991. The Sewerage Undertaker is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only. Sewers or lateral drains indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an "as constructed" record. It is recommended that these details are checked with the developer. Please note that following the private sewer transfer on October 1st 2011 there may be additional public assets other than those indicated on the map. Particular attention should be paid to public pumping stations (indicated on the plan by a black triangle) which will have associated pressurised sewers serving the pumping station which may not be plotted on the sewer plan even if they have transferred into public ownership. Assets other than public sewers, disposal mains or lateral drains may be shown on the copy extract, for information.

Question 1.2

Where relevant, please include a copy of an extract from the map of waterworks.

A copy of an extract from the map of waterworks is included in which the location of the property is identified.

Q1.2

Map Provided

Q1.1

Map Provided

Guidance Notes

Pipes that are shown on the map of waterworks as water mains, resource mains or discharge pipes are defined as those for which a Water Undertaker holds statutory responsibility under the Water Industry Act 1991. Assets other than water mains, resource mains or discharge pipes may be shown on the plan, for information only. Water Undertakers are not responsible for private water mains or private service pipes connecting the property to the public water main and do not hold details of these. These may pass through land outside of the control of the seller, or may be shared with adjacent properties. The buyer may wish to investigate whether separate rights or easements are needed for their inspection, repair or renewal. The extract of the map of waterworks shows water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Q2.1

No

Question 2.1

Does foul water from the property drain to a public sewer?

Records indicate that foul water from the property does not drain to a public sewer.

Guidance Notes

The connection status of the property is based on information held on the billing records by the responsible water company. In this case we have been unable to find any billing records confirming a connection from the property to the public sewerage system. If any current billing records can be provided to us confirming a connection for this service, please provide this to us and we will amend the search accordingly. It is possible that the property may have a connection to the public sewerage system but is not currently being billed for this service. If this is the case then the property owner should contact the responsible water company to arrange for the connection status to be checked and, if confirmed as connected, for the property to be brought into charge for this service. Should the billing records be amended, we will be pleased to amend the report, free of charge, upon request. If foul water does not drain to the public sewerage system the property may have private facilities in the form of a cesspit, septic tank or other type of treatment plant. The requirement to register a Septic tank with the Environment Agency was passed in regulations set in 2010 by the Department for Environment, Food and Rural Affairs (Defra) and the Welsh Government, as part of the implementation of the European Union Water Framework Directive. All domestic septic tanks in Wales need to be registered by December 2011. This is not currently a requirement in England pending the outcome of a joint Environment Agency/Government review. It is recommended all details are checked with the current owner as buyers in Wales may need to register before the deadline. Also note that the general binding rules for Septic tanks and discharge to the ground changed on January 1st 2015. Please visit

https://www.gov.uk/guidance/general-binding-rules-small-sewage-discharge-to-the-ground for more details.

Question 2.2	Q2.2
Does surface water from the property drain to a public sewer?	\$
Records indicate that surface water from the property does not drain to a public sewer.	No

Guidance Notes

If the property was constructed recently the surface water drainage may be served by a Sustainable Drainage System (SuDS) which does not form part of the public sewer network. Further information may be available from the developer or Question 3.3 of the CON29 from the local authority. The connection status of the property listed in this search is based on information held on the billing records by the responsible water company. Sewerage Undertakers are not responsible for any private drains and private sewers that do not connect the property to the public sewerage system, and do not hold details of these. The property owner will normally have sole responsibility for private drains serving the property and may have shared responsibility with other users, if the property is served by a private sewer which also serves other properties but does not connect into the public sewerage system. These may pass through land outside of the control of the seller and the buyer may wish to investigate whether separate rights or easements are needed for their inspection, repair or renewal. If surface water does not drain to the public sewerage system the property may have private facilities in the form of a soakaway or private connection to a watercourse.

Q2.3

No

Question 2.3

Is a surface water drainage charge payable?

Records confirm that a surface water drainage charge is not payable for the property.

Guidance Notes

Where surface water from a property does not drain to the public sewerage system no surface water drainage charges are payable. If the property was constructed recently the surface water drainage may be served by a Sustainable Drainage System (SuDS) which does not form part of the public sewer network. Further information may be available from the developer or Question 3.3 of the CON29 from the local authority.

Question 2.4	Q2.4
Does the public sewer map indicate any public sewer, disposal main or lateral drain within the boundaries of the property?	<mark>}</mark> ∂ Yes
The public sewer map included indicates that there is a public sewer, disposal main, lateral drain or other public sewer asset within or close to the boundaries of the property. Please note, from 1st October 2011 it is likely there is additional lateral drains and/or public sewers which are not recorded on the public sewer map but which may prevent or restrict development of the property. Please see Appendix 3 for details.	

Guidance Notes

The approximate boundary of the property has been determined by reference to the Ordnance Survey record. Please note that following the private sewer transfer on October 1st 2011 the majority of private sewers and lateral drains connected to the public network as of 1st July 2011 transferred into public ownership and therefore there may be additional public assets within or close to the boundary which may not be shown on the public sewer plan. Please see Appendix 3 for further details. The presence of public asset running within the boundary of the property may restrict further development. If there are any plans to develop the property further enquiries should be made to the sewerage undertaker's Build Over department. The sewerage undertaker has a legal right of access to carry out work on its assets, subject to notice. This may result in employees of the Company or its contractors needing to enter the property to carry out work.

Question 2.4.1

Q2.4.1

No

Q2.5

Yes

Does the public sewer map indicate any public pumping station or any other ancillary apparatus within the boundaries of the property?

The public sewer map does not indicate a public pumping station or other ancillary apparatus within the boundaries of the property. However, as of 1st October 2016, any pumping station that was contructed prior to 1st July 2011 and serves more than one property will become the responsibility of the sewerage undertaker. Although the sewerage undertaker has no record of any pumping station at this property there may be pumping stations which meet the adoption criteria which they are not aware of and are not recorded on the public sewer map.

Guidance Notes

The approximate boundary of the property has been determined by reference to the Ordnance Survey record. Please note that privately owned pumping stations built prior to 1st July 2011 which serve more than one property and pump to the existing public sewer are eligible for transfer into public ownership as of 1st October 2016. Pumping stations that serve a single property but sit outside the curtilage of that property will also be eligible for transfer. Please see Appendix 3 for further details. Any other ancillary apparatus is shown on the public sewer map and is referenced on the map key. A full glossary is also available on our website at www.severntrentsearches.com/glossary/

Question 2.5

Does the public sewer map indicate any public sewer within 30.48 metres (100 feet) of any buildings within the property?

The public sewer map included indicates that there is a public foul sewer or public sewer asset within 30.48 metres (100 feet) of a building within the property.

Guidance Notes

The public sewer map shows the location of public sewers. Please note that from 1st October 2011, private sewers and lateral drains connected to the public network as of 1st July 2011 transferred into public ownership and from that date there may be public sewers closer to the property than those shown on the map. The presence of a public foul sewer within 30.48 metres (100 feet) of the building(s) within the property can result in the Local Authority requiring a property to be connected to the public foul sewer. The measure is estimated from the Ordnance Survey record, between the building(s) within the boundary of the property and the nearest public foul sewer.

Question 2.5.1	Q2.5.1
Does the public sewer map indicate any public pumping station or any other ancillary	
apparatus within 50 metres of any buildings within the property?	√
	No
The public sewer map does not indicate a public pumping station or other ancillary apparatus within 50m of a building within the property. However, following the transfer of some private pumping stations into	
public ownership, from 1st October 2016 there may be public pumping stations which are not marked on	
the public sewer map.	
Guidance Notes	
The public sewer map shows the location of public pumping stations, pressurised mains and other ancillary apparatus. Please note that privately owned pumping stations built prior to 1st July 2011 which serve more than one property and pump to the existing public sewer are eligible for transfer into public ownership as of 1st October 2016. Pumping stations that serve a single property but sit outside the curtilage of that property will also be eligible for transfer. Pumping stations also have pressurised sewers associated with them and these may not be plotted on the public sewer map if the sewerage undertaker is unaware of the pumping station. The presence of a pumping station, pressurised rising main or other ancillary apparatus may restrict further development. Please see Appendix 3 for further details. Any other ancillary apparatus is shown on the public sewer map and is referenced on the map key. A full glossary is also available on our website at www.severntrentsearches.com/glossary/.	
Question 2.6	Q2.6
Are any sewers or lateral drains serving, or which are proposed to serve the property,	
the subject of an existing adoption agreement or an application for such an	✓

The property is part of an established development and is not subject to an adoption agreement.

Guidance Notes

The majority of private sewers and lateral drains subject to adoption agreements were transferred into public ownership from 1st October 2011 and there may therefore be additional public sewers other than those shown on the plan. Further details can be found in Appendix 3. Buyers should consult with the current owner to ascertain the extent of their liability for privately held assets.

Q2.7

No

Q2.8

No

Question 2.7

Has a Sewerage Undertaker approved or been consulted about any plans to erect a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain?

There are no records in relation to any approval or consultation about plans to erect a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain. However, the Sewerage Undertaker might not be aware of a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain.

Guidance Notes

Buildings or extensions erected over a public sewer, disposal main or lateral drain in contravention of building controls or which conflict with the provisions of the Water Industry Act 1991, may have to be removed or altered. Please note that from 1st October 2011 the majority of private sewers and lateral drains connected to the public network as of 1st July 2011 transferred into public ownership and there may therefore be formerly private sewers and lateral drains which will have been built over. Please visit www.severntrentsearches.com/category/sewer-transfer for further information.

Question 2.8

Is the building which is or forms part of the property at risk of internal flooding due to overloaded public sewers?

The property is not recorded as being at risk of internal flooding due to overloaded public sewers.

Guidance Notes

A sewer is "overloaded" when the flow from a storm is unable to pass through it due to a permanent problem (e.g. flat gradient, small diameter). Flooding as a result of temporary problems such as blockages, siltation, collapses and equipment or operational failures are excluded. "Internal flooding" from public sewers is defined as flooding which enters a building or passes below a suspended floor. For reporting purposes, buildings are restricted to those normally occupied and used for residential, public, commercial, business or industrial purposes. "At Risk" properties are those that the Sewerage Undertaker is required to include in the Regulatory Register that is reported annually to the Water Services Regulation Authority. These are defined as properties that have suffered or are likely to suffer internal flooding from public foul, combined or surface water sewers due to overloading of the sewerage Undertaker's reporting procedure. Flooding as a result of storm events proven to be exceptional and beyond the reference period of one in ten years are not included on the "At Risk" register. Please note that from 1st October 2011 the majority of private sewers and lateral drains connected to the public network as of 1st July 2011 transferred into public ownership. Details of formerly private sewers at risk from internal flooding are not recorded in the Regulatory Register and will not be added until a flooding occurrence. There may therefore be public sewers at risk from internal flooding that are not recorded on the "At Risk" register.

Q2.9

See Details

Question 2.9

Please state the distance from the property to the nearest boundary of the nearest sewage treatment works.

The nearest sewage treatment works is 1.263 KM to the South West of the property. The name of the nearest sewage treatment works is Freasley.

Guidance Notes

The nearest sewage treatment works will not always be the sewage treatment works serving the catchments within which the property is situated. The Sewerage Undertaker's records were inspected to determine the nearest sewage treatment works. It should be noted therefore that there may be private sewage treatment works closer than the one detailed above that have not been identified.

Question 3.1	Q3.1
Is the property connected to mains water supply?	<u>k</u>
Records indicate that the property is not connected to the mains water supply and water may, therefore, be provided by virtue of a private supply.	No

Guidance Notes

The connection status of the property is based on information held on the billing records by the responsible water company. In this case we have been unable to find any billing records confirming a connection to the property from the mains water supply. If any current billing records can be provided to us confirming a connection for this service please provide this to us and we will amend the search accordingly. It is possible that the property may have a connection to the mains water supply but is not currently being billed for this service. If this is the case then the property owner should contact the responsible water company's billing department to arrange for the connection status to be checked and, if confirmed as connected, for the property to be brought into charge for this service. Should the billing records be amended, we will be pleased to amend the report, free of charge, upon request. Alternatively, this property maybe connected to a private water supply or indirectly supplied by a third party who is connected to the public water supply and it is recommended this is checked with the current owner. Details of private supplies or third party private arrangements are not kept by the Company.

Question 3.2	Q3.2
Are there any water mains, resource mains or discharge pipes within the boundaries of the property?	√ No
The map of waterworks does not indicate any water mains, resource mains or discharge pipes within the boundaries of the property.	

Guidance Notes

The approximate boundary of the property has been determined by reference to the Ordnance Survey record. The presence of a public water main, resource main or discharge pipe within the boundary of the property may restrict further development within it. Water Undertakers have a statutory right of access to carry out work on their assets, subject to notice. This may result in employees of the Company or its contractors needing to enter the property to carry out work.

Q3.3

No

Question 3.3

Is any water main or service pipe serving, or which is proposed to serve the property, the subject of an existing adoption agreement or an application for such an agreement?

Records confirm that water mains or service pipes serving the property are not the subject of an existing adoption agreement or an application for such an agreement.

Guidance Notes

Where the property is part of a very recent or ongoing development and the water mains and service pipes are not the subject of an adoption application, buyers should consult with the developer to confirm that the Water Undertaker will be asked to provide a water supply to the development or to ascertain the extent of any private water supply system for which they will hold maintenance and renewal liabilities.

Question 3.4	Q3.4
Is the property at risk of receiving low water pressure or flow?	1
Records confirm that the property is not recorded on a register kept by the Water Undertaker as being at risk of receiving low water pressure or flow.	No

Guidance Notes

'Low water pressure' means water pressure below the regulatory reference level which is the minimum pressure when demand on the system is not abnormal. Water Undertakers are required to include in the Regulatory Register that is reported annually to the Water Services Regulation Authority properties receiving pressure below the reference level, provided that allowable exclusions do not apply (i.e. events which can cause pressure to temporarily fall below the reference level).Water Companies are required to include in the Regulatory Register that is reported annually to the Director General of Water Services properties receiving pressure below the reference level, provided that allowable exclusions do not apply (i.e. events which can cause pressure to temporarily fall below the reference level). The reference level of service is a flow of 9 litres/minute at a pressure of 10 metres head on the customer's side of the main stop tap (mst). The reference level of service must be applied on the customer's side of a meter or any other company fittings that are on the customer's side of the main stop tap. The reference level applies to a single property. Where more than one property is served by a common service pipe, the flow assumed in the reference level must be appropriately increased to take account of the total number of properties served. For two properties, a flow of 18 litres/minute at a pressure of 10 metres head on the customer's side of the mst is appropriate. For three or more properties the appropriate flow should be calculated from the standard loadings provided in BS806-3 or Institute of Plumbing handbook. Allowable exclusions: The Company is required to include in the Regulatory Register properties receiving pressure below the reference level, provided that allowable exclusions listed below do not apply. Abnormal demand: This exclusion is intended to cover abnormal peaks in demand and not the daily, weekly or monthly peaks in demand which are normally expected. Companies should exclude from the reported DG2 figures properties which are affected by low pressure only on those days with the highest peak demands. During the report year Companies may exclude, for each property, up to five days of low pressure caused by peak demand. Planned maintenance: Companies should not report under DG2 low pressures caused by planned maintenance. It is not intended that Companies identify the number of properties affected in each instance. However, Companies must maintain sufficiently accurate records to verify that low pressure incidents that are excluded from DG2 because of planned maintenance are actually caused by maintenance. One-off incidents: This exclusion covers a number of causes of low pressure, mains bursts, failures of Company equipment (such as PRVs or booster pumps), firefighting and action by a third party. However, if problems of this type affect a property frequently, they cannot be classed as one-off events and further investigation will be required before they can be excluded.

Question 3.5

What is the classification of the water supply for the property?

The water supplied to the property has an average water hardness of 68.17 mg/l calcium which is defined as Moderately Hard by Severn Trent Water.

See Details

Q3.5

Q3.6

N/A

Guidance Notes

Neither hard nor soft water is considered to pose any risk to health. Hardness comes from naturally occurring calcium and magnesium mineral salts which are dissolved from the rocks through which rain water flows. Hardness is expressed as the equivalent amount of calcium carbonate in parts per million (mg/l). Hard water causes scaling in hot water systems, kettles, electric irons and domestic appliances. Scaling of heating elements may shorten their life and may make appliances less efficient. More information is available on the water undertaker's website.

Water hardness can be expressed in various indices for example the hardness settings for dishwashers are commonly expressed in Clark's degrees, but check with the manufacturer as there are also other units. The following table explains how to convert mg/l calcium and mg/l calcium carbonate classifications.

TO CONVERT FROM:	TO CLARK DEGREES	TO FRENCH DEGREES	TO GERMAN DEGREES
mg/l calcium		multiply by 0.25	
mg/l calcium carbonate	multiply by 0.07	multiply by 0.10	multiply by 0.056

Question 3.6

Please include details of the location of any water meter serving the property.

Records indicate that the property is not served by a water meter. Where the property is not served by a meter and the customer wishes to consider this method of charging they should contact:

Severn Trent Water PO Box 5310 Coventry CV3 6SD

Tel: 0345 7500 500 For Billing Enquiries only Tel: 0345 7090 646 For Metering Enquiries only Tel: 0115 971 3550 For Search Enquiries only

http://www.stwater.co.uk

Q4.1.1

Question 4.1.1

Who is responsible for providing the sewerage services for the property?	
The Sewerage Undertakers for the area are:	See Answer
Severn Trent Water PO Box 5310 Coventry CV3 6SD	
Tel: 0345 7500 500 For Billing Enquiries only Tel: 0345 7090 646 For Metering Enquiries only	

Tel: 0115 971 3550 For Search Enquiries only

http://www.stwater.co.uk

estion 4.1.2	Q4.1.2
o is responsible for providing the water services for the property?	
Water Undertakers for the area are:	▼ See Answer
ern Trent Water	
Box 5310	
rentry	
3 6SD	
0345 7500 500 For Billing Enquiries only	
0345 7090 646 For Metering Enquiries only	
0115 971 3550 For Search Enquiries only	
://www.stwater.co.uk	

Question 4.2	Q4.2
Who bills the property for sewerage services?	~
The property is not billed for sewerage services.	N/A

Q4.3

Question 4.3

Who bills the property for water services?	
The property is not billed for water services.	× N/A

Question 4.4	Q4.4
What is the current basis for charging for sewerage and water services at the property?	þ
	Not Charged
Records indicate that this property is not currently charged for sewerage and water services	

Guidance Notes

Water and Sewerage Companies full charges are set out in their charges schemes which are available from the Company free of charge upon request.

Question 4.5	Q4.5
Will the basis for charging for sewerage and water services at the property change as a consequence of a change of occupation?	\checkmark
The undertaker has the power to install a water meter at a property as a consequence of a change of occupation at any time under Section 144B of the Water Industry Act (1991). However there will be no change in the current charging arrangements as a consequence of a change of occupation.	See Details

Guidance Notes

Water and Sewerage Companies full charges are set out in their charges schemes which are available from the Company free of charge upon request. The Company may install a meter at the premises where a buyer makes a change of use of the property or where the buyer uses water for watering the garden, other than by hand (this includes the use of sprinklers) or automatically replenishing a pond or swimming pool with a capacity greater than 10,000 litres.

Appendix 1

Terms and Expressions in this Report

'the 1991 Act' means the Water Industry Act 1991[61];

'the 2000 Regulations' means the Water Supply (Water Quality) Regulations 2000[62];

'the 2001 Regulations' means the Water Supply (Water Quality) Regulations 2001[63];

'adoption agreement' means an agreement made or to be made under Section 51A(1) or 104(1) of the 1991 Act[64];

'bond' means a surety granted by a developer who is a party to an adoption agreement;

'bond waiver' means an agreement with a developer for the provision of a form of financial security as a substitute for a bond;

'calendar year' means the twelve months ending 31st December;

'discharge pipe' means a pipe which discharges are made or are to be made under Section 165(1) of the 1991 Act;

'disposal main' means (subject to section 219(2) of the 1991 Act) any outfall pipe or other pipe which - (a) is a pipe for the conveyance of effluent to or from any sewage disposal works, whether of a Sewerage Undertaker or of any other person; and (b) is not a public sewer;

'drain' means (subject to Section 219(2) of the 1991 Act) a drain used for the drainage of one building or of any buildings or yards appurtenant to buildings within the same curtilage;

'effluent' means any liquid, including particles of matter and other substance in suspension in the liquid;

'financial year' means the twelve months ending with 31st March;

'lateral drain' means - (a) that part of a drain which runs from the curtilage of a building (or buildings or yards within the same curtilage) to the sewer with which the drain communicates or is to communicate; or (b) (if different and the context so requires) the part of a drain identified in a declaration of vesting made under Section 102 of the 1991 Act or in an agreement made under Section 104 of that Act[65];

'licensed water supplier' means a company which is the holder for the time being of a water supply license under Section 17A(1) of the 1991 Act[66];

'maintenance period' means the period so specified in an adoption agreement as a period of time - (a) from the date of issue of a certificate by a Sewerage Undertaker to the effect that a developer has built (or substantially built) a private sewer or lateral drain to that Undertakers satisfaction; and (b) until the date that private sewer or lateral drain is vested in the Sewerage Undertaker;

'map of waterworks' means the map made available under Section 198(3) of the 1991 Act[67] in relation to the information specified in subsection (1A); **'private sewer'** means a pipe or pipes which drain foul or surface water, or both, from premises, and are not vested in a Sewerage Undertaker;

'public sewer' means, subject to Section 106(1A) of the 1991 Act[68], a sewer for the time being vested in a Sewerage Undertaker in its capacity as such, whether vested in that Undertaker - (a) by virtue of a scheme under Schedule 2 to the Water Act 1989[69]; (b) by virtue of a scheme under Schedule 2 to the 1991 Act[70]; (c) under Section 179 of the 1991 Act[71]; or (d) otherwise;

'public sewer map' means the map made available under Section 199(5) of the 1991 Act[72];

'resource main' means (subject to Section 219(2) of the 1991 Act) any pipe, not being a trunk main, which is or is to be used for the purpose of- (a) conveying water from one source of supply to another, from a source of supply to a regulating reservoir or from a regulating reservoir to a source of supply; or (b) giving or taking a supply of water in bulk;

'sewerage services' includes the collection and disposal of foul and surface water and any other services which are required to be provided by a Sewerage Undertaker for the purpose of carrying out its functions;

'Sewerage Undertaker' means the company appointed to be the Sewerage Undertaker under Section 6(1) of the 1991 Act for the area in which the property is or will be situated;

'surface water' includes water from roofs and other impermeable surfaces within the curtilage of the property;

'water main' means (subject to Section 219(2) of the 1991 Act) any pipe, not being a pipe for the time being vested in a person other than the Water Undertaker, which is used or to be used by a Water Undertaker or licensed water supplier for the purpose of making a general supply of water available to customers or potential customers of the Undertaker or supplier, as distinct from for the purpose of providing a supply to particular customers;

'water meter' means any apparatus for measuring or showing the volume of water supplied to, or of effluent discharged from any premises;

'water supplier' means the company supplying water in the water supply zone, whether a Water Undertaker or licensed water supplier;

'water supply zone' in relation to a calendar year, means the names and areas designated by a Water Undertaker within its area of supply that are to be its water supply zones for that year,

'Water Undertaker' means the company appointed to be the Water Undertaker under Section 6(1) of the 1991 Act for the area in which the property is or will be situated.

In this Report, references to a pipe, including references to a main, a drain or a sewer, shall include references to a tunnel or conduit which serves or is to serve as the pipe in question and to any accessories for the pipe.

Residential Drainage and Water Search Complaint Procedure

As a minimum standard Severn Trent Searches, PO Box 10155, Nottingham, NG1 9HQ:

Will endeavour to resolve any telephone contact or complaint at the time of the call. However, if that isn't possible, we will investigate and research the matter in detail and provide a written response within 5 working days of receipt of your complaint.

Depending on the scale of investigation required, we will keep you informed of the progress and update you with new timescales if necessary.

If we fail to give you a written substantive response within 5 working days Severn Trent Searches will compensate our client the original fee paid for a Severn Trent CON29DW Drainage and Water enquiry, regardless of the outcome of your complaint.

If we find your complaint to be justified, or we have made any errors that substantially change the outcome in your search result, we will automatically refund the search fee to the ordering party. We will provide them with a revised search and also undertake the necessary action, as within our control, to put things right as soon as practically possible. Customers will be kept informed of the progress of any action required.

If the search takes us longer than 10 working days to complete and we have not communicated the reasons for the delay we will provide the search free of charge.

A complaint will normally be dealt with fully within 20 working days of the date of its receipt. If there are valid reasons for the consideration taking longer you will be kept fully informed in writing or via telephone or email, as you prefer, and receive a proposed solution or final response at the very latest within 40 working days.

If you are still not satisfied with our response or action we will refer the matter to a Senior Manager/ Company Director for resolution. At your request we will liaise with a representative acting on your behalf.

If you are not satisfied with the resolution offered in the final response or the timescale * within which the final response or proposed solution was issued, you may refer the complaint to The Property Ombudsman scheme (TPOs), contact details below. We will co-operate fully with the independent adjudicator during the consideration of a complaint by the TPOs and comply with any decision.

*40 working days

Complaints should be sent to: Customer Services Severn Trent Searches PO Box 10155, Nottingham, NG1 9HQ. Tel: 0115 971 3550 Email: enquiries@severntrentsearches.com TPOs can be contacted at: The Property Ombudsman scheme Milford House, 43 - 55 Milford Street, Salisbury, Wiltshire, SP1 2PB. Tel: 01722 333306 Fax: 01722 332296 E-mail: admin@tpos.co.uk Website: www.tpos.co.uk

The Transfer

The private sewer transfer occurred in October 2011, and was designed to bring the majority of private sewers in England and Wales into public ownership.

Drains, lateral drains and sewers - definitions

A drain is a disposal pipe serving a single property or properties (such as flats) within a single curtilage. A lateral drain is any section of that drain which extends beyond the curtilage of the property. A sewer is a disposal pipe serving two or more separate properties. Full legal definitions of these terms can be found in Appendix 1.

Assets transferred into public ownership

The majority of all sewers and lateral drains that were connected to the public system prior to 1st July 2011 transferred into public ownership on 1st October 2011. Water companies were given five years to identify and adopt private pumping stations and associated apparatus, ending in October 2016.

Assets not transferred into public ownership

Some assets were excluded from the transfer, including:

Any assets not connected prior to 1st July 2011. These will transfer under a secondary scheme at a later date.

Drains within the boundary of the property they serve.

Sewers on Crown Land (such as prisons) where notice has been received from the relevant authority that the sewers should be exempt. Sewers owned by Railway Authorities.

Sewers and drains which do not discharge to the public system, such as Sustainable Drainage Systems.

Drainage systems contained within a single property curtilage (e.g. retail parks, caravan parks).

Private Pumping stations and associated pressurised mains which serve one property.

Sewers where the owner successfully appeals to OFWAT to retain ownership (see below).

Private treatment works, septic tanks and cesspits.

Appeals

Any owner of a private sewer, lateral drain or pumping station had the right to appeal of OFWAT to retain ownership. These had to be lodged before 30th September 2011* OFWAT then determined whether the asset in question should be exempt from the transfer. During the appeal process, assets remained private.

*Appeals process differs slightly for pumping stations, Visit OFWAT's website for more details (ofwat.gov.uk).

Procedures for new sewers

The Flood and Water Management Act 2010

Once Section 42 of the Flood and Water Management Act 2010 comes into force, adoption of all new sewers which connect to the public network will be mandatory. A new national Mandatory Build Standard will also be introduced specifying the standards to which new sewers must be built.

Issues for property owners

Liability

Since the transfer, the majority of property owners have a greatly reduced liability for repairs to the drainage system. Should the search indicate the property is not connected to mains drainage or that there are no public assets nearby, it is recommended that further investigations be made into the drainage arrangements, as the property owner may have a substantial liability.

Sewers within property boundaries

The transfer resulted in a greater number of public sewers and lateral drains within property boundaries, many of which are not plotted on the Public Sewer Map. Property owners need to be aware that Severn Trent Water have statutory rights of access to land where their assets are located should they need to access the mains.

There are also formerly private sewers which have been built over without the Sewerage Undertaker's consent. Providing normal planning procedures were followed, this should not present any significant issues, although property owners need to be aware that the Sewerage Undertaker may need to access the sewer.

Developing Properties

Building over or close to a public asset requires the consent from Severn Trent Water. This includes transferred private sewers and lateral drains within property boundaries. Full details can be found on the Severn Trent Water website. The water company has a dedicated Build-Over Team that can guide a property owner on their required process, should the owner be considering building an extension or conservatory over or near to a public sewer. The Build-Over Team will usually require the owner to commission a CCTV survey of the sewers within the boundary of the property, which will determine their exact position and condition of the private and public sewers. Details of companies that carry out CCTV surveys can be found online or contact the Build-Over Team directly on 0345 2667930.

What to do if there is a blockage in the Sewer within the property boundary

If there is a problem with a pipe within the property boundary, the occupier should call Severn Trent Water on 0800 783 4444. The Sewerage Undertaker will then decide whether this is a private matter or if they are responsible. The Sewerage Undertaker may charge the homeowner for clearing a blockage etc for which they are not responsible. Any works needed would be agreed beforehand.

Updates to the CON29DW

Section 104 sites

The transfer applied to sites undergoing adoption under Section 104 of the Water Industry Act (1991). However, some assets on these sites, such as pumping stations, sewers connected after July 2011 and surface water sewers not connecting to the public system, were not included in the transfer. In these circumstances the search will continue to show a Section 104 agreement in place.

Sewers and lateral drains within property boundaries

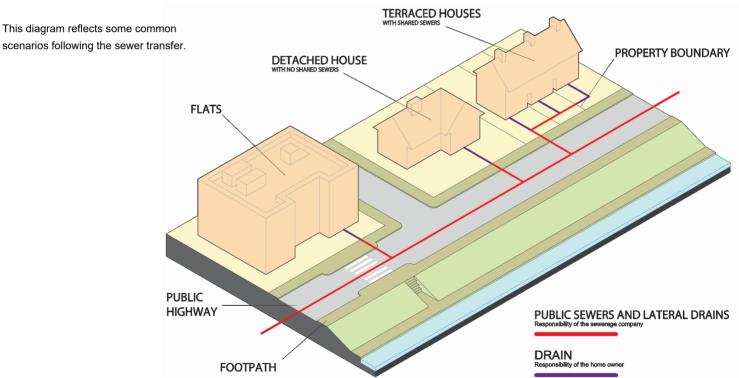
Because private sewers were not previously required to be recorded on the public sewer records there are circumstances when we are unable to confirm the location of transferred sewers. On these occasions, the CON29DW report will advise as to whether there is likely to be a public asset within the boundary.

Proximity of sewers to the property

The majority of properties - particularly within urban areas - will have public sewers within 100 feet (30.48 metres). In the case of transferred assets not being shown on public sewer record, there will be occasions when we are unable to confirm this. In these circumstances we will advise whether there are likely to be assets in close proximity to the property. The absence of nearby public sewers could result in a property owner having a substantial liability for repairs to the drainage system.

Building over public sewers

A number of formerly private sewers have been built over and are now the responsibility of Severn Trent Water. Although the search will highlight whether there has been a build over enquiry to Severn Trent Water, this will only apply to sewers which were public at the time of development.


Sewer flooding

Whilst the search will still report the risk of sewer flooding to a property, following the transfer there is the possibility of sewer flooding from transferred sewers which will not have been previously recorded. The register will be updated as and when there is an occurrence.

Pumping Stations

The search indicates whether a transferred pumping station is located either within a property boundary, or within 50 metres of the property. Transferred pumping stations - which will not always have been built to Severn Trent Water's standards - initially require regular inspection and maintenance, which may prove disruptive. On occasion, there may be private pumping stations of which we are unaware. In these instances, please contact Severn Trent Water on 0800 783 444 or email privatepumpingstations@severntrent.co.uk

Typical Examples

Terraced Properties

It is common for terraced properties to have a public sewer passing within the property boundary. There are some exceptions, such as an end terrace upstream of neighbouring properties as the section of drain will only serve that one property and so will remain private. Besides the situation shown in the diagram, a common alternative arrangement is for terraced houses to be served by a shared sewer to the rear which may also run in passageways between properties to join the main sewer in the highway.

Semi-detached

The majority of semi-detached properties are connected to the public sewer via a shared connection. The section of drain which serves both properties is now public. Typically, the public sewer will be within the boundary of the property which is downstream on the drainage system as most sewers work on a gravity system.

Detached Properties

It is common for most detached properties to be connected to the public sewer via a direct connection. Therefore, for many detached properties it is unlikely that assets within the boundary of the property will have transferred. But the individual drainage arrangements at a specific property should be checked if details are required.

Flats/Apartments

Any shared drainage systems within a property curtilage remain private. This means with flats, only drains and sewers outside the boundary have transferred.

Appendix 4

DRAINAGE & WATER ENQUIRY (DOMESTIC) TERMS AND CONDITIONS

These Terms govern the basis on which the Report is supplied and the basis upon which the Customer and the Client have relied upon the Report. Definitions

'Apparatus' means the sewers, disposal mains or lateral drains, water mains, resource mains or discharge pipes and associated infrastructure for which an Undertaker holds statutory responsibility under the Water Industry Act 1991 shown on the map attached to the Report:

the Report; 'Client' means the person who is the intended recipient of the Report with an actual or potential interest in the Property including their mortgage lender. 'Company' means Severn Trent Property Solutions, the company producing the Report. 'Customer' means the person placing the Order, either on its own behalf as Client, or, as an agent for or a reseller to a Client.

Order means any request completed by the Customer requesting the Report in accordance with the Company's order procedure.

'Report' means the drainage and/or water report prepared by the Company in respect of Partner Undertakers' means Severn Trent Water Ltd, Hafren Dyfrdwy Ltd or South

Staffordshire Water Plc 'Person' means any individual, firm, body corporate, unincorporated association or

partnership. 'Property' means the address or location supplied by the Customer in the Order which

satisfies one or more of the requirements set out in paragraph 2.1. 'Purpose' shall have the meaning set out in paragraph 2.2. 'Terms' means these CON29DW Drainage and Water Enquiry (DOMESTIC) Terms and

Conditions

'Third Party Undertaker' means any Undertaker other than a Partner Undertaker Undertaker (toba solverage and/or Water Undertaker (toba solefined in the Water Industry Act 1991) providing water and sewerage services.

1. Agreement
1.1 The Company agrees to supply the Report to the Customer and, if applicable, the Customer shall provide the Report to the Client, subject to these Terms to the exclusion of all other terms and conditions including any terms and conditions which the Customer and/or Client purports to apply under any Order, confirmation of Order or any other document. The scope and limitations of the Report are described in paragraph 2 of these Terms

1.2 Where the Customer is not the Client, then the Customer shall ensure that these Terms are brought to the attention of the Client on or prior to the Customer placing the Order and that the Terms are provided with any copy of the Report provided by the Customer to the Client. The Customer is responsible for making sure that the Client is aware of the limitations and exclusions that are contained in these Terms and must draw the Client's attention to any disclaimers set out in the Report 1.3 The Customer agrees that the placing of an Order for a Report indicates its

acceptance of these Terms. 1.4 Where the Customer is placing an Order on behalf of a Client, it warrants and

represents to the Company that it is authorised to accept these Terms on behalf of the Client and to bind the Client to these Terms.

2. The Report
2.1 This Report (unless it is for a Residential Multisite CON29DW Drainage & Water Enquiry) should only be used where the Property, which is the subject of the Report, is: 2.1.1 a single, residential, domestic property

2.1.2 land or buildings being or to be developed as a single, residential, domestic property

property. 2.1.3. not for carrying out any trade, business or commercial activities. 2.2 The Report is produced solely for use by the Client for the intended purpose of the Report (the "**Purpose**"). The Purpose is the identification of the location and connection of existing drainage and/or water services at the Property in relation to the individual domestic property transaction in respect of the Property which is in the contemplation of the Client at the time of ordering the Report. The Company shall not be liable in any circumstances in connection with the Report if it is used for any other purpose. 3. While the Company will use it reasonable setill and care in producing the Report if it

2.3 Whilst the Company will use its reasonable skill and care in producing the Report, it is provided to the Customer on the basis that the Customer and the Client acknowledge and agree to the following:-

2.3.1 the information contained in the Report details only the location and connection of existing drainage and/or water services at the Property at the date stated in the Report; 2.3.2 the Company's obligation in respect of the Report is to correctly reproduce and compile the information provided by the Partner Undertakers and any Third Party

Information (in accordance with paragraph 3.5);
2.3.3 the Report does not give details about the actual state or condition of the Property or the existing drainage and/or water services nor should it be used or taken to indicate actual suitability or unsuitability of the Property for any particular purpose, or relied upon for determining saleability or value, or used as a substitute for any physical investigation or inspection. Further advice and information from appropriate experts and professionals should always be obtained if the Customer or the Client requires; 2.3.4 the information contained in the Report is dependent upon the accuracy of the

2.3.4 the information contained in the Report is dependent upon the accuracy of the information supplied by the Customer or Client including, but not limited to the address of the Property and any plan of the Property;
 2.3.5 the statements in the Report marked as "Guidance Notes" are intended to be general statements and advice in addition to the report on the Property. The Company cannot ensure that any such guidance notes are accurate, complete or valid and accepts

ano liability for such general statements and advice provided; and 2.3.6 Without prejudice to all other Terms, the Company accepts responsibility for the inaccuracy of location, or missing apparatus contained in the Maps within the Report that arise as a result of negligence. 2.3.7 Notwithstanding clause 2.3.5, for the purposes of this Report, the Company will

not seek to rely on any statements and/or disclaimer shown on any Maps which limits liability in relation to the accuracy and/or location of apparatus.

2.4 The Client and/or Clustomer shall notify the Company as soon as is practicable if it becomes aware of any defect or inaccuracy in the Report.
2.5 In Providing you with this Report, the Company will comply with the Drainage & Water Searches Network (DWSN) Standards.
3. Cancellation rights

As a consumer 3.1 Where the Customer is an individual consumer (and not acting for purposes wholly or mainly relating to their trade, business, craft or profession), they have specific legal rights relating to cancellation of any Order they may place. They may cancel an Order at ny time within 14 days after the day on which the contract is entered into ("Cancellation Period")

3.2 To exercise the right to cancel, they must tell the Company of their decision to cancel this contract by a clear statement.

3.3 Where they are ordering a Report as a consumer, due to their cancellation rights, The Company will not process the Order or provide the Report to them before the end of the Cancellation Period unless they provide their express consent and they acknowledge that they will lose the right to cancel the contract under regulation 29(1) of the Consumer Contracts (Information, Cancellation, and Additional Charges) Regulation 2013.

3.4 In addition to these rights, where the Company is able to, they will cancel any Order in accordance with their cancellation policy, which can be found on www.severntrentsearches.com

As a Business 3.5 The Cancellation Period does not apply to the Order if the Customer is placing the Order wholly or mainly for purposes relating to their trade, business, craft or profession 3.6 If the Customer cancels their Order other than in accordance with this clause they may be liable for the payment of certain fees which are recoverable as detailed in the cancellation policy at: www.severntrentsearches.com.

4. Limitation of Liability
4.1 The Company does not exclude its liability (if any) to the Customer and/or the Client:
4.1.1 for personal injury or death resulting from the Company's negligence; 4.1.2 for any matter for which it would be illegal for the Company to exclude or to attempt to exclude its liability;
 4.1.3 for fraud or fraudulent misrepresentation;

4.1.4 for breach of its obligations arising under Section 2 Supply of Goods and Services Act 1982: or

4.15 arising under Section 2(3) Consumer Protection Act 1987.
4.2 Subject to paragraph 4.1 the Company accepts no responsibility for and excludes its liability (whether for breach of contract, negligence or any other tort, under statute or statutory duty, restitution or otherwise at all) for: 4.2.1 any inaccuracy or error in the Report based on incomplete or inaccurate

information supplied by the Customer and/or the Client; 4.2.2 any use of the Report by the Customer for any purpose other than the Purpose; 4.2.3 any change in the location and connection of existing drainage and/or water 4.3 The Company shall not be in breach of these Terms or otherwise liable to the

Customer and/or the Client for any failure to provide or delay in providing the Report to the extent that such failure or delay is due to an event or circumstance beyond the reasonable control of the Company including but not limited to any delay, failure of or defect in any machine, processing system or transmission link or any failure or default of a supplier or sub-contractor of the Company or any provider of any third party Information except to the extent that such failure or delay is caused by the negligence of the Company.

the Company. 5 Intellectual Property Rights 5.1 The Customer acknowledges that the Report they receive is confidential and is intended for (a) their own internal or personal purposes and/or (b) where they are trading as a business, the personal use of the Client. The Report shall not be used or copied (in whole or in part) for any other use whatsoever, whether for commercial gain or otherwise. 5.2 The Company grants the Customer a non-exclusive and non-transferable licence: a to make copies of the Reports (except the Map) for their own internal purposes; b to incorporate the Reports (other than the Map) into any written advice they the aperand leave of the interview and

provide in the normal course of their business; and c to disclose the Reports, where they are trading as a business, in the normal course of their business to:

the Client; and or

anyone who is acquiring or considering acquiring an interest in or charge over the property to which the Report relates, and their professional advisers. 5.3 The Customer must not alter any part of the Report including altering, removing or

5.5 The Customer must not alter any part of the report including atterning, reinforming of obscuring any logos and/or branding which is contained in a Report.
5.4 All intellectual property rights, including trademarks, domain names and copyright in the Reports are owned by the Company and/or its licensors.
5.5 Any Maps contained in any Report are protected by Crown Copyright. The Maps must not be used for any purpose other than as part of the Report. Neither the Customer nor anyone to whom it provides the Report may reproduce the Maps without paying for a separate licence from Ordnance Survey. 5.6 No intellectual or other property rights are transferred or licensed to the Customer or

where they are trading as a business to the Client or any other person except to the extent set out in these terms.

5.7 The Customer agrees to compensate the Company against any losses, costs, claims, damages and/or expenses which it incurs and/or suffers as a result of any breach of any intellectual property rights or obligations set out in any of the Terms by the Customer, or where the Customer is trading as a business to the Client or any bit the terms by the whom it provides a copy of the Report. **5.8** The enquiries contained in the Report are protected by copyright owned by the Law Society of 113 Chancery Lane, London WC2A 1PL and must not be used for any

purpose outside the context of the Report.

5.9 The obligation to procure the compliance of the Client to the obligations set out in this paragraph 5 and in paragraph 7.5 shall not apply to customers who are bona fide legal advisers recharging the cost of the Report to the Client as a disbursement.

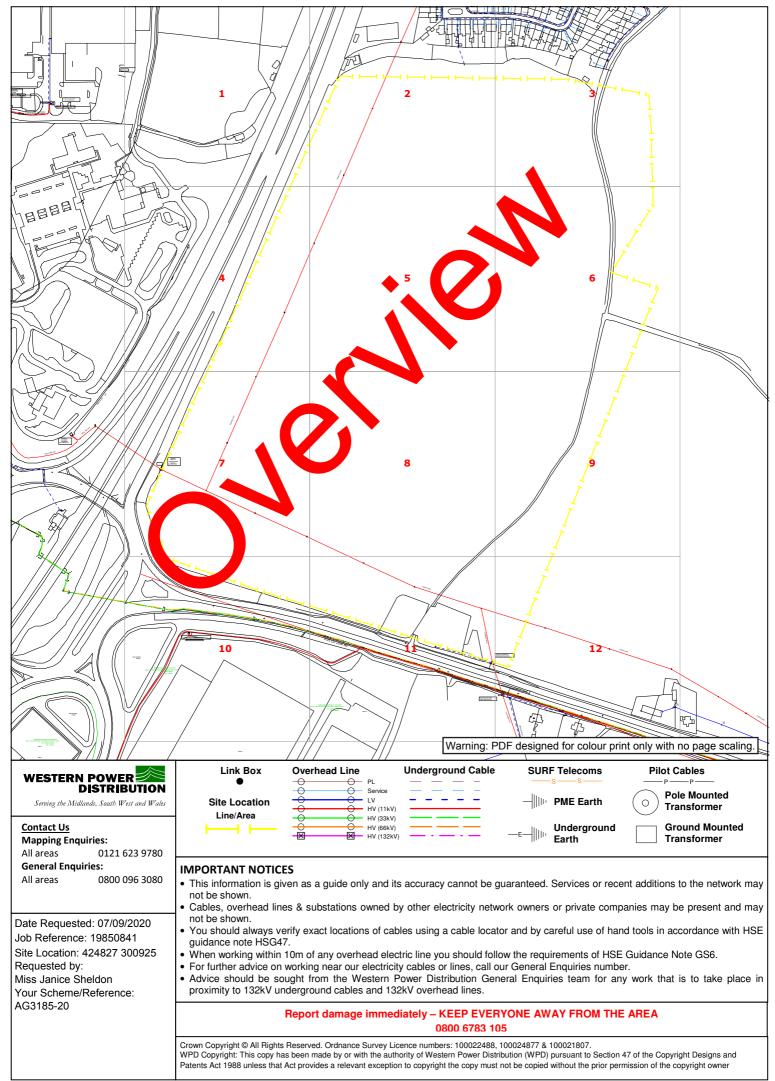
6. Payment 6.1 Unless otherwise stated all prices are inclusive of VAT. The Customer shall pay the price of the Report specified by the Company, without any set off, deduction or counterclaim. Unless the Customer or Client has an account with the Company for payment for Reports, the Company must receive payments for Reports in full before the Report is produced. For Customers or Clients with accounts, payment terms will be as agreed with the Company.

7. General 7.1 If any provision of these Terms is or becomes invalid or unenforceable, it will be taken to be removed from the rest of these terms to the extent that it is invalid or

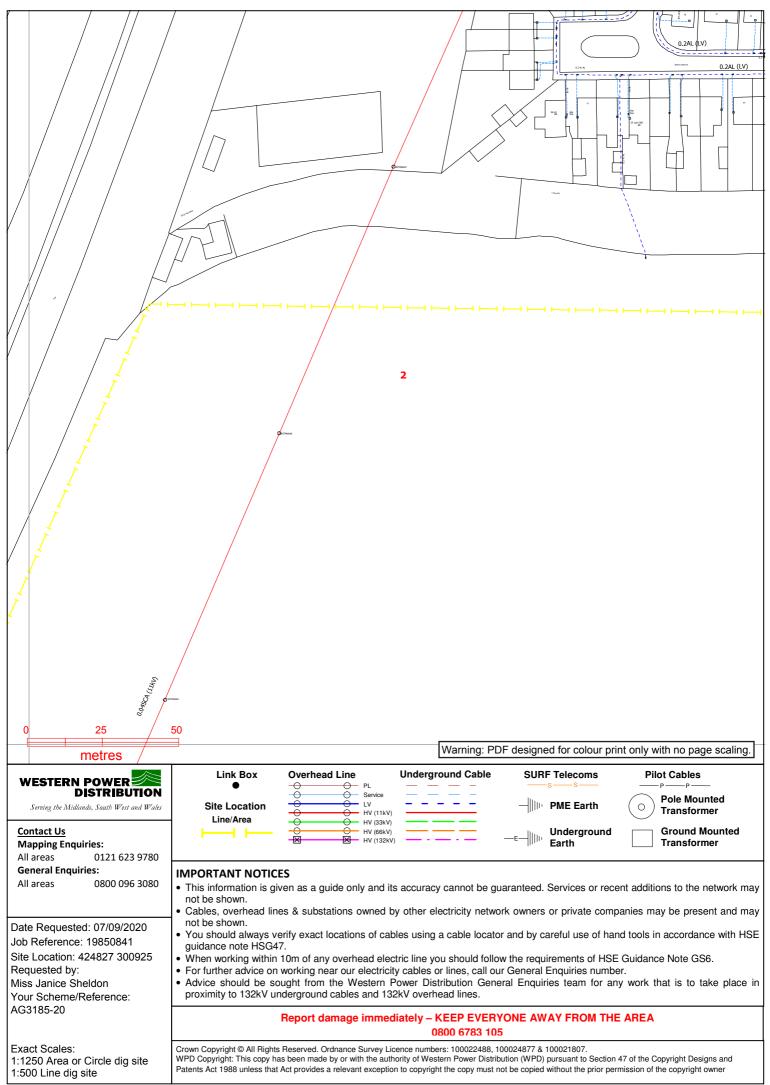
unenforceable. No other provision of these terms shall be affected. 7.2 Any failure by the Company to enforce any breach of the Terms shall not be deemed

to be a waiver of any future breach of the Terms by the Customer or Client 7.3 Nothing in these Terms shall in any way restrict the Customer or Client's statutory or any other rights of access to the information contained in the Report. 7.4 The Company and the Customer agree and where the Customer is not the Client, the Customer shall procure that the Client agrees that these Terms contain all the terms

which the Company and the Customer and/or the Client have a greed in relation to the subject matter of these Terms and supersede any prior written or oral agreements, representations or understandings between any of them in relation to such subject matter. Nothing in this paragraph 7.5 will exclude any liability which one party would otherwise have to another party in respect of any statements made fraudulently.

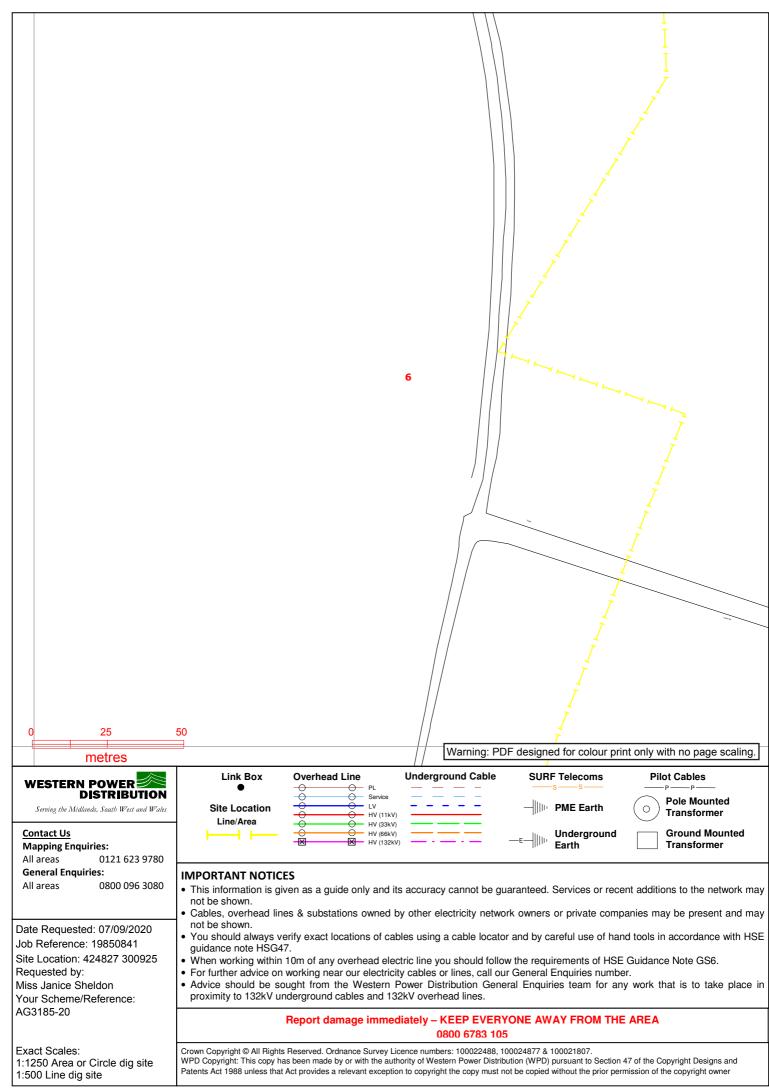

7.6 The Company may assign, delegate, licence, hold on trust or sub-contract all or any part of its rights and obligations under these Terms. The Customer/Client is not permitted to assign all or any part of its rights and obligations under these Terms and/or under the Report

Customer Complaints procedure:

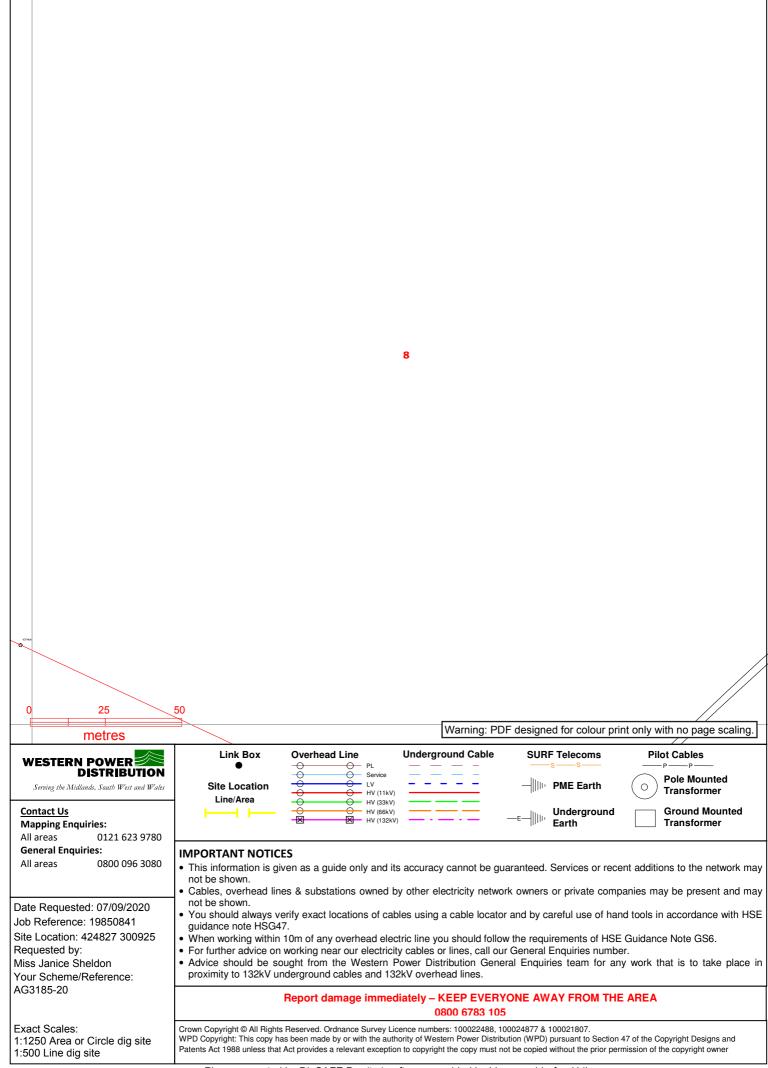

The Company offers a robust complaints procedure which can be found on our website www.severntrentsearches.com

www.seventrentsearches.com. If your complaint has gone through our complaints procedure and you are dissatisfied with the response or it has exceeded our response timescales, you may refer your complaint for consideration under The Property Ombudsman Scheme (TPOs). You can obtain further information by visiting www.tpos.co.uk or email admin@tpos.co.uk.

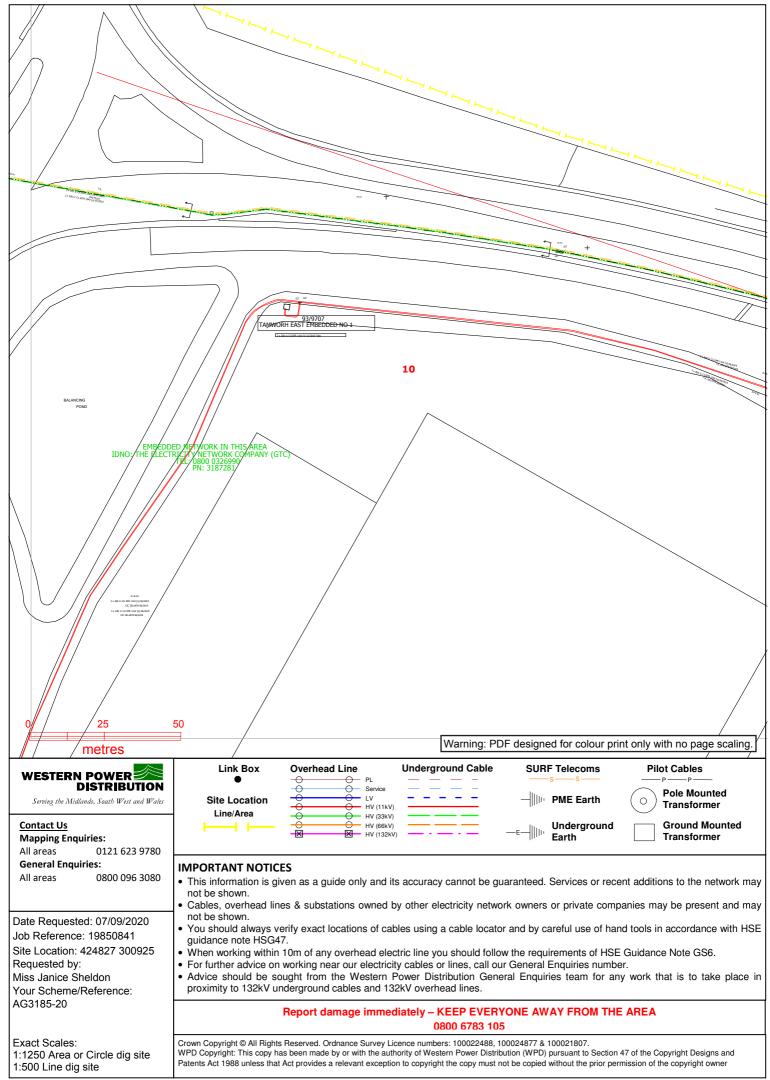
Severn Trent Searches is a trading name of Severn Trent Property Solutions. Registered in England and Wales no.08181033 Registered office, Severn Trent Centre, 2 St John's Street, Coventry, CV1 2LZ.

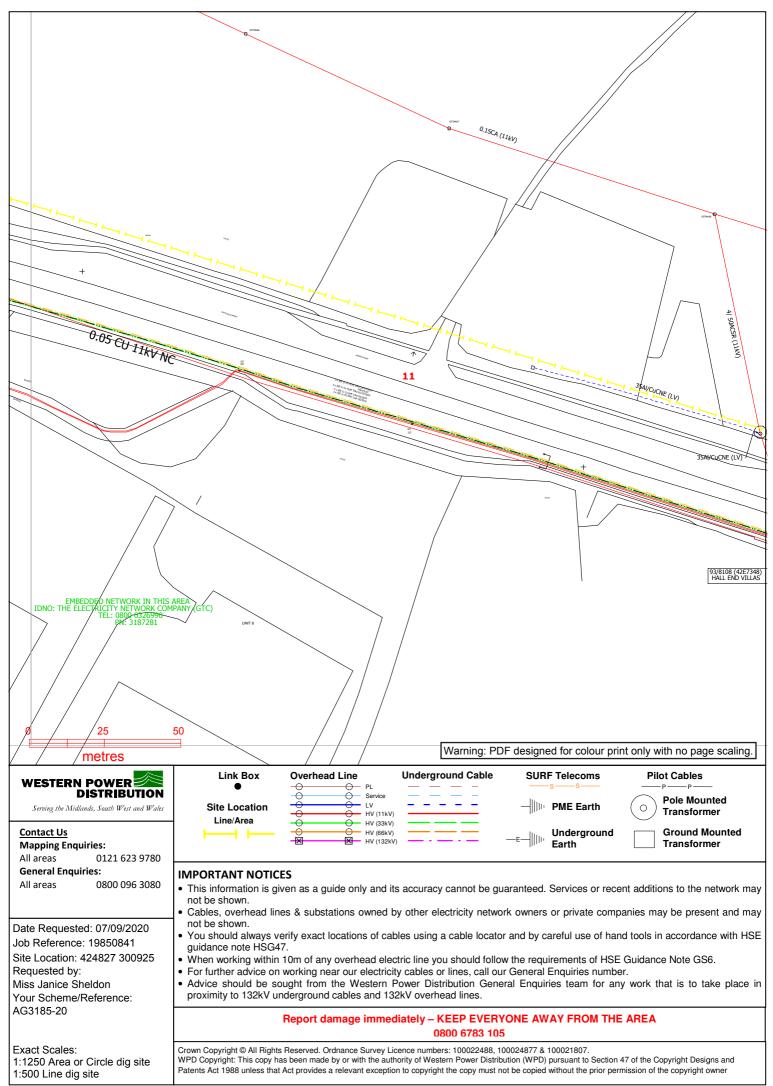

	and (Sec.)				Int only with no page scaling.
WESTERN POWER	Link Box	Overhead Line	Underground Cable	SURF Telecoms	Pilot Cables
Serving the Midlands, South West and Wales	 Site Location 	PL PL Service LV LV		ss →∭⊮ PME Earth	Pole Mounted Transformer
Contact Us Mapping Enquiries: All areas 0121 623 9780	Line/Area	HV (11kV) HV (33kV) HV (66kV) HV (132kV		–∈—∭∭ Underground Earth	Ground Mounted Transformer
General Enquiries: All areas 0800 096 3080	not be shown.Cables, overhead lin	ven as a guide only and its			ent additions to the network may panies may be present and may
Date Requested: 07/09/2020 Job Reference: 19850841 Site Location: 424827 300925 Requested by: Miss Janice Sheldon Your Scheme/Reference: AG3185-20	guidance note HSG4 • When working within • For further advice on • Advice should be so	7. 10m of any overhead elect working near our electricit bught from the Western F inderground cables and 133	tric line you should follow y cables or lines, call our Power Distribution Genera 2kV overhead lines.	the requirements of HSE General Enquiries numb al Enquiries team for ar	er. ny work that is to take place in
AG3185-20		Report damage immed	liately – KEEP EVERYC 0800 6783 105	ONE AWAY FROM THI	EAREA
Exact Scales: 1:1250 Area or Circle dig site 1:500 Line dig site	WPD Copyright: This copy ha	s Reserved. Ordnance Survey Lic as been made by or with the auth Act provides a relevant exceptio	cence numbers: 100022488, 100 ority of Western Power Distributi	ion (WPD) pursuant to Section	47 of the Copyright Designs and mission of the copyright owner

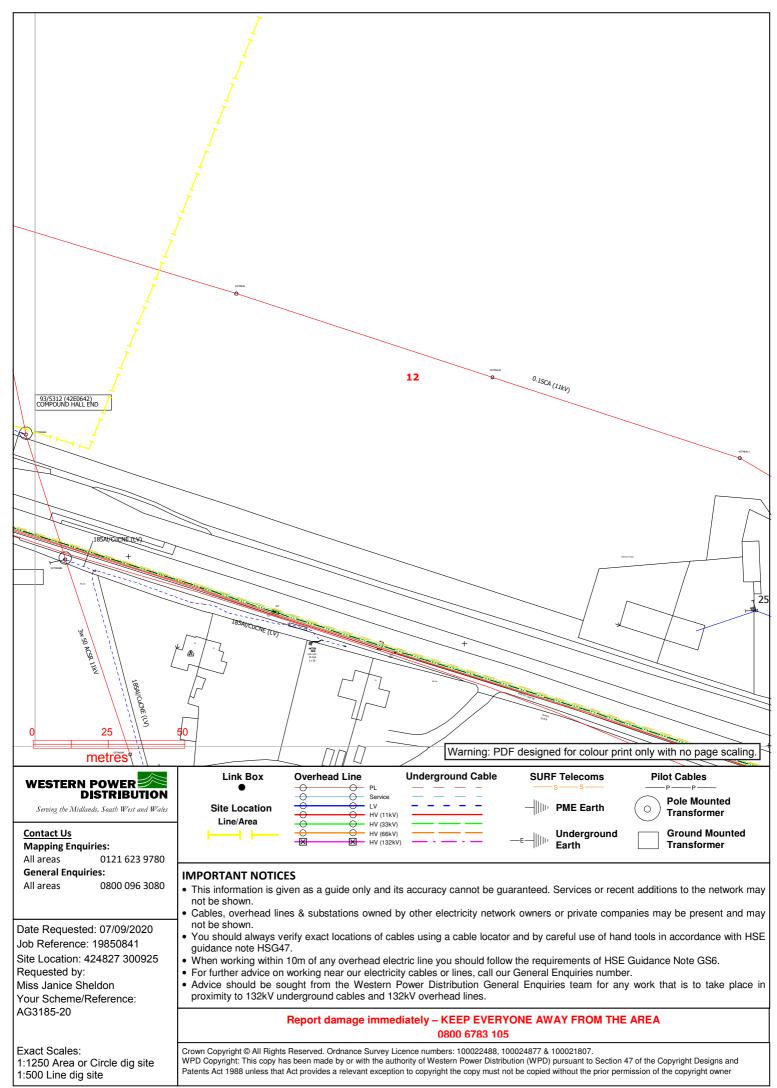
					No
			3		Г
0 25 metres	50 ∃		Warning: PDF	- designed for colour prir	t only with no page scaling.
	Link Box Overh		Underground Cable	SURF Telecoms	Pilot Cables
DISTRIBUTION Serving the Midlands, South West and Wales	Site Location				Pole Mounted Transformer
Contact Us Mapping Enquiries: All areas 0121 623 9780	Line/Area	HV (11KV) HV (33KV) HV (66kV) HV (132KV)		─E───────────────────────────────────	Ground Mounted Transformer
General Enquiries: All areas 0800 096 3080	not be shown.				nt additions to the network may
Date Requested: 07/09/2020	not be shown.				anies may be present and may d tools in accordance with HSE
Job Reference: 19850841 Site Location: 424827 300925	 You should always verify exaguidance note HSG47. When working within 10m of a 		-		
Requested by: Miss Janice Sheldon Your Scheme/Reference:	· For further advice on working	near our electricity om the Western Po	cables or lines, call our ower Distribution Gener	General Enquiries numbe	
AG3185-20	Report	damage immedi	ately – KEEP EVERY(0800 6783 105	ONE AWAY FROM THE	AREA
Exact Scales: 1:1250 Area or Circle dig site 1:500 Line dig site	Crown Copyright © All Rights Reserved WPD Copyright: This copy has been ma Patents Act 1988 unless that Act provid	ade by or with the autho	ence numbers: 100022488, 100 prity of Western Power Distribu	tion (WPD) pursuant to Section 4	


		>	/	// // ,	٦ / ٢
					1
					I
L F					I
F					
A F A					
	All Constants				/
	International Contraction				
	Sector Sector				
				1	
			/ / /	_ T	
	and a second sec		<u>i</u>		
					алина с
			I	/	
			_ T		
		<u> </u>			
25	50				
metrøs			Warning: PD	F designed for colour pri	nt only with no page scaling.
	Link Box	Overhead Line	Underground Cable	SURF Telecoms	Pilot Cables
Serving the Midlands, South West and Wales	Site Location Line/Area	Contract Contract		—∭⊪ PME Earth	• Pole Mounted Transformer
Contact Us Mapping Enquiries: All areas 0121 623 9780		HV (666kV) HV (132kV		—₌—∭ Underground Earth	Ground Mounted Transformer
General Enquiries: All areas 0800 096 3080	IMPORTANT NOTIC		s accuracy cannot be qu	aranteed. Services or rece	ent additions to the network may
	not be shown.Cables, overhead line				panies may be present and may
Date Requested: 07/09/2020 Job Reference: 19850841	 not be shown. You should always veguidance note HSG4 		ples using a cable locator	and by careful use of har	nd tools in accordance with HSE
Site Location: 424827 300925 Requested by: Miss. Japics Sheldon	When working withinFor further advice on	10m of any overhead electronic working near our electricit	ty cables or lines, call our	General Enquiries number	E Guidance Note GS6. er. y work that is to take place in
Miss Janice Sheldon Your Scheme/Reference: AG3185-20	proximity to 132kV ur	nderground cables and 13	2kV overhead lines.	•	
		Report damage immed	0800 6783 105		E AREA
Exact Scales: 1:1250 Area or Circle dig site 1:500 Line dig site	WPD Copyright: This copy ha	Reserved. Ordnance Survey Lie as been made by or with the auth Act provides a relevant exception	nority of Western Power Distribu	ition (WPD) pursuant to Section	47 of the Copyright Designs and mission of the copyright owner
	1				

			5		
0 25	50				
0 25 metres	50		Warning: PDI	F designed for colour pri	int only with no page scaling.
Metres WESTERN POWER DISTRIBUTION Serving the Midlands, South West and Wales Contact Us Mapping Enquiries: All areas 0121 623 9780	50 Link Box • Site Location Line/Area	Overhead Line Output Output <td< td=""><td>Underground Cable</td><td>E designed for colour pri SURF Telecoms SURF Telecoms SURF Telecoms PME Earth −E-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>int only with no page scaling. Pilot Cables P P Pole Mounted Transformer Ground Mounted Transformer</td></td<>	Underground Cable	E designed for colour pri SURF Telecoms SURF Telecoms SURF Telecoms PME Earth −E-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	int only with no page scaling. Pilot Cables P P Pole Mounted Transformer Ground Mounted Transformer
metres WESTERN POWER DISTRIBUTION Serving the Midlands, South West and Wales Contact Us Mapping Enquiries:	Link Box Site Location Line/Area IMPORTANT NOTIC • This information is gi not be shown. • Cables, overhead lin not be shown.	ES ven as a guide only and es & substations owned	Underground Cable	SURF Telecoms	Pilot Cables Pole Mounted Transformer Ground Mounted Transformer ent additions to the network may panies may be present and may
metres WESTERN POWER DISTRIBUTION Serving the Midlands, South West and Wales Contact Us Mapping Enquiries: All areas 0121 623 9780 General Enquiries: All areas 0800 096 3080 Date Requested: 07/09/2020 Job Reference: 19850841 Site Location: 424827 300925 Requested by: Miss Janice Sheldon Your Scheme/Reference: 19850841	Link Box Site Location Line/Area IMPORTANT NOTIC This information is gi not be shown. Cables, overhead lim not be shown. You should always v guidance note HSG4 When working within For further advice on Advice should be so	ES ven as a guide only and es & substations owned erify exact locations of c 7. 10m of any overhead e working near our electri	Underground Cable	SURF Telecoms	Pilot Cables Pole Mounted Transformer Ground Mounted Transformer ent additions to the network may panies may be present and may nd tools in accordance with HSE E Guidance Note GS6.
metres WESTERN POWER DISTRIBUTION Serving the Midlands, South West and Wales Contact Us Mapping Enquiries: All areas 0121 623 9780 General Enquiries: All areas 0800 096 3080 Date Requested: 07/09/2020 Job Reference: 19850841 Site Location: 424827 300925 Requested by: Miss Janice Sheldon	Link Box Site Location Line/Area IMPORTANT NOTIC This information is gi not be shown. Cables, overhead lim not be shown. You should always v guidance note HSG4 When working within For further advice on Advice should be so	ES ven as a guide only and erify exact locations of co 7. 10m of any overhead ei working near our electrr hought from the Westerr nderground cables and	Underground Cable	SURF Telecoms SURF Telecoms PME Earth PME Earth Underground Earth aranteed. Services or rece who weres or private comp and by careful use of har whe requirements of HSE General Enquiries number ral Enquiries team for ar ONE AWAY FROM THE	Pilot Cables Pole Mounted Transformer Ground Mounted Transformer ent additions to the network may panies may be present and may nd tools in accordance with HSE E Guidance Note GS6. er. ny work that is to take place in




Plans generated by DigSAFE Pro (tm) software provided by LinesearchbeforeUdig


	(ant) baseo
	93/8871 M42.LTG SUTHBOUND
	A And
	UTRAK
0 25	50
metres	Warning: PDF designed for colour print only with no page scaling.
	Link Box Overhead Line Underground Cable SURF Telecoms Pilot Cables
DISTRIBUTION Serving the Midlands, South West and Wales	Site Location Line/Area HV (11kV) HV (33kV) HV (33kV) Pole Mounted Transformer
Contact Us Mapping Enquiries: All areas 0121 623 9780	HV (66kV) → HV (66kV) → HV (132kV) → HV (13
General Enquiries: All areas 0800 096 3080	 IMPORTANT NOTICES This information is given as a guide only and its accuracy cannot be guaranteed. Services or recent additions to the network may not be shown.
Date Requested: 07/09/2020	 Cables, overhead lines & substations owned by other electricity network owners or private companies may be present and may not be shown. You should always verify exact locations of cables using a cable locator and by careful use of hand tools in accordance with HSE
Job Reference: 19850841 Site Location: 424827 300925 Requested by: Miss Janice Sheldon	 guidance note HSG47. When working within 10m of any overhead electric line you should follow the requirements of HSE Guidance Note GS6. For further advice on working near our electricity cables or lines, call our General Enquiries number. Advice should be sought from the Western Power Distribution General Enquiries team for any work that is to take place in provinity to 12/01/04 underground 12/01/04 underground
Your Scheme/Reference: AG3185-20	proximity to 132kV underground cables and 132kV overhead lines. Report damage immediately – KEEP EVERYONE AWAY FROM THE AREA 0800 6783 105
Exact Scales: 1:1250 Area or Circle dig site 1:500 Line dig site	Crown Copyright © All Rights Reserved. Ordnance Survey Licence numbers: 100022488, 100024877 & 100021807. WPD Copyright: This copy has been made by or with the authority of Western Power Distribution (WPD) pursuant to Section 47 of the Copyright Designs and Patents Act 1988 unless that Act provides a relevant exception to copyright the copy must not be copied without the prior permission of the copyright owner
L	Dippo concreted by DigCAEE Dro (tm) optimize provided by Lippoporchhoferel Idia

	50				
metres	∃{ĭ		Warning: PDI	⁼ designed for colour pri	int only with no page scaling.
	Link Box	Overhead Line	Underground Cable	SURF Telecoms	Pilot Cables
DISTRIBUTION Serving the Midlands, South West and Wales	Site Location	Service LV HV (11kV)		—∭⊫ PME Earth	O Pole Mounted Transformer
Contact Us Mapping Enquiries: All areas 0121 623 9780	Line/Area	HV (33kV) HV (66kV) HV (132kV)		—₌—∭⊪⊢ Underground Earth	Ground Mounted Transformer
General Enquiries:All areas0800 096 3080Date Requested: 07/09/2020Job Reference: 19850841Site Location: 424827 300925Requested by:Miss Janice SheldonYour Scheme/Reference:AG3185-20	 not be shown. Cables, overhead lin not be shown. You should always v guidance note HSG4 When working within For further advice on Advice should be so 	iven as a guide only and its nes & substations owned b rerify exact locations of cat 47. 10m of any overhead elec n working near our electricit ought from the Western F nderground cables and 13	by other electricity networ oles using a cable locator ctric line you should follow ty cables or lines, call our Power Distribution Gener 2kV overhead lines.	k owners or private comp and by careful use of har the requirements of HSE General Enquiries numbe al Enquiries team for an	er. ny work that is to take place in
Exact Scales: 1:1250 Area or Circle dig site		Report damage immed s Reserved. Ordnance Survey Lic as been made by or with the auth	0800 6783 105 cence numbers: 100022488, 10	0024877 & 100021807.	
1:500 Line dig site		t Act provides a relevant exceptio			mission of the copyright owner

Electricity Network Information Plans Fees 01 December 2015

LinesearchbeforeUdig (LSBUD) – online service

Non Chargeable e.g. Local Authority, Utility, Architect, Developer, Electrical Design Consultants or, Independent Connection Providers (ICP) including contractors excavating on their behalf						
LSBUD internet/email Free						
	se of plans and data e.g. Solicitor, Conveyancer, Search mited to, resellers and speculative consultancy					
LSBUD internet/email (Pay As You Go and Monthly Invoice*)	£15 per enquiry					

*Monthly Invoice - Standard payment terms are 30 days net of receipt of invoice

Paper Plans – Map Response Team (see below for contact details)

Private Domestic Enquiry e.g. homeowner requesting plans of their own property						
Single Paper Plan Postal service Free						
Chargeable e.g. Solicitor, Conveyancer, Search Company, Local Authority, Utility, Architect, Consultant, Developer or, Independent Connection Providers (ICP) including contractors excavating on their behalf. Including, but not limtied to, resellers and speculative consultancy						
Single Paper Plan Postal service	£30.00 Multiple plans price on application					

- All prices are **exclusive of VAT**
- Plans are not suitable for black and white photocopying

To register for **LSBUD** go to http://www.westernpower.co.uk/locationplans or http://www.linesearchbeforeudig.co.uk

For more information please contact the Map Response Team:

Email:	WPDWebMap@westernpower.co.uk
Post:	Map Response Team, Western Power Distribution, Mapping Centre Toll End Road, Tipton, West Midlands DY4 0HH
Phone:	0121 623 9780
Fax:	0121 623 9223

Our Ref: 19850841 Your Ref: AG3185-20

Monday, 07 September 2020

Janice Sheldon Unit 23 Abbey Park, Stareton Kenilworth Warwickshire CV8 2LY

Dear Janice Sheldon

Thank you for your enquiry dated Monday, 07 September 2020

I now enclose a copy of our plan showing existing Western Power Distribution (WPD) Electricity / WPD Surf Telecom apparatus in the vicinity of your proposed works. This information is given as a general guide only and its accuracy cannot be guaranteed. Please note that all WPD equipment on site should be assumed to be LIVE until WPD prove otherwise and provide you with confirmation to this effect in writing. Recent additions to our network, or service connections between the main cable and a building or street lamp may not be shown.

Damage to underground cables and contact with overhead lines can cause severe injury or may prove fatal. If you are excavating on site in the vicinity of either WPD Electrical apparatus or WPD Surf Telecom apparatus you must comply with the requirements of the following:-

Health & Safety Executive guidance HS(G)47, Avoiding Danger from underground services.

Work taking place in the vicinity of our plant is also regulated under the:-

Electricity at Work Regulations 1989, Health and Safety Act 1974, CDM Regulations 2015. Safe working procedures should be defined and practiced

Please ensure that the use of mechanical excavators in the vicinity of our plant is kept to a minimum. WPD Surf Telecom ducts contain fibre cables, which are expensive to repair. Therefore, extreme care must be taken whilst working in the vicinity of these ducts, hand digging methods being used to determine their precise position.

If there are overhead lines crossing your site and your proposal involves building works which may infringe the clearance to our overhead system then you should call the relevant general enquiries number (see page 2 of this letter) for advice. Where overhead lines cross your site you must comply with the requirements of Health & Safety Executive guidance as laid down in GS6, Avoidance of Danger from Overhead Electric Lines.

Where diversions to WPD apparatus are needed to allow change to occur on site, the cost of these alterations may be charged to the persons responsible for the works.

If you require advice in connection with your proposals please contact the relevant general enquiries number (see page 2 of this letter)

Following consultation the local Western Power Distribution team will where necessary prepare detailed proposals and provide a quotation for any necessary alterations and/or development of our equipment on the site.

Yours sincerely WPD Map Response Team

Western Power Distribution,

Mapping Centre Toll End Road Tipton West Midlands United Kingdom DY4 0HH www.westernpower.co.uk

Map Response T 0121 623 9780 WPDMapResponse @westernpower.co.uk

LinesearchbeforeUdig

Help Desk 0845 437 7365

Western Power Distribution PLC South West - 02366894 South Wales - 02366985 East Midlands - 02366923 West Midlands - 03600574

Registered in England and Wales

Registered Office: Avonbank Feeder Road Bristol BS2 0TB

Safety Documents:

https://www.westernpower.co.uk/customers-and-community/health-safety/public-safety-advice

Contact Us

Emergency or Power Supply issues

In an emergency call 105, 24 hours a day.

Mapping Enquiries

If you have an enquiry relating to this letter or the attached map plan, please contact us using the following information:

Telephone	0121 623 9780
Email	WPDMapResponse@westernpower.co.uk

General Enquiries

If you have a general enquiry, please call us on the following telephone number: All areas 0800 096 3080

LinesearchbeforeUdig

If you have an enquiry relating to the use of the LinesearchbeforeUdig website please contact LinesearchbeforeUdig using the following information:

Telephone	0845 437 7365
Email	enquiries @linesearchbeforeudig.co.uk
Website	www.linesearchbeforeudig.co.uk

Steps to help keep you safe

 If you are working within 10 metres of our 33kV, 66kV, 132kV underground electricity cables or within 10 metres of an overhead electricity line you should call the relevant General Enquiries for free safety advice.

Safety Documents – please download our informative safety documents to help ensure that you, your staff and the public are kept safe whilst working in the vicinity of electricity. https://www.westernpower.co.uk/customers-and-community/health-safety/public-safety-advice

- Make sure you have up to date plans remember that recent additions to our network or service connections between the main cable and a building or street lamp may not be shown.
- Look for signs of service cables an electricity meter box or nearby streetlamp may give you an indication that service cables are present in your area of work.
- Non WPD Network electricity cables, lines and equipment owned by others may also be present in addition to WPD network. They are unlikely to be shown on our plans.
- Use a cable locator trace electricity cables and mark the position of them using paint or other waterproof marking on the ground.
- Hand dig trial holes to confirm the position of cables in close proximity to your area of your work and use spades and shovels rather than picks, pins or forks.
- **Have an emergency plan** so that everyone working on site understands what to do in the event of an underground electricity cable being damaged or contact being made with an overhead electricity line.
- If you are working within 10 metres of an overhead electricity line then it may be necessary for you to erect warning signs and markers, or height restriction goal posts. Ensure that you comply with the requirements of Health & Safety Executive guidance laid down in GS6, Avoidance of Danger from Overhead Electric Lines.
- If you are erecting a structure that could allow anyone standing on it, or its access device (ladder, scaffold, MEWP), to come within 3m of any overhead electric line then you must inform us. This is your duty and a legal requirement under the Electricity Safety, Quality & Continuity Regulations 2002.
- If you cannot work safely around the underground electricity cable or overhead electricity line, then you may need to get it moved to allow your works to go ahead. Call the general enquiry numbers above for guidance.
- It is possible that cables or pipes may be embedded in concrete electricity cables embedded in concrete MUST be made 'dead' by Western Power Distribution or the cable owner before the concrete is broken out. Alternatively, another safe way of working should be agreed.

Cables are sometimes covered by tiles or a marker tape - these can be concrete, polythene or earthenware and are a useful early warning of the presence of cables; you should avoid disturbing any tiles or tape to expose the cable. Not all cables have these warning indicators.

Safety Documents: https://www.westernpower.co.uk/customers-and-community/health-safety/public-safety-advice

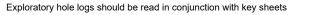
Appendix C Ground Investigation Data

Project	Tamw	/orth			_				Project No.			AG3	185	-20
Client	Grour	nd and Pro	ject Co	nsultant	s				Sheet				1 c	of 1
Start	17/09/2	2020		Coc	ordinate	s			Scale				1	:50
End	17/09/2	2020		Gro	ound Le	vel			Total Depth				2.5	6m
Sample / Test	Depth (m)	Result	Casing Depth (m)	Level (mAoD)	Strata Depth (thickness)			Description of Strat	а		Legend	GW	Inst	tall
Type B B D S D S S	0.00 1.20 1.20 2.00 2.00 2.50 2.50 	N = 30 N >50 N >50			(2.30) (0.26) 2.56		veak light brov	grey sandy CLAY. vn SANDSTONE r End of Borehole at 2.5		Ity sand.		Lundy		
2.3	80	2.50		Duration (h 00:1	5	Depar Guike	1030 10	i i ci i ai i i s	Jased	Jealeu			-1	
											Logged: Checkee			

Exploratory hole logs should be read in conjunction with key sheets

Installation: 50mm diameter standpipe installed to 2.50m bgl

Diameter: 150mm to 2.50m


APPLIED GEOLOGY

BOREHOLE LOG - CABLE PERCUSSION

BORE	HOLE	LOG -	CAB	LE PI	ERCU	SSION			CP2
Project	Tamw	orth				Project No.		AG3	185-20
Client	Grour	nd and Pro	ject Co	nsultant	s	Sheet			1 of 1
Start	18/09/2	2020		Coc	ordinate	s Scale			1:50
End	18/09/2	2020		Gro	ound Le	vel Total Depth			2.52m
/ Test	Depth (m)	Result	Depth	Level (mAoD)	Strata Depth (thickness) (m)	Description of Strata	Legend	GW	Install
Sample	Depth		Casing Depth (m)	Level	Strata Depth Depth (flickness) (0.30) 0.30 (1.50) 1.80 (0.72) 2.52				
		Chisellin				Groundwater Strikes			
Fro 2.1	m 0	To 2.30		Duration (h 00:1	ıh:mm) 5	Depth Strike Rose to Remarks Cased Sealed	Drilled: Logged Checke	: CS	SI

Installation:

Diameter: 150mm to 2.30m

APPLIED GEOLOGY

Project	Tamw	vorth							Project No.			AG3	185-20
Client	Grou	nd and Pro	ject Co	onsultants	8				Sheet				1 of 1
Start	18/09/2	2020		Coc	ordinate	es			Scale				1:50
End	18/09/2	2020		Gro	und Le	vel			Total Depth				2.63m
Sample / Test Type	Depth (m)	Result	Casing Depth (m)	Level (mAoD)	Strata Depth (thickness)			Description of Strat	а		Legend	GW	Install
B	- 0.00				(0.30) 0.30	coarse angula	ar to subrour	ND with frequent r nded sandstone.		/			
-					(1.20)	Light brown s sandstone.	lightly grave	lly very clayey SAI	ND. Gravel is f	ine angular			
B D S	- 1.20 - 1.20 - 1.20 - 1.20	N = 47			1.50	From 1.20m bg		/n SANDSTONE r	ecovered as c	layey very			
D S	2.00 2.00	N >50			(1.13)	sandy fine to	coarse angu	lar gravel.					
D S	2.50 2.50	N >50			2.63		E	nd of Borehole at 2.6	3m				
		Chiselling	9	D "		D # 2011		Groundwater Strikes					
Fro 2.2	m :0	<u>To</u> 2.50		Duration (h 00:15	<u>h:mm)</u> 5	Depth Strike	Rose to	Remarks	Cased	Sealed	Drilled: Logged: Checked	CS	ડા

Installation:

Diameter: 150mm to 2.50m

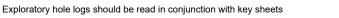
BOREHOLE LOG - CABLE PERCUSSION

APPLIED GEOLOGY

Project	Tamw	orth							Project No.			AG3	185-20
Client	Grour	nd and Pro	ject Co	nsultant	s				Sheet				1 of 1
Start	22/09/2	020		Cod	ordinate	es			Scale				1:50
End	22/09/2	2020		Gro	ound Le	vel			Total Depth				2.35m
Sample / Test Type	Depth (m)	Result	Casing Depth (m)	Level (mAoD)	Strata Depth (thickness) (m)			Description of Stra	ata		Legend	GW	Install
В	0.50				(0.40) 0.40	fine to med (TOPSOIL)	ium subangul	velly SAND with f ar to subrounded	requent rootlets sandstone.	. Gravel is			
B D S D S D S D S	1.20 1.20 1.20 2.00 2.00 2.30 2.30 2.30	N = 25 N >50 N >50		-	(1.30) 1.70 (0.65) 2.35	Extremely	se angular gra	wn SANDSTONE		ery sandy			
Fro	m	Chisellin To	g	Duration (h	nh:mm)	Depth Strike	Rose to	Groundwater Strike Remarks	s Cased	Sealed	Drilled:	Lundy	SI
2.1	0	2.30		00:1	5						Logged:	CS	

Installation: 50mm diameter pipe installed to 2.60m bgl

Diameter: 150mm to 2.30m



BOREHOLE LOG - CABLE PERCUSSION

BORE	HOLE	LOG -	CAB	LE P	ERCU	SSION							CP5
Project	Tamw	vorth							Project No.			AG3	185-20
Client	Grour	nd and Pro	ject Co	nsultant	s				Sheet				1 of 1
Start	22/09/2	2020		Coc	ordinate	s			Scale				1:50
End	22/09/2	2020		Gro	ound Le	vel			Total Depth				2.46m
/ Test	Depth (m)	Result	Depth	Level (mAoD)	Strata Depth (thickness)			Description of Strat	а		Legend	GW	Install
Sample			Casing Depth (m)		Jund Le Strata Deptin (0.30) 0.30 (1.30) 1.60 (0.86) 2.46	Brown slig fine to mec (TOPSOIL) Light brown From 1.20m Extremely	lium subangula) n silty SAND. n bgl: medium den weak light brov ne to medium a	Description of Strat yey SAND with fre r to subrounded s	a equent rootlets andstone. ecovered as g	. Gravel is	Legend	GW	
		Chisellin						Groundwater Strikes					
Fro 2.1	om 10	To 2.30	9	Duration (h 00:1	h:mm) 5	Depth Strike	Rose to	Remarks	Cased	Sealed	Drilled:	Lundy	SI
											Logged:	CS	
					1						Checked	l: PG	

Installation:

Diameter: 150mm to 2.30m

APPLIED GEOLOGY

BORE	HOLE	LOG -	CAB	BLE PERCI	JSSION							CP6
Project	Tamw	/orth						Project No.			AG3	185-20
Client	Grour	nd and Pro	ject Co	onsultants				Sheet				1 of 1
Start	22/09/2	2020		Coordinat	es			Scale				1:50
End	22/09/2	2020		Ground L	evel			Total Depth				1.94m
Sample / Test	Depth (m)	Result	Casing Depth	Level Strata Depth (mAoD) (m)			Description of Strata	а		Legend	GW	Install
Type B D S S	(m) - 0.00 - 1.20 - 1.20 - 1.80 - 1.80 - 1.80 	N >50 N >50	(m)	(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Brown grav medium su (TOPSOIL) Light brown fine to coar	bangular to sul n silty SAND. weak light brow se angular gra	ND with frequen ro prounded sandstor in SANDSTONE revel. Ind of Borehole at 1.9-	ootlets. Gravel ne.	ery sandy			
Fro 1.6		To 1.80	3	Duration (hh:mm) 00:15	Depth Strike	Rose to	Remarks	Cased	Sealed	Drilled:	Lundy	SI
	-									Logged:	CS	
										Checker	I. PG	

Installation: 50mm diameter standpipe installed to 1.80m bgl.

Diameter: 150mm to 1.80m

Exploratory hole logs should be read in conjunction with key sheets

APPLIED GEOLOGY

Project	Tamw	orth							Project No.			AG3	185-20
Client	Grour	nd and Pro	ject Co	nsultant	s				Sheet				1 of 1
Start	22/09/2	2020		Coc	ordinate	s			Scale				1:50
End	22/09/2	2020		Gro	ound Le	vel			Total Depth				2.53m
/ Test	Depth (m)	Result	Casing Depth	Level (mAoD)	Strata Depth (thickness)			Description of Strata	а		Legend	GW	Install
Sample			Casing Depth (m)		Strata Deph (thickness) (1.00) 1.00 (1.40) 2.40 (0.13) 2.53 (0.13)	Dark brown subangular (MADE GR	brick, coal frag OUND) brown very cla veak light brow ular gravel.	Description of Strata y SAND. Gravel is gments and sands	a s fine to coarse tone.		Legend	GW	
				· · · · · · · · · · · · · · · · · · ·									
		Chiselling	g	_			_	Groundwater Strikes					
Fro 2.3	m 0	To 2.50		Duration (h 00:1	h:mm) 5	Depth Strike	Rose to	Remarks	Cased	Sealed	Drilled:	_undy	СР
											Logged:	CS	
											Checked	I: PG	

Diameter: 150mm to 2.50m

BOREHOLE LOG - CABLE PERCUSSION

CP7

APPLIED GEOLOGY

BORE	HOLE	LOG -	CAB	LE P	ERCU	ISSION							CP8
Project	Tamw	vorth							Project No.			AG3	185-20
Client	Grour	nd and Pro	ject Co	nsultant	s				Sheet				1 of 1
Start	22/09/2	2020		Coc	ordinate	es			Scale				1:50
End	22/09/2	2020		Gro	ound Le	vel			Total Depth				2.21m
Sample / Test Type	Depth (m)	Result	Casing Depth (m)	Level (mAoD)	Strata Depth (thickness) (m)			Description of Strat	а		Legend	GW	Install
В	- 0.20		(,	-	(0.20) 0.20	Dark brown		th frequent rootlet	S.				
	-			-	0.20	Light brown	n very clayey S	AND.					
	-												
В	 				(1.60)								
D S	1.20 1.20 1.20	N - 26		-		From 1.20m	bgl: medium den	se.					
5	_ 1.20	N = 26		-	1.80								
S	2.00	N >50			(0.41)	Extremely sand. Grav	weak light brov el is fine to coa	vn SANDSTONE r arse angular sands	ecovered as s stone.	ilty gravelly			
S	- 2.20	N >50		-	2.21		E	End of Borehole at 2.2	:1m		+ • • • • •		~~~~~~
	-												
	_ _ 												
	-												
	- -												
	-			-									
	-			-									
	-			-									
	-												
	-												
	-			-									
	-			-									
	-												
	-			-									
	-			-									
	-			-									
	-			-									
	-			-									
	-												
	-												
	-			-									
	-												
	-												
	-												
	-												
											<u> </u>		
Fro		Chisellin To 2.20	g	Duration (h		Depth Strike	Rose to	Groundwater Strikes Remarks	Cased	Sealed	Drilled:	Lundy	SI
2.0	0	2.20		00:1	5						Logged:	CS	
											Checked		

Installation:

Diameter: 150mm to 2.20m

APPLIED GEOLOGY

Exploratory hole logs should be read in conjunction with key sheets

TRIAL PIT	LOG					-	ГР1
Project	Tamworth				Project No.	AG318	35-20
Client	Ground ar	nd Proje	ct Consu	ultants	Sheet		l of 1
Date	16/09/202	0			Scale		1:25
Ground Level				rdinate	s Total Depth	2	.50m
Sample / Test Type (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D - 0.20 ES _ 0.20		-	(0.35)	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)		
-		_	0.35	E	Stiff grey and light brown slightly gravelly sandy CLAY. Gravel is fine to coarse angular to subangular sandstone.		
D - 0.80		-	(0.65)				
		-	1.00	E	Extremely weak light brown SANDSTONE recovered as clayey very sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone. Cobbles are angular sandstone.		
- - B - 1.80 - - - - -			(1.50)				
-		_	2.50	∨н	End of Trial Pit at 2.50m		

Method: JCB 3CX Excavator Groundwater: Groundwater not encountered. Stability: Stable Remarks: Trial pit completed at 2.50m bgl on sandstone bedrock.

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

APPLIED GEOLOGY

TRIA	_ PIT	LOG					-	ΓP2
Project		Tamworth	ı			Project No.	AG318	35-20
Client		Ground a	nd Proje	ct Consı	ultants	Sheet		1 of 1
Date		16/09/202	20			Scale		1:25
Ground	Level			Coo	rdinate	s Total Depth	2	.40m
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
DES	- - 0.20 - 0.20 -		-	(0.40)	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to coarse subangular to subrounded mudstone and sandstone. (TOPSOIL) Light brown and reddish brown slightly gravelly clayey SAND. Gravel is fine to		
D	 0.80			(0.60)	E	coarse subangular to subangular sandstone and mudstone.		
				1.00	E	Extremely weak light brown SANDSTONE recovered as clayey very sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular siltstone and sandstone. Cobbles are angular to subangular		
В	- 1.80 			(1.40)				
				2.40	VH	End of Trial Pit at 2.40m		

Method: JCB 3CX Excavator Groundwater: Groundwater not encountered. Stability: Stable. Remarks: Trial pit completed at 2.40m bgl on sandstone bedrock.

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

Exploratory hole logs should be read in conjunction with key sheets

APPLIED GEOLOGY

TRIAL PI	IT I	LOG					-	TP3
Project		Tamworth	ı			Project No.	AG318	35-20
Client		Ground a	nd Proje	ct Consı	ultants	Sheet		1 of 1
Date		16/09/202	20			Scale		1:25
Ground Lev	el				rdinate	Total Depth	2	.30m
Sample / Test Type (n	pth n)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D - 0.1 ES - 0.1 -	20 20			(0.40)	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL) Light brown clayey very gravelly SAND with rare cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.		
B - 0.8	80			(0.70)				
- - - - - - - - - - - - - - - -	80		- - - - - - - - - - - - -	(1.20)	E	Extremely weak light brown SANDSTONE slightly clayey gravelly sand with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are subangular to rounded sandstone.		
				2.30	VH	End of Trial Pit at 2.30m		

Method: JCB 3CX Excavator Groundwater: Groundwater not encountered. Stability: Stable Remarks: Trial pit completed at 2.30m bgl on sandstone bedrock.

Length:	2.50m			
Width:	0.70m			
Logged:	JW			
Checked: PG				

APPLIED GEOLOGY

TRIA	L PIT	LOG					-	TP4
Project		Tamworth	ı			Project No.	AG318	85-20
Client		Ground a	nd Proje	ct Consı	ultants	Sheet		1 of 1
Date		16/09/202	20			Scale		1:25
Ground	Level			Coo	rdinate	s Total Depth	2.70m	
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D ES	- - 0.20 - 0.20 - - -			(0.35) 0.35	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL) Light brown silty GRAVEL and SAND with rare cobbles. Gravel is fine to coarse angular to subangular siltstone and sandstone. Cobbles are angular sandstone.		
В	- 0.80 - - - - - - - -			(1.45)				
D	- - - - - 2.30 -			1.80 (0.90)	Е	Stiff to very stiff grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse angular to subangular mudstone and siltstone.		
				2.70	VH	End of Trial Pit at 2.70m		

Method: JCB 3CX Excavator Groundwater: Groundwater not encountered. Stability: Stable Remarks: Trial pit completed at 2.70m bgl.

Length:

Logged: JW Checked: PG

Width:

2.50m

0.70m

-

TRIA	PIT	LOG					-	TP5
Project		Tamworth	ı			Project No.	AG318	35-20
Client		Ground a	nd Proje	ct Consu	ultants	Sheet		1 of 1
Date		16/09/202	20			Scale		1:25
Ground Level			Coo	rdinate	s Total Depth	2.30m		
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
DES	- - 0.20 - 0.20 -		-	(0.35) 0.35	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL) Light brown very gravelly very clayey SAND with rare cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.		
В	- - 0.70 - - -		-	(0.85)				· · · · · · · · · · · · · · · · · · ·
	- - - -			1.20 (1.10)	E	Extremely weak light brown SANDSTONE recovered as sandy gravel. Gravel is fine to coarse angular to subangular sandstone and siltstone.		
В	- 2.00 - -			2.30	∨н	End of Trial Pit at 2.30m		

Method: JCB 3CX Excavator Groundwater: Groundwater not encountered. Stability: Stable Remarks: Trial pit completed at 2.30m bgl on sandstone bedrock.

Length:	2.50m			
Width:	0.70m			
Logged:	JW			
Checked: PG				

APPLIED GEOLOGY

TRIA	_ PIT	LOG					-	TP6	
Project		Tamworth	1			Project No.	AG3185-20		
Client		Ground a	nd Proje	ct Consu	ultants	Sheet		1 of 1	
Date		16/09/202	20			Scale		1:25	
Ground	Level			Coo	rdinate	es Total Depth	2	.40m	
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW	
DES	- - 0.20 - 0.20 - -		-	(0.35) 0.35	E	Brown slightly gravelly sandy CLAY with frequent rootlets. Gravel is fine to coarse subangular to subrounded mudstone. (TOPSOIL) Light brown gravelly SAND. Gravel is fine to coarse angular to subangular sandstone and siltstone.			
В	- 0.70 - - - -			(1.05)					
В	- - - - 1.80			1.40	E	Extremely weak light brown SANDSTONE recovered as sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.			
	- - -			(1.00)					
				2.40	VH	End of Trial Pit at 2.40m			

APPLIED GEOLOGY

- - -

TRIAL	PIT	LOG					-	TP7
Project		Tamworth	ı			Project No.	AG318	35-20
Client		Ground a	ind Proje	ct Consı	Iltants	Sheet		1 of 1
Date		16/09/202	20			Scale		1:25
Ground	Level				rdinate	s Total Depth	2	.60n
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D - ES -	- - 0.20 - 0.20		-	(0.35) 0.35	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL) Light brown gravelly very clayey SAND. Gravel is fine to coarse angular to		
B -	 - 0.70 - -			(1.15)	E	subangular sandstone and siltstone.		
-	- - - -		-	1.50		Extremely weak light brown SANDSTONE sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and		
- B - - -	- - - - - 			(1.10) 2.60	E	siltstone. Cobbles are angular sandstone.		
				2.00		End of Trial Pit at 2.60m		
-	-		-					

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

IRIA	L PIT	LOG					-	TP8	
Project		Tamworth	Ì			Project No.	AG318	35-20	
Client		Ground a	nd Proje	ct Consı	ultants	Sheet	1 of		
Date		16/09/202	20			Scale		1:2	
Ground	Level				rdinate	Total Depth		.60n	
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW	
D ES	- - 0.20 - 0.20 -		-	(0.40) 0.40	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to coarse subangular to subrounded mudstone and siltstone. (TOPSOIL)			
В	- 0.70 			(1.10)		subangular sandstone and siltstone.			
В	- - - - - - - - - - - - - -			1.50	E	Extremely weak light brown SANDSTONE recovered as sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.			
				2.60	VH	End of Trial Pit at 2.60m			

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

TRIA	L PIT	LOG					-	ГР9
Project		Tamworth	า			Project No.	AG3185-2	
Client		Ground a	ind Proje	ct Consu	ultants	Sheet		1 of 1
Date		16/09/202	20		Scale	1		
Ground	Level			Coo	rdinate	s Total Depth	2	.70m
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D ES	- - 0.20 - 0.20 - -			(0.35) 0.35	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL) Light brown very clayey very gravelly SAND. Gravel is fine to coarse angular to subangular sandstone and siltstone.		
В	- 0.70 - - -		-	(0.85)				
D	- - - - 1.50			1.20 (0.40)	E	Stiff brown and grey slightly gravelly sandy CLAY. Gravel is fine to coarse angular to subangular sandstone.		
	- - -		-	1.60	E	Extremely weak light brown SANDSTONE recovered as sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular siltstone and sandstone. Cobbles are angular sandstone.		2
В	- 2.00 - - - - - -			(1.10)				
				2.70	VH	End of Trial Pit at 2.70m		

	Length:	2.50m
	Width:	0.70m
	Logged:	JW
	Checked	: PG
PLiED G	EOL	OGY

TRIAL	. PIT I	LOG					Т	P10
Project		Tamworth	ı			Project No.	AG318	35-20
Client		Ground a	nd Proje	ct Consu	ultants	Sheet		1 of 1
Date		17/09/202	20			Scale	1:2	
Ground	Level				rdinate	s Total Depth	2	.30m
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D - ES -	- - 0.20 - 0.20		-	(0.35) 0.35	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)		
- - B -	- - 0.70				E	Brown and grey slightly clayey gravelly SAND. Gravel is fine to coarse angular to subangular sandstone and siltstone.		
	- - 			(0.95)				
	-		-	1.30	E	Extremely weak brown and grey SANDSTONE recovered as sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular siltstone and sandstone. Cobbles are angular sandstone.		
В -	- 1.80 - 			(1.00)				
				2.30	VH	End of Trial Pit at 2.30m		

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

Project		Tamworth	า			Project No.	AG318	85-20	
Client		Ground a	nd Proje	ct Consu	Iltants	Sheet		1 of	
Date		17/09/202	20			Scale	1		
Ground	Level			Coo	rdinate	s Total Depth	2	2.40n	
Sample / Test	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness)	Ease of Dig	Description of Strata	Legend	GW	
Type D	- - 0.20		-	(0.35)	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)			
ES	_ 0.20 _ _		-	0.35	E	Brown and grey slightly sandy clayey GRAVEL with rare cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.		1//.10.1	
В	- - 0.70 -		-	(1.05)					
-			-	(1.03)					
-	-		-	1.40	E	Extremely weak brown and grey SANDSTONE recovered as clayey very gravelly sand. Gravel is fine to coarse angular to subangular sandstone and siltstone.		· · · · · ·	
В	- 1.80 - 		-	(1.00)					
	-		-	2.40	VH	End of Trial Pit at 2.40m		· • • • •	
-									
- - - -									

	Checked:	PG
Remarks: Trial pit completed at 2.40m bgl on sandstone bedrock.	Logged:	JW
Stability: Stable	Width:	0.70m
Groundwater: Groundwater encountered at 1.90m bgl. Groundwater remained at 1.90m bgl after 20 minutes.	Lengui	2.0011
Method. JCB SCA Excavator	Length:	2.50m

TRIA	L PIT	LOG					T	P12
Project	:	Tamworth	า			Project No.	AG318	35-20
Client		Ground and Project Consultants		ultants	Sheet		1 of 1	
Date		17/09/202	20			Scale		1:25
	nd Level Coordinate				rdinate	s Total Depth	2	.40m
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D ES	- - 0.20 - 0.20		-	(0.40)	E	Brown gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded sandstone and mudstone. (TOPSOIL)		
D	 - 0.60 -			(0.70)	E	Stiff grey and light brown slightly gravelly sandy CLAY. Gravel is fine to coarse angular to subangular mudstone and sandstone.		
	- 			1.10				
	-		-		E	Extremely weak grey and brown SANDSTONE recovered as very sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone, siltstone, and mudstone. Cobbles are angular to subangular mudstone and sandstone.		
В	- 1.50 - - -		-	(1.30)				
	- -							
			-	2 40	₩			
				2.40	VH	End of Trial Pit at 2.40m		

Length:	2.50m
Width:	0.70m
Logged:	JW
<u></u>	
Checked	: PG

TRIAL	- PIT	LOG					ТІ	P13
Project		Tamworth	ı			Project No.	AG318	5-20
Client		Ground a	nd Proje	ct Consı	ultants	Sheet	1	of 1
Date		17/09/202	20			Scale		1:25
Ground	Level			Coo	rdinate	s Total Depth	2	.40m
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D ES	- - 0.20 - 0.20 -			(0.40)	E	Brown gravelly clayey SAND with frequent rootlets Gravel is fine to coarse angular to subrounded mudstone and sandstone. (TOPSOIL) Reddish brown to brown slightly clayey gravelly SAND. Gravel is fine to coarse		
D	- 0.70 - - - -			(0.60)	E	angular to subangular mudstone and sandstone. Extremely weak light brown SANDSTONE recovered as clayey sandy gravel with frequent cobbles. Gravel is fine to coarse angular to subangular mudstone, sandstone, siltstone. Cobbles are angular sandstone.		
В	- - 1.50 - - - - - - -			(1.40)				
				2.40	VH	End of Trial Pit at 2.40m		

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

	LOG					11	P14	
Project	Tamworth	1			Project No.	AG318	85-20	
Client	Ground a	nd Proje	ct Consu	ultants	Sheet	1 c		
Date	17/09/202	20			Scale	1:2		
Ground Level				rdinate	s Total Depth	2	.50m	
Sample / Test Type Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW	
D - 0.20 ES _ 0.20		-	(0.40)	E	Brown clayey gravely SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)			
B - 0.50 - - -			0.40	E	Light reddish brown slightly clayey gravelly SAND. Gravel is fine to coarse angular to subangular mudstone and sandstone.			
B - 1.30			(1.20)					
-			1.60	E	Extremely weak light brown SANDSTONE recovered as sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.			
B – 1.90 – –			(0.90)					
		_	2.50	∨н	End of Trial Pit at 2.50m		-	

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

FRIAL PIT	LOG					TI	P15	
Project	Tamwort	h			Project No.	AG318	35-20	
Client	Ground a	and Proje	ct Consu	Iltants	Sheet	1	1 of	
Date	17/09/20	20			Scale	1:		
Ground Level				rdinate	Total Depth		.30n	
Sample / Test Type (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW	
D - 0.20 ES - 0.20		-	(0.35) 0.35	E	Brown slightly gravelly SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and siltstone. (TOPSOIL)			
- - B - 0.60 -			0.00	E	Light reddish brown gravelly very clayey SAND. Gravel is fine to coarse angular to subangular sandstone and mudstone.			
- - - B - 1.30			(1.15)					
-		-	1.50	E	Extremely weak light brown SANDSTONE light brown sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.		2	
B - 2.00 -			(0.80)	VH				
- - -		-						

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

RIAL PIT	LOG					T	P16
roject	Tamwort	h			Project No.	AG318	85-20
lient	Ground a	and Proje	ct Consu	ultants	Sheet		1 of 1
ate	17/09/20	17/09/2020			Scale		1:25
Fround Level				rdinate	es Total Depth	2	2.30m
Sample / Test Type Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
– D – 0.20 ES – 0.20		-	(0.35)	E	Brown clayey gravelly SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)		
- B - 0.60 		-	0.35	E	Light reddish brown slightly clayey gravelly SAND. Gravel is fine to medium angular to subangular sandstone and mudstone.		1. so de la sector de la sector
- - - B - 1.30			(1.25)				
			1.60	E	Extremely weak light brown SANDSTONE recovered as sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.		· · · · · · · · · · · · · · · · · · ·
B - 2.00 -			(0.70)	VH			• • • • • • • •
					End of Trial Pit at 2.30m		

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

TRIAL PIT	LOG					T	P17
Project	Tamworth	า			Project No.	AG318	35-20
Client	Ground a	and Proje	ct Consı	Iltants	Sheet		1 of 1
Date	17/09/2020			Scale		1:25	
Ground Level			Coo	rdinate	s Total Depth	2	.30m
Sample / Test Type Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D - 0.20 ES _ 0.20		-	(0.30)	E	Brown slightly gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)		
			0.30	E	Light reddish brown gravelly very clayey gravelly SAND. Gravel is fine to coarse angular to subangular mudstone and sandstone.		
B - 0.80 			(1.20)				
- - - B - 1.80		-	1.50 (0.80)	E	Extremely weak light brown SANDSTONE recovered as sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular siltstone and sandstone. Cobbles are angular sandstone.		
-		-	2.30	VH	End of Trial Pit at 2.30m		-

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

TRIAL PIT	LOG					TI	P18
Project	Tamwort	h			Project No.	AG318	35-20
Client	Ground a	and Proje	ct Consu	ultants	Sheet	1	1 of 1
Date	17/09/20	20			Scale		1:25
Ground Level				rdinate	s Total Depth	2	.45m
Sample / Test Type (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D - 0.20 ES _ 0.20		-	(0.35)	E	Brown slightly gravelly clayey SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)		
		-	0.35	E	Light reddish brown gravelly very clayey SAND. Gravel is fine to coarse angular to subangular sandstone and siltstone.		
B - 0.70 - - -			(1.15)				
			1.50		Extremely weak light brown SANDSTONE recovered as sandy gravel with		
B - 1.90		-	(0.95)	E	occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.		
-		-	2.45	∨н	End of Trial Pit at 2.45m		-

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

		LOG						P19	
roject		Tamworth				Project No.	AG318		
lient		Ground a		ct Consu	iltants	Sheet		1 of ′	
ate		18/09/202	20			Scale	1:2		
round		1			rdinate	Total Depth		.45n	
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW	
D ES	- - 0.20 - 0.20		-	(0.35)	E	Brown slightly clayey gravelly SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)			
	_		-	0.35	E	Light brown slightly clayey gravelly SAND. Gravel is fine to coarse angular to subangular mudstone and sandstone.			
В	- 0.70 - -		-						
			-	(1.35)				1 e - 1 e - 1 - 1 e - 1 - 1 e - 1 - 1 e - 1 - 1	
	_		-					10 	
В	- - 1.80 -			1.70	E	Extremely weak light brown SANDSTONE recovered as clayey sandy gravel with frequent cobbles. Gravel is fine to coarse angular to subangular siltstone and sandstone. Cobbles are angular sandstone.	· · · · · · · · · · · · · · · · · · ·		
	_			(0.75)				• • • • •	
	- 		-	2.45	VH	End of Trial Pit at 2.45m		-	
	_		-						
	-		-						
	_ 								
			-						
	_								
	_ _ _		-						
	L								

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

	LOG	_			Duple of No.		P20	
roject	Tamworth		at Canal	ltanta	Project No.	AG318		
lient	Ground a		CUCONSU	litants	Sheet		1 of 1	
ate	18/09/20	20	0		Scale	0	1:25	
Sample Depth			Strata	rdinate	s Total Depth	2.50		
/ Test / Type Type	Result	Level (mAoD)	Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW	
D - 0.20 ES _ 0.20		_	(0.35)	E	Brown clayey gravelly SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)			
-		-	0.35	E	Light brown gravelly very clayey SAND. Gravel is fine to coarse angular to subangular sandstone and mudstone.		7 7 7 7 7 7 7 7 7 7	
B – 0.80 –		-	(1.15)					
-		-	1.50		Extremely weak light brown SANDSTONE recovered as sandy gravel with			
B - 1.80		-		E	occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.			
			(1.00)					
_		_	2.50	∨н	End of Trial Pit at 2.50m			

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

TRIAL P	IT L	_OG					TI	P21	
Project		Tamworth				Project No.	AG318	35-20	
Client		Ground a	nd Proje	ct Consı	ultants	Sheet	1	l of ´	
Date		18/09/202	20			Scale	1:2 2.40		
Ground Lev	vel			Coo	rdinate	s Total Depth			
Sample / Test Type (epth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW	
– D – 0	.20		-	(0.40) 0.40	E	Brown clayey gravelly SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL) Light brown gravelly very clayey SAND with rare cobbles. Gravel is fine to			
B - 0 - - - - - - - -	.80			(1.20)	E	coarse angular to subangular mudstone sandstone and siltstone. Cobbles are angular to subangular sandstone.			
- - - - - - - -	.90			1.60 (0.80)	E	Extremely weak light brown SANDSTONE sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.			
				2.40	VH	End of Trial Pit at 2.40m			

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

	_ PIT		_			Ducie of No.		P22	
roject		Tamworth				Project No.	AG318		
lient		Ground a		ct Consi	iltants	Sheet		1 of	
ate		18/09/202	20			Scale	1:2 2.60		
round		1			rdinate	s Total Depth			
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GV	
D ES	- - 0.20 - 0.20		-	(0.35)	E	Brown clayey gravelly SAND with frequent rootlets. Gravel is fine to coarse subangular to subrounded mudstone and sandstone. (TOPSOIL)			
	- -		-	0.35	E	Light brown slightly clayey gravelly SAND. Gravel is fine to coarse angular to subangular mudstone, sandstone and siltstone.		1 4 9 - 1 - 1 9 - 1 - 1 9 - 1 - 1 9 - 1 - 1	
В	- 0.80 - 			(1.55)				e	
		-	(1.55)				· · · · · · · · · · · · · · · · · · ·		
	- - -		-	1.90				1 e	
В	2.00 			E (0.70)	Extremely weak light brown SANDSTONE recovered as sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.				
	_	2.60 VH	End of Trial Pit at 2.60m		•				
	_ _ _		-						
	_ _ _		-						
	_ _ 		-						
	- - -								
	F								

						Project No.	AG318	
ClientGround and Project ConsultantsDate18/09/2020		Ground a	and Proie	ct Consı	iltants	Sheet		1 of
			Scale	1:				
Ground Level Coordinate			Coo	rdinate		2	.70r	
Sample / Test	Depth (m)	Result	Level (mAoD)	Strata Depth	Ease of Dig	Description of Strata	Legend	
Type D	- - 0.20		-	(thickness) (m) (0.35)	E	Brown clayey gravelly SAND with frequent rootlets. Gravel is fine to coarse subangular to subrounded mudstone and sandstone. (TOPSOIL)		
ES	_ 0.20 _		_	0.35	E	Light brown gravelly very clayey SAND. Gravel is fine to coarse angular to subangular mudstone, sandstone and siltstone.		V//// ie - ie
В	- - 0.70 -		-					
				(1.35)				· · · · · · · · · · · · · · · · · · ·
	-		-	1.70		Extremely weak light brown SANDSTONE recovered as sandy gravel with		- - - - - - - - - - - - - - - - - - -
- - B - 2.00 -			(1.00)	E	occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.			
	- - -		- (1.00)					
	-			2.70	VH	End of Trial Pit at 2.70m		<u>-</u>
			-					
	_ _ _							
	_ _ 		-					
			-					

	PIT L	-06					11	P24	
Project		Tamworth				Project No.	AG318	85-20	
Client		Ground ar	nd Proje	ct Consı	Iltants	Sheet		l of ′	
Date		18/09/202	0			Scale	1:		
Ground Le	evel			Coo	rdinate	Total Depth		.50n	
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW	
D -	0.20 0.20		-	(0.40)	E	Brown clayey gravelly SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)			
B -	0.70			(1.30)	E	Light brown slightly clayey gravelly SAND. Gravel is fine to coarse angular to subangular mudstone, sandstone and siltstone.			
				1.70					
- - -	2.00		-	1.70	E	Extremely weak light brown SANDSTONE recovered as very clayey very gravelly sand. Gravel is fine to coarse angular to subangular sandstone and siltstone.			
-			-	(0.80)					
				2.50	E	End of Trial Pit at 2.50m			

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

APPLIED GEOLOGY

TRIAL	_ PIT	LOG					Т	P25	
Project		Tamworth	ı			Project No.	AG318	35-20	
Client		Ground a	nd Proje	ct Consı	ultants	Sheet		1 of 1	
Date		18/09/202	20			Scale	1:2		
Ground	Level			Coo	rdinate	Total Depth		.35m	
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW	
D ES	- - 0.20 - 0.20 -			(0.40)	E	Brown clayey gravelly SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL)			
D ES B	- - 0.70 - 0.70 0.80			(0.90)	E	Light brown slightly gravelly sandy CLAY. Gravel is fine to coarse angular to subangular sandstone, mudstone and siltstone.			
	- - -		-	1.30		Stiff light brown and grav alightly candy alightly gravally CLAV Croyal is find to			
D	- - 1.50 -			(0.40) 1.70	E	Stiff light brown and grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse angular to subangular mudstone and sandstone.			
В	- - 1.90 		-	(0.65)	E	occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.			
	_		-	2.35	VH				
						End of Trial Pit at 2.35m			

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

APPLIED GEOLOGY

TD25

	. PIT	LOG					T	P26
Project		Tamworth	ı			Project No.	AG318	35-20
Client Ground and Project Consultants			ct Consu	ultants	Sheet		1 of ′	
Date		18/09/202	20			Scale		1:25
Ground	Level		Coordinate			s Total Depth	2	.60n
Sample / Test Type	Depth (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D ES	- - 0.20 - 0.20 -		-	(0.40)	E	Brown clayey gravelly SAND with frequent rootlets. Gravel is fine to medium subangular to subrounded mudstone and sandstone. (TOPSOIL) Firm to stiff grey and light brown slightly gravelly sandy CLAY. Gravel is fine to		· · · ·
D ES	- - - 0.70 - 0.70 -			(0.70)	E	coarse angular to subangular mudstone and sandstone.		- <u> </u>
B	- - - - 1.40			1.10	E	Light brown and grey gravelly very clayey SAND. Gravel is fine to coarse angular to subangular mudstone, sandstone and siltstone.		· · · · · · · · · · · · ·
-	 - - -			(0.90)				· · · · · · · · · · · · · · · · · · ·
-			-	2.00	E	Extremely weak light brown-grey SANDSTONE recovered as sandy gravel with occasional cobbles. Gravel is fine to coarse angular to subangular sandstone and siltstone. Cobbles are angular sandstone.		
-	-		-	2.60	VH	End of Trial Pit at 2.60m	•••••	· - -
-	- - - -		-					
-	- - -		-					
-	- - 		-					
-	-							
-	-							

Length:	2.50m
Width:	0.70m
Logged:	JW
Checked	: PG

RIAL P								P27
roject		Tamworth				Project No.	AG318	
Client Ground and Project Consultants			ct Consı	ultants	Sheet		1 of	
Date		21/09/202	20			Scale		1:2
Bround Lev	/el				rdinate	s Total Depth	2	.90r
	epth m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
	.20 .20			(0.40) 0.40	E	Dark grey slightly gravelly very silty SAND with frequent rootlets. Gravel is fine to medium subangular to rounded sandstone and quartzite. (TOPSOIL) Reddish brown and light grey mottled brown gravelly very clayey SAND with occasional cobbles. Gravel is fine to coarse angular sandstone. Cobbles are angular sandstone.		
D _ 1	.00 .00 .00			(1.60)	E	At 0.80m bgl: ceramic land drain encountered in a north pit face at a NE-SW orientation		
B - 2	.30			2.00	E	Extremely weak brown & light grey SANDSTONE recovered as clayey sandy gravel with frequent cobbles. Gravel is angular fine to coarse sandstone. Cobbles are angular sandstone.		
				2.90		End of Trial Pit at 2.90m		

Length:	2.10m				
Width:	0.65m				
Logged:	CS				
Checked: PG					

TRIAL PIT	LOG					TI	P28
Project	Tamworth	ı			Project No.	AG318	85-20
Client	Ground a	nd Proje	ct Consi	ultants	Sheet	1	l of 1
Date	21/09/202	20			Scale		1:25
Ground Level			Coo	rdinate	s Total Depth	2	.30m
Sample / Test Type (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D - 0.20 ES _ 0.20		-	(0.40)	E	Dark brown silty SAND with frequent rootlets. (TOPSOIL) Brown gravelly very silty SAND with rare cobbles. Gravel is fine to coarse		
B - 0.70 D - 0.70 ES _ 0.70 			(1.60)	E	angular sandstone. Cobbles are subangular sandstone.		
- - - - - - - - -					Below 1.50m bgl: occasional cobbles of sandstone.		
			2.00 (0.30) 2.30	M	Extremely weak brown SANDSTONE recovered as sandy gravel with frequent cobbles. Gravel is fine to coarse angular sandstone. Cobbles are angular sandstone. End of Trial Pit at 2.30m		

Length:	2.10m				
Width:	0.65m				
Logged:	CS				
Checked: PG					
L					

APPLIED GEOLOGY

-

TRIAL PI	T LC)G					T	P29
Project	Ta	mworth				Project No.	AG318	35-20
Client	Gr	round ar	nd Proje	ct Consu	Iltants	Sheet		1 of 1
Date	21	/09/202	0			Scale		1:25
Ground Leve	el	Coordinate			rdinate	s Total Depth	2	.40m
Sample / Test Type (n	oth 1)	Result	Level (mAoD)	Strata Depth (thickness)	Ease of Dig	Description of Strata	Legend	GW
D - 0.2 ES _ 0.2	20		-	(0.40) 0.40	E	Dark brown slightly gravelly silty SAND with frequent rootlets. Gravel is fine angular to subangular sandstone. (TOPSOIL)		
B - 0.6 D - 0.6 ES _ 0.6	50		-	0.40		Brown to light brown silty very sandy GRAVEL. Gravel is fine to coarse angular sandstone.		* • • • × • • • • × • • • • × •
				(1.40)	E			· · · · · · · · · · · · · · · · · · ·
- - - - - - -	00			1.80 (0.60)	M	Extremely weak brown SANDSTONE recovered as sandy gravel with frequent cobbles. Gravel is fine to coarse angular sandstone. Cobbles are angular sandstone.		· · ·
				2.40		End of Trial Pit at 2.40m		

	T LOG					11	P30
Project	Tamwo	orth			Project No.	AG318	35-20
Client	Ground	d and Proje	ect Consi	ultants	Sheet	1	l of 1
Date 21/09/2020			Scale		1:25		
Ground Leve	1	Coordinate			s Total Depth	2	.50m
Sample /Test Type (m	th) Resu	lt Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D - 0.2 ES - 0.2	0	-	0.40	E	Dark brown silty SAND with frequent rootlets. (TOPSOIL)		
B - 0.7 D - 0.7 ES 0.7	0	-			Brown gravelly silty SAND with occasional cobbles. Gravel is fine to coarse angular sandstone. Cobbles are angular sandstone.		
		-	(1.70)	E			
B - 1.6 - - -	0	-	-				
		-	2.10 (0.40)	м VH	Extremely weak brown SANDSTONE recovered as sandy gravel with frequent cobbles. Gravel is fine to coarse angular sanstone. Cobbles are angular sandstone.		
					End of Trial Pit at 2.50m		

Length:	2.10m
Width:	0.65m
Logged:	CS
Checked	: PG
	-

TRIAL PIT	LOG					T	P31
Project	Tamworth	ı			Project No.	AG318	35-20
Client	Ground a	nd Proje	ct Consu	ultants	Sheet		1 of 1
Date	21/09/202	20			Scale		1:25
Ground Level			Coo	rdinate	s Total Depth	2	.25m
Sample / Test Type (m)	Result	Level (mAoD)	Strata Depth (thickness) (m)	Ease of Dig	Description of Strata	Legend	GW
D - 0.30 ES _ 0.30		-	(0.40) 0.40	E	Dark brown silty SAND with frequent rootlets. (TOPSOIL) Light brown to brown silty gravelly SAND. Gravel is fine to coarse angular		
B - 0.70 D - 0.70 ES 0.70				Е	sandstone.		
- - - - - - - - - - - - - - - - - - -			(1.50)				x - - - - - - - - - - - - - - - - - - -
B - 2.20			1.90 (0.35) 2.25	M VH	Extremely weak brown SANDSTONE recovered as sandy gravel with frequent cobbles. Gravel is fine to coarse angular to subangular sandstone. Cobbles are angular sandstone.		× - - - -
					End of Trial Pit at 2.25m		

Length:	2.10m				
Width:	0.65m				
Logged:	CS				
Checked: PG					

Applied Geology Ltd

Г

Unit 23 Abbey Park Stareton Kenilworth Warwickshire CV8 2LY For the attention of Carl Sellers

 Report No:
 B24927

 Issue No
 01

LABORATORY TEST REPORT

Project Nam	ie	TAMWORTH									
, Project Num		B24927		Date samples received		05/10/2020					
Your Ref				Date written instructions receiv	ved	05/10/2020					
Purchase O	rder	16041		Date testing commenced		05/10/2020					
		Please find	enclosed the res	sults as summarised belo	ow						
Figure / Table	Test Quantity		I	Description		ISO 17025 Accredited					
1	1 29 Client Specified Suite - Soil App S1 ~ Sample Descriptions - Soil App S2 ~ Deviating Samples - Soil App S3 ~ Summary of In-House Analytical Test Methods - Soil										
	~					N/A					
	~	•		Mathada Cail		N/A N/A					
Remarks :											
Issued by : Stephen Langman Date of Issue : 19/10/2020 Approved Signatories : 19/10/2020 S/C : Testing was sub											
S Langman (Laboratory Coordinator), D Bowen (Production Manager) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date. The results reported relate to samples received in the laboratory only. All results contained in this report are provisional unless signed by an approved signatory This report should not be reproduced except in full without the written approval of the laboratory. Under multisite accreditation the testing contained in this report may have been performed at another Terra Tek laboratory. The enclosed results remain the property of Terra Tek Limited and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation. Feedback on the this report may be left via our website www.terratek.co.uk/contact-us											

Moor Lane, Witton, Birmingham, B6 7HG Tel: +44 (0)121 344 4838 birmingham@terratek.co.uk

www.terratek.co.uk Terra Tek Ltd is registered in Scotland No. 121594 Offices in Airdrie, Birmingham, Belfast and Aston Clinton

1140 - BRE	TERR	RA TI		ite		TAMW	ORTH										Contract N	• B2	4927	
E Sui	SITE INVE	STIGATION AND LABORATOR	RY SERVICES C	lient																
ie Soi			E	ngineer																
- B2	S	ample Identific	cation			S														
Suite Soil - B24927 01.xls	Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Sulphate (acid soluble as SO4)	Sulphate (soluble in 2:1 water extract) as SO4	Hd	c Total Sulphur											
-	TP1	0.80		т	747358	% 0.02	g/l 0.04	7.0	% 0.01											
						0.02			0.01											
	TP4	2.30		Т	747359	0.02	0.02	8.2	<0.01											
	TP9	1.50		т	747360	0.02	0.02	7.5	<0.01											
	TP12	0.60		т	747361	0.02	0.04	7.5	<0.01											
	TP25	1.50		т	747362	0.03	0.04	5.6	0.01											
	TP26	0.70		т	747363	0.03	0.05	7.1	0.01											
	TP1	1.80		В	747364	0.02	0.03	6.9	<0.01											
Lat	TP3	0.80		В	747365	0.02	0.02	6.9	<0.01											
) Projec	TP5	0.70-1.00		В	747367	0.02	0.01	6.7	<0.01											
t No B2	TP7	0.70-1.20		В	747368	0.02	0.02	6.7	<0.01											
Lab Project No B24927 : 19/10/2020 12:06:13	Acc	reditation M=Mc	0.01 TP169 M	~ TP019 M	0.01 TP129 M															
'10/2020 1	Originator	Checked Approve								BRE	E SD1	SUL	ГЕ - S	SOIL			T	(Figure	91
2:06:13	DAB	5. Largree 19/10/202	0									_						5	Sheet 1	of 3

Version 011 - 26/07/2012

1140 - BRE	TERR		EK_	ite		TAMW	ORTH										Cor	ntract No	B2	24927
Suite	SITE INVES	STIGATION AND LABORATO	RY SERVICES C	lient																
e Soil			E	ngineer																
- B24	Si	ample Identifi	cation			as														
Suite Soil - B24927 01.xls	Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Sulphate (acid soluble as SO4)	Sulphate (soluble in 2:1 water extract) as SO4	Hď	Total Sulphur											
-						%	g/l		%											
	TP9	0.70-1.00		В	747369	0.02	0.02	7.0	<0.01											
	TP11	0.70-1.00		В	747370	0.02	0.02	7.0	<0.01											
	TP13	1.50-2.00		В	747371	0.03	0.04	7.2	<0.01											
	TP15	0.60-0.80		В	747372	0.02	0.01	7.1	<0.01											
	TP17	0.80-1.20		В	747373	0.01	<0.01	6.8	<0.01											
	TP19	1.80-2.20		В	747374	0.02	0.04	7.1	<0.01											
	TP21	0.80-1.20		В	747375	0.02	<0.01	7.0	<0.01											
Lat	TP23	0.70-1.10		В	747376	0.02	<0.01	6.9	<0.01											
o Project	TP25	0.80-1.00		В	747377	0.04	0.05	5.7	0.02											
t No B24	TP27	1.00		В	747378		0.03	6.8	0.01											
1927 : 19	Acci	reditation M=Mc	f Detection sis Method	TP171	0.01 TP169 M	~ TP019 M	0.01 TP129 M													
Lab Project No B24927 : 19/10/2020 12:06:14	Originator	Checked Approve								BRE	E SD1	SUI	ГЕ - S	SOIL				T il	,	Figure 1
2:06:14	DAB	5. Langres 19/10/202	m 20							_ • •			_ •							Sheet 2 of 3

Version 011 - 26/07/2012

1140 - BRE Suit		RA TI ESTIGATION AND LABORATOR	EK ^S	ite lient		TAMW	ORTH							Cor	ntract No	B24927	,
e Soi			E	ngineer													
- B24	S	ample Identifi	cation			S											
Suite Soil - B24927 01.xls	Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	sulphate (acid soluble as SO4)	Sulphate (soluble in 2:1 water extract) as SO4	Hď	e Total Sulphur								
╞	TP29	0.60		В	747379	% 0.02	g/l <0.01	6.9	% <0.01								
	TP31	1.80		В	747380	0.02	0.01	7.0	<0.01								
	TP18	0.70-1.00		В	747381	0.02	0.01	6.9	<0.01								
	TP24	2.00-2.30		В	747382	0.02	<0.01	7.2	<0.01								
	TP11	1.80		В	747383	0.02	0.03	6.7	<0.01								
	TP4	0.80-1.30		В	747384	0.02	0.01	7.0	<0.01								
	TP20	1.20		В	747385	0.02	0.01	7.0	<0.01								
	TP2	1.80		в	747386	0.02	0.03	6.9	<0.01								
_ab Pro																	
oject No B24	TP28			В	747387	0.02	<0.01	7.0	<0.01								
4927 : 19	Aco	creditation M=Mc	Terr certs U=UK	a Tek Analy	of Detection sis Method	TP171	0.01 TP169 M	~ ТР019 М	0.01 TP129 M								
Lab Project No B24927 : 19/10/2020 12:06:15	Originator	Checked Approve	d							BRE SD1 SUITE - SOIL					T ik	Figur	e 1
06:15	DAB	5. Languer 19/10/202	20													Sheet 3	of 3

Version 011 - 26/07/2012

Image: 1 - Lawr UK Hr Image: 1 - Lawr UK Hr Control Control Exploration (Loop Control Sample (Leff) Image: 1 - Lawr UK Hr Image: 1 - Lawr Image: 1 - Lawr UK Hr	TEDE	2A TI	EV ^s	ite	TAMWC	RTH				Contract No	B2492	7
Exploratory HendrickDeepth mSample RefSample TypeSample Sample DDate DO Sample DDate DO Sample DDate Sample DDisDisDisDisDisTP120.601.60T777 T74736 T16092014.0C	I E R I		RY SERVICES C							-		
Exploratory HoleDeepti mSample RefSample SuppleSample SuppleSample SuppleSample SuppleSupple<		Sample Identifi	cation									
TP25 1.50 T 747362 18/09/20 14.0 CLAY Fine gravel 7.7 2.8 TP26 0.70 T 747363 18/09/20 14.0 CLAY Fine gravel 12.9 25 TP1 1.80 B 747364 16/09/20 14.0 Sandy CLAY Fine to medium gravel 11 16.4 TP3 0.80 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 1.6.4 TP3 0.80 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 17.8 TP5 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 17.8 TP7 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP11 0.70-1.00 B 747361 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP11 0.70-1.00 B 747371 <t< th=""><th></th><th></th><th></th><th></th><th>Sample</th><th></th><th></th><th>PRIMARY MATRIX</th><th>Secondary Matrix</th><th>Additional matrix</th><th>% Loss at 30C</th><th>% Retained 2mm</th></t<>					Sample			PRIMARY MATRIX	Secondary Matrix	Additional matrix	% Loss at 30C	% Retained 2mm
TP26 0.70 T 747363 18/09/20 14.0 CLAY Fine gravel 12.9 25 TP1 1.80 B 747363 16/09/20 14.0 Sandy CLAY Fine to medium gravel 11.0 16.0 TP3 0.80 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 10.4 18.5 TP5 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 10.4 18.5 TP5 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 10.5 10.5 TP5 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 12.5 TP10 0.70-1.00 B 747370 17/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP13 1.50-2.00 B 747371 17/09/20 14.0 <td>TP12</td> <td>0.60</td> <td></td> <td>т</td> <td>747361</td> <td>17/09/20</td> <td>14.0</td> <td>Sandy CLAY</td> <td>Fine gravel</td> <td></td> <td>10.1</td> <td>16.3</td>	TP12	0.60		т	747361	17/09/20	14.0	Sandy CLAY	Fine gravel		10.1	16.3
TP1 1.80 B 747364 16/09/20 14.0 Sandy CLAY Fine to medium gravel 11 16.4 TP3 0.80 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 10.4 18.5 TP5 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 17.8 TP7 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 17.8 TP7 0.70-1.20 B 747369 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 10.5 10.6 TP9 0.70-1.00 B 747369 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP11 0.70-1.00 B 747370 17/09/20 14.0 Clayey SAND Fine to medium gravel 7.8 32 TP13 1.50-2.00 B 747371 17/09/20 14.0	TP25	1.50		т	747362	18/09/20	14.0	CLAY	Fine gravel		7.7	22.8
TP3 0.80 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 10.4 18.5 TP5 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 17.8 TP5 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 17.8 TP7 0.70-1.20 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 10.5 10.6 TP9 0.70-1.00 B 747365 16/09/20 14.0 Clayey SAND Fine to medium gravel 8.9 12.1 TP11 0.70-1.00 B 747367 17/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP13 1.50-2.00 B 747371 17/09/20 14.0 Clayey SAND Fine to medium gravel 7.8 32 TP15 0.60-0.80 B 747373 17/09/20 14.0 Clayey SAND Fine to medium gravel 10.3 10.3 TP17<	TP26	0.70		т	747363	18/09/20	14.0	CLAY	Fine gravel		12.9	25
TP5 0.70-1.00 B 747367 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.1 17.8 TP7 0.70-1.20 B 747368 16/09/20 14.0 Clayey SAND Fine to medium gravel 10.5 10.6 TP9 0.70-1.00 B 747369 16/09/20 14.0 Clayey SAND Fine to medium gravel 8.9 12.1 TP11 0.70-1.00 B 747369 16/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP11 0.70-1.00 B 747369 17/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP13 1.50-2.00 B 747371 17/09/20 14.0 Clayey SAND Fine to medium gravel 7.8 32 TP15 0.60-0.80 B 747372 17/09/20 14.0 Sandy CLAY Fine to medium gravel 11.5 16.6 TP17 0.80-1.20 B 747373 17/09/20 14.0 Clayey SAND Fine to medium gravel 10.3 10.1 TP19 <t< td=""><td>TP1</td><td>1.80</td><td></td><td>В</td><td>747364</td><td>16/09/20</td><td>14.0</td><td>Sandy CLAY</td><td>Fine to medium gravel</td><td></td><td>11</td><td>16.4</td></t<>	TP1	1.80		В	747364	16/09/20	14.0	Sandy CLAY	Fine to medium gravel		11	16.4
TP7 0.70-1.20 B 747368 16/09/20 14.0 Clayey SAND Fine to medium gravel 10.5 10.6 TP9 0.70-1.00 B 747369 16/09/20 14.0 Clayey SAND Fine to medium gravel 8.9 12.1 TP9 0.70-1.00 B 747369 16/09/20 14.0 Clayey SAND Fine to medium gravel 8.9 12.1 TP11 0.70-1.00 B 747370 17/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP13 1.50-2.00 B 747371 17/09/20 14.0 Clayey SAND Fine to medium gravel 7.8 32 TP15 0.60-0.80 B 747372 17/09/20 14.0 Sandy CLAY Fine to medium gravel 11.5 16.6 TP17 0.80-1.20 B 747373 17/09/20 14.0 Clayey SAND Fine to medium gravel 10.3 10.1 TP19 1.80-2.20 B 747373 17/09/20 14.0 CLAY Fine gravel 14.9 13.5 TP21 0.80-1.20	TP3	0.80		В	747365	16/09/20	14.0	Clayey SAND	Fine to medium gravel		10.4	18.5
TP9 0.70-1.00 B 747369 16/09/20 14.0 Clayey SAND Fine to medium gravel 8.9 12.1 TP11 0.70-1.00 B 747370 17/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP13 1.50-2.00 B 747371 17/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP13 1.50-2.00 B 747371 17/09/20 14.0 Clayey SAND Fine to medium gravel 7.8 32 TP15 0.60-0.80 B 747372 17/09/20 14.0 Sandy CLAY Fine to medium gravel 11.5 16.6 TP17 0.80-1.20 B 747373 17/09/20 14.0 Clayey SAND Fine to medium gravel 10.3 10.1 TP19 1.80-2.20 B 747373 17/09/20 14.0 CLAY Fine gravel 14.9 13.5 TP21 0.80-1.20 B 747375 18/09/20 14.0 Clayey SAND Fine to medium gravel 8.3 14.3	TP5	0.70-1.00		В	747367	16/09/20	14.0	Clayey SAND	Fine to medium gravel		9.1	17.8
TP11 0.70-1.00 B 747370 17/09/20 14.0 Clayey SAND Fine to medium gravel 9.4 18.2 TP13 1.50-2.00 B 747371 17/09/20 14.0 Clayey SAND Fine to medium gravel 7.8 32 TP13 1.50-2.00 B 747372 17/09/20 14.0 Clayey SAND Fine to medium gravel 7.8 32 TP15 0.60-0.80 B 747372 17/09/20 14.0 Sandy CLAY Fine to medium gravel 11.5 16.6 TP17 0.80-1.20 B 747373 17/09/20 14.0 Clayey SAND Fine to medium gravel 10.3 10.1 TP19 1.80-2.20 B 747373 17/09/20 14.0 CLAY Fine gravel 14.9 13.5 TP21 0.80-1.20 B 747375 18/09/20 14.0 Clayey SAND Fine to medium gravel 8.3 14.3	TP7	0.70-1.20		В	747368	16/09/20	14.0	Clayey SAND	Fine to medium gravel		10.5	10.6
TP13 1.50-2.00 B 747371 17/09/20 14.0 Clayey SAND Fine to medium gravel 7.8 32 TP15 0.60-0.80 B 747372 17/09/20 14.0 Sandy CLAY Fine to medium gravel 11.5 16.6 TP17 0.80-1.20 B 747373 17/09/20 14.0 Clayey SAND Fine to medium gravel 10.3 10.1 TP17 0.80-1.20 B 747373 17/09/20 14.0 Clayey SAND Fine to medium gravel 10.3 10.1 TP19 1.80-2.20 B 747374 18/09/20 14.0 CLAY Fine gravel 14.9 13.5 TP21 0.80-1.20 B 747375 18/09/20 14.0 Clayey SAND Fine to medium gravel 8.3 14.3	TP9	0.70-1.00		в	747369	16/09/20	14.0	Clayey SAND	Fine to medium gravel		8.9	12.1
TP15 0.60-0.80 B 747372 17/09/20 14.0 Sandy CLAY Fine to medium gravel 11.5 16.6 TP17 0.80-1.20 B 747373 17/09/20 14.0 Clayey SAND Fine to medium gravel 10.3 10.1 TP19 1.80-2.20 B 747374 18/09/20 14.0 CLAY Fine gravel 14.9 13.5 TP21 0.80-1.20 B 747375 18/09/20 14.0 Clayey SAND Fine to medium gravel 14.9 13.5	TP11	0.70-1.00		В	747370	17/09/20	14.0	Clayey SAND	Fine to medium gravel		9.4	18.2
TP17 0.80-1.20 B 747373 17/09/20 14.0 Clayey SAND Fine to medium gravel 10.3 10.1 TP19 1.80-2.20 B 747374 18/09/20 14.0 CLAY Fine gravel 14.9 13.5 TP21 0.80-1.20 B 747375 18/09/20 14.0 Clayey SAND Fine to medium gravel 14.9 13.5	TP13	1.50-2.00		В	747371	17/09/20	14.0	Clayey SAND	Fine to medium gravel		7.8	32
TP19 1.80-2.20 B 747374 18/09/20 14.0 CLAY Fine gravel 14.9 13.5 TP21 0.80-1.20 B 747375 18/09/20 14.0 Clayey SAND Fine to medium gravel 14.9 13.5	TP15	0.60-0.80		В	747372	17/09/20	14.0	Sandy CLAY	Fine to medium gravel		11.5	16.6
TP21 0.80-1.20 B 747375 18/09/20 14.0 Clayey SAND Fine to medium gravel 8.3 14.3	TP17	0.80-1.20		В	747373	17/09/20	14.0	Clayey SAND	Fine to medium gravel		10.3	10.1
	TP19	1.80-2.20		В	747374	18/09/20	14.0	CLAY	Fine gravel		14.9	13.5
TP23 0.70-1.10 B 747376 18/09/20 14.0 Clayey SAND Fine to medium gravel 8.2 15.8	TP21	0.80-1.20		В	747375	18/09/20	14.0	Clayey SAND	Fine to medium gravel		8.3	14.3
	TP23	0.70-1.10		В	747376	18/09/20	14.0	Clayey SAND	Fine to medium gravel		8.2	15.8

Notes

Terra Tek are accredited for clay, sand and loam matrix types only, where they constitute the major component of the sample. Other coarse granular materials such as gravel, are not accredited where they comprise the major component of the sample.

Results are expressed on a dry-weight basis (samples dried at <30°C) except where stated.

The laboratory removes any material > 2mm prior to analysis. The quantity and nature of the material is shown as the secondary and additional matrix types in the above table.

Where a parameter cannot be determined in house it is our policy to use a UKAS/MCERTS accredited laboratory wherever possible. Terra Tek will assume responsibility for the quality of subcontracted tests and the performance of the subcontractor chosen. Where there is no known UKAS/MCERTS laboratory for a particular parameter, a laboratory listed within the Terra Tek Approved Subcontractors List, which is subject to performance assessment, will be selected.

Originator Checked & Approved DAB 5. January 19/10/2020

SAMPLE DESCRIPTIONS

ž	8050 - Descriptions - B24927 01.xls
---	-------------------------------------

TEDE) A TI		te	TAMWC	RTH				Contract No	B2492	7
I I I I I I I I I I SITE INV	ESTIGATION AND LABORATO	C	lient ngineer						_		
	Sample Identifi	cation									
Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Date Sampled	Temperature on receipt °C	PRIMARY MATRIX	Secondary Matrix	Additional matrix	% Loss at 30C	% Retained 2mm
TP25	0.80-1.00		В	747377	18/09/20	14.0	Clayey SAND	Fine to medium gravel		9.3	32
TP27	1.00		В	747378	21/09/20	14.0	Sandy CLAY	Fine to medium gravel		10	24.8
TP29	0.60		В	747379	21/09/20	14.0	Clayey SAND	Fine to medium gravel		8	16.7
TP31	1.80		В	747380	21/09/20	14.0	Clayey SAND	Fine to medium gravel		8.9	19.2
TP18	0.70-1.00		В	747381	17/09/20	14.0	Clayey SAND	Fine to medium gravel		8.5	18.9
TP24	2.00-2.30		в	747382	18/09/20	14.0	Sandy CLAY	Fine to medium gravel		10.6	18.9
TP11	1.80		в	747383	17/09/20	14.0	CLAY	Fine to medium gravel		13.7	14.8
TP4	0.80-1.30		В	747384	16/09/20	14.0	Sandy CLAY	Fine to medium gravel		13.3	20.5
TP20	1.20		В	747385	18/09/20	14.0	Clayey SAND	Fine to medium gravel		11.8	16.9
TP2	1.80		В	747386	16/09/20	14.0	Clayey SAND	Fine to medium gravel		9.2	27.4
TP28			В	747387	21/09/20	14.0	Clayey SAND	Fine to medium gravel		8.3	7.8
TP1	0.80		т	747358	16/09/20	14.0	SANDSTONE			8.1	~
TP4	2.30		т	747359	16/09/20	14.0	CLAY	Fine gravel		12.8	29.2
TP9	1.50		т	747360	16/09/20	14.0	Sandy CLAY	Fine to medium gravel		9.4	5.7
								e they constitute the me e they comprise the me			

The laboratory removes any material > 2mm prior to analysis. The quantity and nature of the material is shown as the secondary and additional matrix types in the above table.

Where a parameter cannot be determined in house it is our policy to use a UKAS/MCERTS accredited laboratory wherever possible. Terra Tek will assume responsibility for the quality of subcontracted tests and the performance of the subcontractor chosen. Where there is no known UKAS/MCERTS laboratory for a particular parameter, a laboratory listed within the Terra Tek Approved Subcontractors List, which is subject to performance assessment, will be selected.

Checked & Originator Approved S. Langre 19/10/2020

DAB

SAMPLE DESCRIPTIONS

27 01.xls	TERR	RA TI	EK ^{si}	ite	TAMWO	RTH					c	Contract No	B24927	,
ID - B249		ESTIGATION AND LABORATO	RY SERVICES C	lient										
s - SOL	S	Sample Identifi		ngineer				Devia	ting con	ditions				
8051 - Deviating samples - SOLID - B24927 01.xls	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Date Sampled	Sampling date has not been provided	Exceeded maximium holding time for selected test(s)	Presence of headspace in a sample vial	Poorly fitting cap or lid	Damaged container			Preservatives used
	TP1	0.80		т	747358	16/09/20								
	TP4	2.30		т	747359	16/09/20								
	TP9	1.50		т	747360	16/09/20								
	TP12	0.60		т	747361	17/09/20								
	TP25	1.50		т	747362	18/09/20								
	TP26	0.70		т	747363	18/09/20								
	TP1	1.80		В	747364	16/09/20								
	TP3	0.80		В	747365	16/09/20								
	TP5	0.70-1.00		В	747367	16/09/20								
	TP7	0.70-1.20		В	747368	16/09/20								
	TP9	0.70-1.00		В	747369	16/09/20								
	TP11	0.70-1.00		В	747370	17/09/20								
	TP13	1.50-2.00		В	747371	17/09/20								
	TP15	0.60-0.80		В	747372	17/09/20								
:06:21	TP17	0.80-1.20		В	747373	17/09/20						IIVII "54 " 1	- 4-b' -	
Lab Project No B24927 : 19/10/2020 12:06:21	NOTES	 The absen Deviations 	ce of "X" of due to use	r "Yes" in th of incorrec	e table abo	eviating may be co ve indicates no re ntainer are showr ables.	ported de	eviations.		s are sho	wn as	"X" or "Yes" in t	ne table above	<u>.</u>
roject No E	Originator	Checked Approve			DEVI	ATING SA	MPL	ES - S	SOIL			T	Appendi	ix S2
Lab P	DAB	5. Langue 19/10/202	20										Sheet 1	of 2

Version 017 - 22/01/2015

27 01.xls	TERF	RA TI	EK ^{si}	te	TAMWC	RTH					C	ontract No	B24927	,
D - B249:		ESTIGATION AND LABORATO		lient										
- SOLI		Comple Identifi		ngineer				Deviet		ditiono				
amples		Sample Identifi	cation				u		ting con	aitions		_		
8051 - Deviating samples - SOLID - B24927 01.xls	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Date Sampled	Sampling date has not been provided	Exceeded maximium holding time for selected test(s)	Presence of headspace in sample vial	Poorly fitting cap or lid	Damaged container			Preservatives used
	TP19	1.80-2.20		В	747374	18/09/20								
	TP21	0.80-1.20		В	747375	18/09/20								
	TP23	0.70-1.10		В	747376	18/09/20								
	TP25	0.80-1.00		В	747377	18/09/20								
	TP27	1.00		В	747378	21/09/20								
	TP29	0.60		В	747379	21/09/20								
	TP31	1.80		В	747380	21/09/20								
	TP18	0.70-1.00		В	747381	17/09/20								
	TP24	2.00-2.30		В	747382	18/09/20								
	TP11	1.80		В	747383	17/09/20								
	TP4	0.80-1.30		В	747384	16/09/20								
	TP20	1.20		В	747385	18/09/20								
	TP2	1.80		В	747386	16/09/20								
	TP28			В	747387	21/09/20								
6:22														
Lab Project No B24927 : 19/10/2020 12:06:22	NOTES	 The abser Deviations 	ice of "X" of due to use	"Yes" in th of incorrec	ne table abo	eviating may be co ve indicates no re intainer are showr ables.	ported de	viations.	ition type	s are sho	wn as "	X" or "Yes" in t	the table above	3.
oject No B	Originator	Checked Approve			DEV	ATING SA	MPI	ES - 9	SOIL			T _L	Appendi	ix S2
Lab Pr	DAB	5. Lorga 19/10/202	m 20										Sheet 2	of 2

Version 017 - 22/01/2015

B24927 01.xls	TEDE	RA TEK	Site TAMWO	DRTH	Contract N	• B249	27
B2492		ESTIGATION AND LABORATORY SERVICE					
s Soil -			Engineer				
8100 - Test Methods	Method Code	Re	eference	Description of Method	ISO17025 Accredited	MCERTS Accredited	Wet/Dry Sample Tested
8100 - 7	GP001	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Preparation of soil samples for chemical analysis	Yes	Yes	N/A
	GP012	BS EN 12457-3: Char Compliance test for lear materials and sludges	aching of granular waste	Preparation of soil samples for two-stage leachate test			Dry
	TP019	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of pH in 2.5:1 water/soil extract using pH meter.	Yes	Yes	Dry
	TP032	MAFF Book 427: The Materials: Method 8	Analysis of Agricultural	Determination of water soluble boron by ICP-OES	Yes		Dry
	TP040	APHA/AWWA, 19th e	dition: Method 3500Cr-D	Determination of hexavalent chromium by colorimetry.	Yes		Dry
	TP041	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of organic matter by titrimetry.	Yes		Dry
	TP042	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of loss on ignition at 50-440°C by gravimetry	Yes	Yes	Dry
	TP045	GACHAMJA A.M. Chr 1992 9-11 (modified)	omatography and Analysis:	Determination of polyaromatic hydrocarbons extractable in dichloromethane, by GC/MS	Yes	Yes	Dry
	TP046	MEWAM method: Phe 4-aminoantipyrine met		Determination of monohydric phenols by steam distillation/colorimetry	Yes	Yes	Dry
	TP047	MEWAM method: Cya	nide in Waters etc	Determination of free cyanide by steam distillation/colorimetry	Yes		Dry
	TP048	MEWAM method: Cya	nide in Waters etc	Determination of total cyanide by steam distillation/colorimetry.	Yes	Yes	Dry
	TP049	MEWAM method: Cya	nide in Waters etc	Determination of complex cyanide by calculation	Yes		Dry
	TP050	MEWAM method: Det ,1985	ermination of Thiocyanate	Determination of thiocyanate by colorimetry	Yes	Yes	Dry
	TP051	USEPA Method 9030	3	Determination of acid soluble sulphides by steam distillation/colorimetry.	Yes	Yes	Wet
	TP067	TNRCC Method 1005	2001 (modified)	Determination of pentane/acetone extractable petroleum hydrocarbons (C8 - C40) by GC/FID	Yes	Yes	Wet
	TP072	In-house documented	method	Determination of ammoniacal nitrogen by colorimetry			Dry
	TP074	In-house documented	method	Determination of water soluble fluoride by ion selective electrode			Dry
	TP098	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of acid soluble chloride by titrimetry			Dry
	TP099	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of water soluble chloride by titrimetry	Yes	Yes	Dry
J6:24	TP100	Wisconsin DNR Modif for Determining Gasol	ied GRO method, Method ine Range Organics	Determination of Volatile Petroleum Hydrocarbons/GRO.	Yes	Yes	Wet
: 19/10/2020 12:06:24	ma 2. 3.	aterials, ie gravel, are not a Results are expressed on	a dry-weight basis (samples drie	sand & loam matrix types only, where they constitute the major comp the major component of the sample. d at <30°C) except where stated. sis. The quantity and nature of any material removed from samples is			-
B24927:19	4. 5. the	The laboratory records the Where a parameter canno e quality of subcontracted	t be determined in house it is out tests and the performance of the	eter. This information is available on request. In policy to use a UKAS/MCERTS accredited laboratory wherever pose subcontractor chosen. Where there is no known UKAS/MCERTS lab ch is subject to performance assessment, will be selected.			
Project No E	Originator	Checked & Approved	SUMMARY OF II	N-HOUSE ANALYTICAL TEST METHOD	s T	Арре	endix S3
Lab Pr	N/A	N/A		(SOIL)		She	et 1 of 2

Version 026 - 21/05/2009 0 - Test Methods Soil - B24927 01 xls

Moor Lane, Witton, Birmingham, B6 7HG Lab Project No B24977 • 19/1//2020 120-022

			Site TAMWO)RTH	Contract N	• B249)27
	ſERŔ	RA TEK					
	I III III III SITE INVE	STIGATION AND LABORATORY SERVI	^{CES} Client				
20 cp			Engineer				
	Method Code	Re	eference	Description of Method	ISO17025 Accredited	MCERTS Accredited	Wet/Dry Sample Tested
0000	TP110	USEPA Methods 8082	2A & 3665A	Determination of Total & Speciated 7 PCB Congeners by GC/MS SIM	Yes	Yes	Wet
	TP114	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of carbonate in soil (rapid titration method)			Dry
	TP126	TNRCC Method 1006	(modified)	Extracted petroleum hydrocarbons from TP067 split into aromatic and aliphatic fractions. Analysed by GC/FID.	Yes		Wet
	TP129	In-house documented	method	Determination of total sulphur by ICP-OES spectroscopy	Yes	Yes	Dry
	TP134	In-house documented	method	Determination of water soluble chloride by titrimetry	Yes	Yes	Dry
	TP135	USEPA Methods 8100 In-house method TP0-		Determination of polyaromatic hydrocarbons extractable in dichloromethane, by GC/MS (with concentration stage)			Dry
	TP136	In-house documented	method	Determination of water soluble magnesium in soil			Dry
	TP137	BS7755: Section 3.9:	1995/ISO 11466:1995	Determination of acid extractable metals in soil by ICP- OES	Selected	Selected	Dry
	TP145	USEPA Methods 3550	DC & 8270D	Determination of Semi-Volatile Organic Compounds by GC/MS	Yes	Selected	Wet
	TP147	USEPA Methods 8082	2A & 3665A	Determination of total & speciated WHO 12 PCB Congeners by GC/MS SIM.			Wet
	TP150	USEPA Methods 8081	IB & 8141B	Determination of pesticides and herbicides in soil by GC/MS SIM			Dry
	TP152	USEPA Method 556		Determination of carbonyls by GC/MS.			Wet
	TP154	USEPA Method 5021. GRO method	Wisconsin DNR modified	Determination of volatiles in by GC/MS headspace	Yes	Selected	Wet
	TP158	USEPA Method 1671		Determination of glycols by GC/FID DI			Wet
	TP169	In-house documented	method	Determination of water soluble sulphate in 2:1 water/soil extract by ICP-OES spectroscopy	Yes	Yes	Dry
	TP171	In-house documented	method	Determination of acid soluble sulphate by ICP-OES spectroscopy	Yes	Yes	Dry
	TP174	In-house documented	method	Determination of Total Organic Carbon in soils by high temperature combustion & NDIR detection			Dry
	TP178	In-house documented	method	Determination of water soluble nitrate by ion selective electrode			Dry
	TP185	In-house documented	method	Determination of loss on ignition at 150-440°C by gravimetry			Dry
24.0							
	Notes	Ferra Tek (Rirmingham) o	re MCERTS accredited for class	sand & loam matrix types only, where they constitute the major comp	onent of the sam	nole. Other coord	se granular
0 - 0 - 0	mat 2. F	terials, ie gravel, are not a Results are expressed on	accredited where they comprise a dry-weight basis (samples drie	sand a loan matrix types only, where they constitute the major comp the major component of the sample. $dat <30^{\circ}C)$ except where stated. sis. The quantity and nature of any material removed from samples is			-
101 . 170	req 4. T 5. V the	uest. The laboratory records the Where a parameter canno quality of subcontracted	e date of analysis of each param of be determined in house it is ou tests and the performance of the	eter. This information is available on request. Ir policy to use a UKAS/MCERTS accredited laboratory wherever pos subcontractor chosen. Where there is no known UKAS/MCERTS lab	sible. Terra Tek	will assume res	ponsibility for
	liste	ed within the Terra Tek Ap	pproved Subcontractors list, whice	ch is subject to performance assessment, will be selected.			
	Originator	Checked & Approved	SUMMARY OF II	N-HOUSE ANALYTICAL TEST METHOD	s T i	Арре	endix S3
	N/A	N/A		(SOIL)		She	et 2 of 2

Version 026 - 21/05/2009 8100 - Test Methods Soil - B24927 01.xls

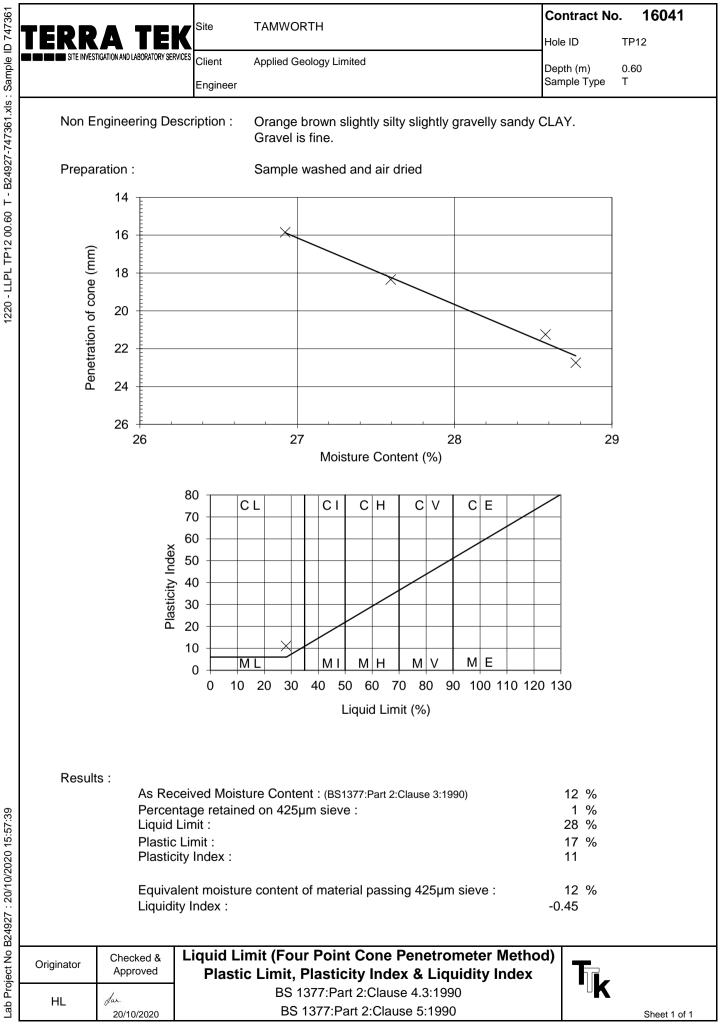
Moor Lane, Witton, Birmingham, B6 7HG Lab Project No B24927 : 19/10/2020 12:06:25

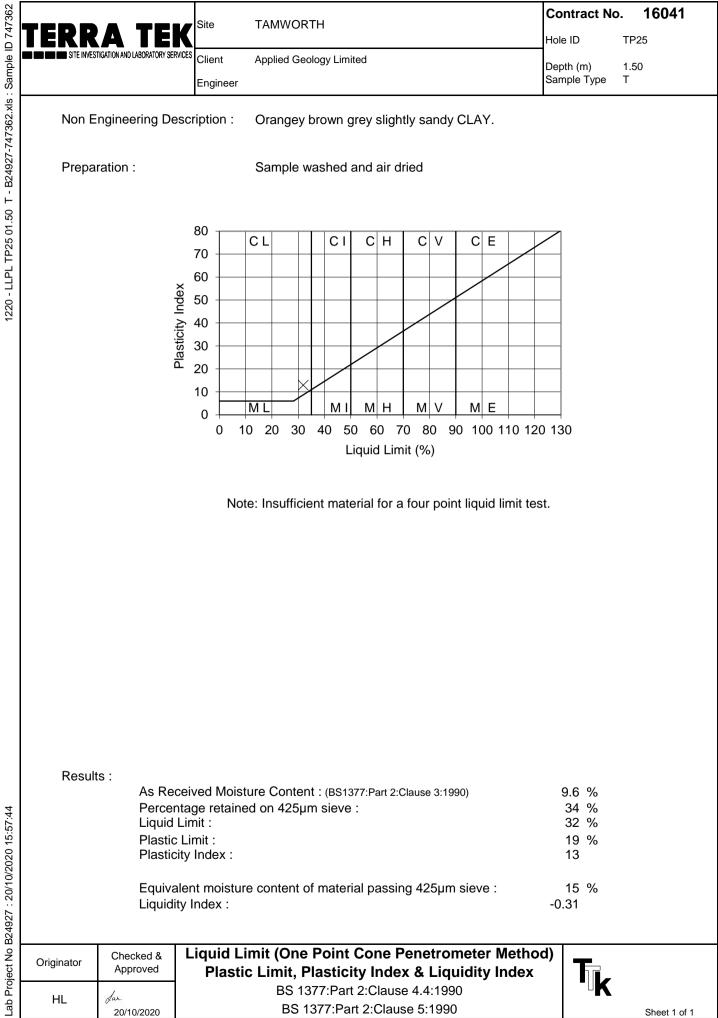
Applied Geology Ltd

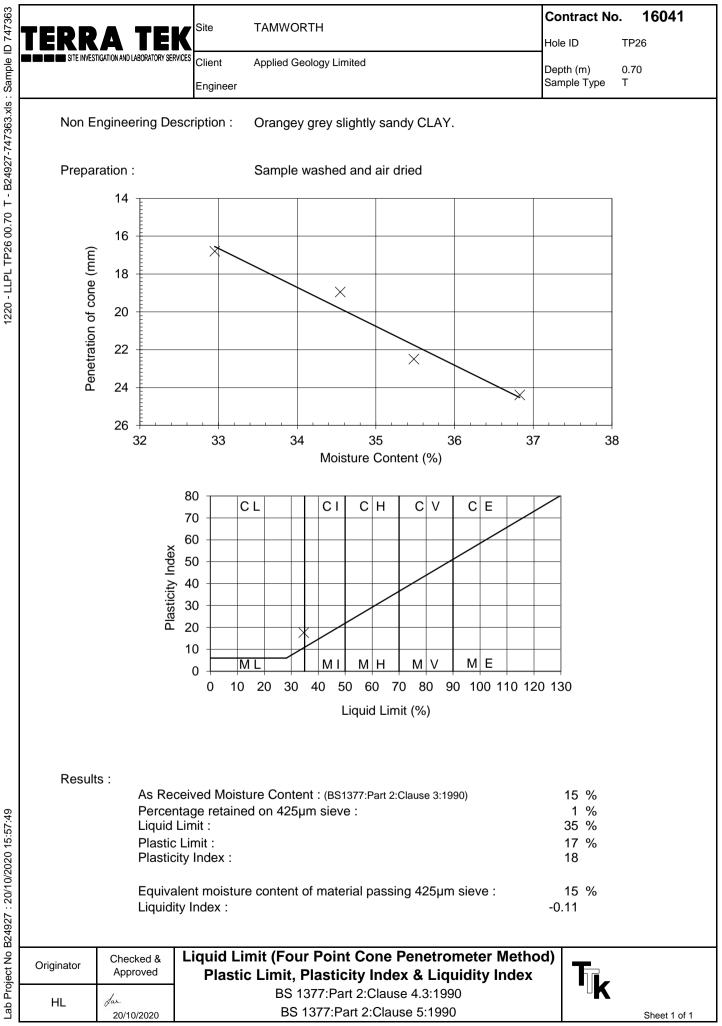
Unit 23 Abbey Park Stareton Kenilworth Warwickshire CV8 2LY For the attention of Carl Sellers

> Report No: B24927 Issue No 02

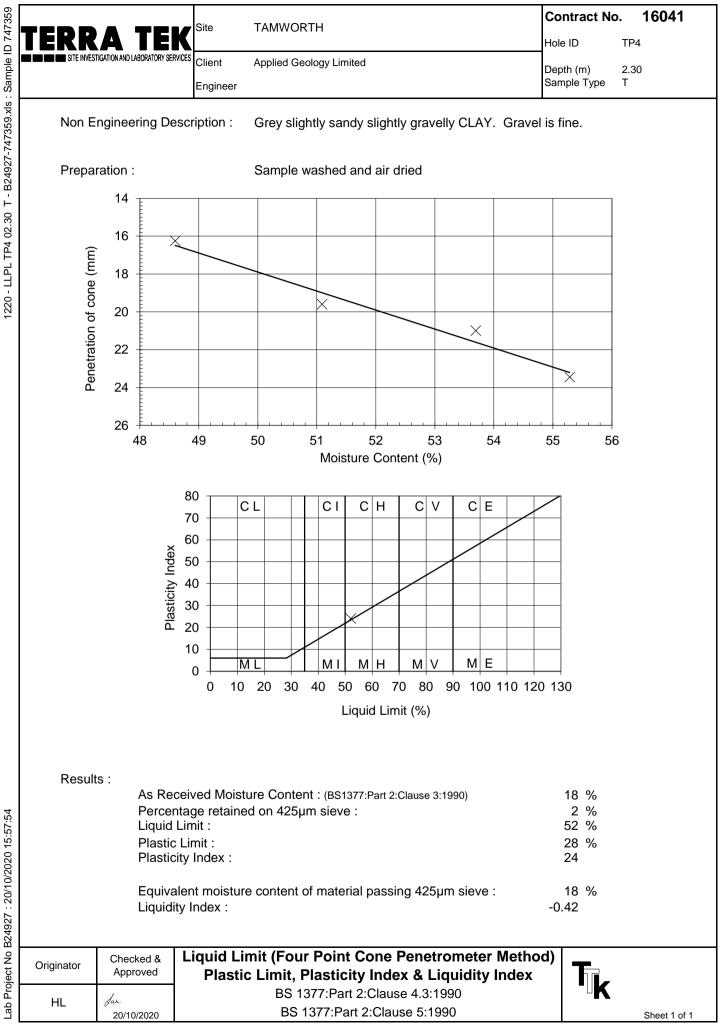
Project Name TAMWORTH **Project Number** B24927 Date samples received 05/10/2020 Your Ref 05/10/2020 Date written instructions received Purchase Order 16041 Date testing commenced 05/10/2020 Please find enclosed the results as summarised below Figure / Test ISO 17025 Description Table Accredited Quantity Moisture Content 6 Yes Atterberg Limit 5 Yes 23 Particle Size Distribution Yes Remarks : Issued by : Stephen Langman Date of Issue : 27/10/2020 Key to symbols used in this report S/C : Testing was sub-contracted S. Long. Approved Signatories : 27/10/2020 S Langman (Laboratory Coordinator), D Bowen (Production Manager) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date. The results reported relate to samples received in the laboratory only. All results contained in this report are provisional unless signed by an approved signatory This report should not be reproduced except in full without the written approval of the laboratory. Under multisite accreditation the testing contained in this report may have been performed at another Terra Tek laboratory. The enclosed results remain the property of Terra Tek Limited and we reserve the right to withdraw our report if we have not received cleared funds in accordance with our standard terms and conditions Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation. Feedback on the this report may be left via our website www.terratek.co.uk/contact-us

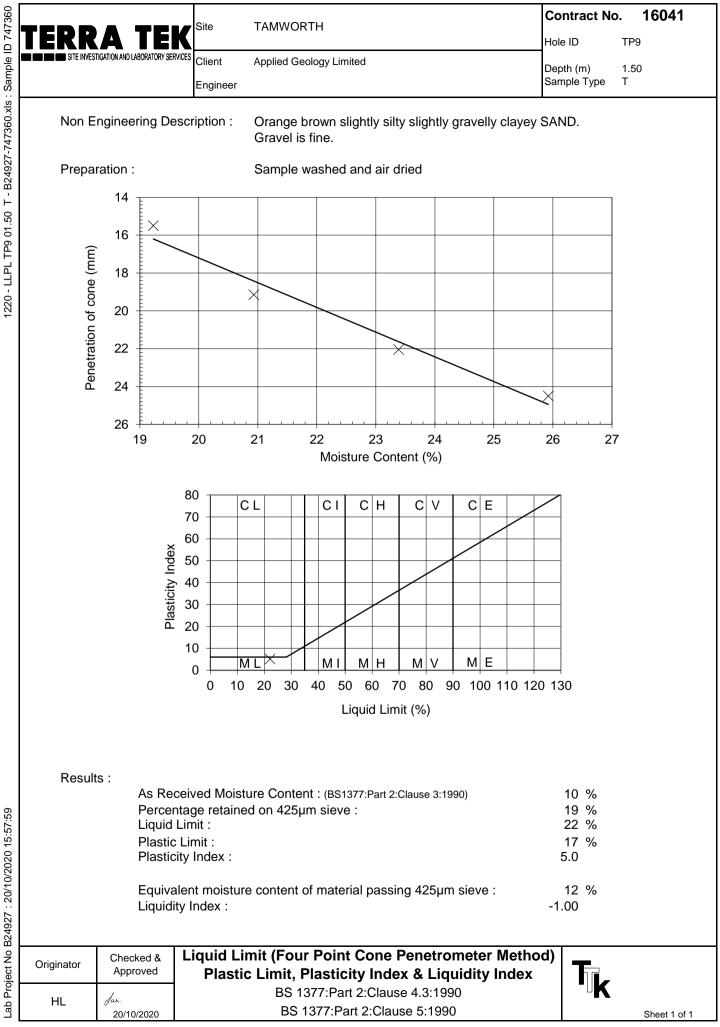

LABORATORY TEST REPORT


Moor Lane, Witton, Birmingham, B6 7HG Tel: +44 (0)121 344 4838 birmingham@terratek.co.uk


www.terratek.co.uk Terra Tek Ltd is registered in Scotland No. 121594 Offices in Airdrie, Birmingham, Belfast and Aston Clinton

Version 020 - 07/12/2012 ontent Table - B24927.xls	TEDE	RA TI	EK	Site	TAMWORT	н	Contract No 16	041
:0 - 07, le - B2		ESTIGATION AND LABORATO		lient	Applied Geole	ogy Limited		
sion 02 nt Tabl			E	ingineer				
Vers Conte	5	Sample Identifi	cation					
oisture								
Version 020 - 07/12/2012 1212 - Moisture Content Table - B24927.xls	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Non Enginering Description		Moisture Content %
	TP1	0.80		т	747358	Orangey brwown mottled grey slightly sandy CLAY. Gravel is fine to coarse.	slightly gravelly	8.6
	TP12	0.60		Т	747361	Orangey brown slightly silty slightly gravelly s Gravel is fine.	andy CLAY.	12
	TP25	1.50		т	747362	Orangey brown grey slightly sandy CLAY.		9.6
	TP26	0.70		т	747363	Orangey grey slightly sandy CLAY with timbe	r fragments.	15
	TP4	2.30		т	747359	Grey slightly sandy slightly gravelly CLAY. G	ravel is fine.	18
	TP9	1.50		Т	747360	Orangey brown grey slightly silty slightly grav Gravel is fine.	elly clayey SAND.	10
IP51PW 09								
, Bucks, H 20 15:57:0								
Unit 2 Springfield Road, Chesham, Bucks, HP51PW Lab Project No B24927 : 20/10/2020 15:57:09								
Road 24927	Notes			1				
pringfield ject No B	Originator	Checked Approve			MO	ISTURE CONTENT	Tk	
Unit 2 S Lab Pro	JAH	Jar. 20/10/202	20		BS13	77:Part 2:1990 Clause 3.2		Sheet 1 of 1


Version 046 - 06/03/2020 200 11 DI TE12 00 50 T D24077 747954 20 - 500001 ID 747954



Version 046 - 06/03/2020

Unit 2 Springfield Road, Chesham, Bucks, HP51PW Lab Project No B24927 : 20/10/2020 15:57:49

Version 046 - 06/03/2020

Version 046 - 06/03/2020

1263 - PSD - BS EN 17892 1P1 01.80 B - B24927-747364.xis : Sample ID 747364	ren			-			s	lite		TÆ	١M	NC	DR	TH													Co	ntra	ict N	lo	16	6041		
																											Hol	е			ΤP	1		
s: Sar		12 11120				ULT III		lient		Ap	plie	ed (Ge	ology	Limi	ted												pth (1.8	0		
364.xl							E	ingine	er																		Sar	mple	э Ту	ре	В			
7-747		_					-										г						—										_	
B2492			Par	ticle	Siz	е		9	% Pa	assi	ing						ŀ				N	on	Enę	gin	eel	ring	g De	esci	ripti	on			_	
- 8 08.1																		Lię	ght	browr											e to	coars	е	
IP1 01			1	25.0 90.0						100 100											(GR/	AVE	EL ۱	with	n so	me	cob	bles	6.				
7892				75.0) m	m				100)																							
EN 1				63.0 50.0						93 89							Г					50	mr		Dr	000	ortic	ne	- %					
2 - D				37.5						74	1						ŀ				0	obb				ορι	Juc		- 70		3.2		_	
с - РО				28.0 20.0						62 56												Grav									9.2 9.2			
971				14.0						52												San									1.1			
				10.0 6.30						49 47											Silt	& (Clay	/						1	1.5			
				5.00) m	m				46	6						L																	
				3.35 2.00						44 43							Г							alc		0.55	o+-	r						
				1.18						41	I						ŀ					Ра D10		cie	וט	am	ete	r - r	nm	7	75		_	
					0μ 5μ					39 35												D6(25			
				30	0μ	m				26	3											D1(0											
					0μ 0μ					18 15									(S	Unifo HW serie						5)				N	I/A			
					3μ					11	I						г								N	ote	<u> </u>							
																	ŀ		Sa	mple d	oes	not c	ompl		th B	S El	N ISC) 178	92-4	minim	num m	ass	_	
																								r	equi	reme	ents							
			Clay	Fi	ne			lium	С	oar	se		F	ine		/ledi			Сс	arse		F	ine				ium		Coa	irse	_ (Cobbl	es	
	400	L					S	ilt								Sar	nd									Gra	avel							
	100																														V			
	90												Ħ																	1	1			
	80	\vdash	-	_			\square				-	+	╫								-							+		+				
	~ 70	_										+	\parallel					_			_							_	_	Д				
	ං වි 60																												Α					
	Passi 20																											\checkmark						
	ge																				\downarrow	\neg	+	+	$ \uparrow$	\parallel								
	40 centa											$\left[\right]$	\parallel				\mid	7	\parallel		1													
5:04	Ъ. В.		+			+	$\parallel \mid$				+	\parallel	\parallel			\checkmark	' 	+	\parallel		╉	\neg	+	+		$\parallel \mid$		+	+					
0.01	20	\vdash	-+	_		++	$\parallel \mid$		-	$\left \right $	+	\parallel	\parallel		\neq	-	$\left \right $	+	$\left \right \right $		+	+	+	+	$\left \right $			+	+	+				
	10		-+									╞	⋕		-	_					\downarrow	-						_	_					
7/01/	0																																	
			0.00)2	0	.006		0.	.02		0.	.06		1	0.2 Par	ticle		0.6 ze ·		m	2			6	5			20			60			
			-		, -																													
	Originat	or		necke pprov					I	P۵	R.	τı	C	LES	517	F	ום	SI	ΓR	IRI	JTI		N											
			Lar			┥		В						2-4 2										ho	d					K				
Lab	HL		- 25)/10/2	020																											Shee	t 1 of	1
_																												-						

	ER	RA TEK	Site TAMWOR	TH		Contract No 16041
		E INVESTIGATION AND LABORATORY SERVICES	0	ology Lippitod		Hole TP11
S. Oa				ology Limited		Depth (m) 0.70-1.00 Sample Type B
x.0/2			Engineer			
1-1-17				1	Non Engineerin	a Description
- D243		Particle Size	% Passing			
		125.0 mm 90.0 mm 75.0 mm	100 100 100		Light brown slightly sandy o GRAV	
0/1 N		63.0 mm	100			
		50.0 mm 37.5 mm	87 70		Sample Prop	
2		28.0 mm	47		Cobbles Gravel	2.9 76.5
007		20.0 mm 14.0 mm	21 21		Sand	2.7
		10.0 mm 6.30 mm 5.00 mm	21 21 21		Silt & Clay	17.9
		3.35 mm 2.00 mm	21 21		Particle Dian	peter - mm
		1.18 mm	20		D100	63
		630 μm 425 μm	20 20		D60	33
		300 µm	19		D10	
		200 μm 150 μm	18 18		Uniformity Coefficient (SHW series 600, Table 6/1, footnote 5)	N/A
		63 µm	18		N.,	
					Note Sample does not comply with BS E	
		Clay Fine M	Aedium Coarse F Silt	Fine Medium Sand		lium Coarse Cobbles
	100					
	90					
	80					
	× 70					
	Percentage Passing - %					
	se д 50		+			
	40 tage					
	rcen					
2	ā 30					
20	20		++	╞╾╞┾┼		
	10		+++++++++++++++++++++++++++++++++++++			
\tilde{c}	0					
		0.002 0.006	0.02 0.06	0.2 Particle S	0.6 2 6 ize - mm	20 60
	Driginato	r Checked & Approved			ISTRIBUTION Ise 5.2 - Sieving Method	T
	HL	Lar. 20/10/2020				Sheet 1 of 1

Unit 2 Springfield Road, Chesham, Bucks, HP51PW Lab Proiect No P24927 · 20/10/2020 15:58:10

				K	Site		TAM													Con Hole	tract	No		60 >11	41
					Client Engine		Appli	ed G	je0	ology Lim	lited										th (m iple T		1. B	80-2	2.20
	Pa	rticle	Size		o	% Pa	ssind								N	lon I	Engi	ine	erir	ng De	scrip	otion			
		125.0 90.0 75.0	mm			1	00 00 00						Ligh	it bro	wn c	laye	y silt		rave oar	elly SA se.	ND.	Grav	vel i	s fin	e to
		63.0					00					Г						- D				27			
		50.0 37.5					00 00					ŀ						еР	rop	ortio	าร - `				
		28.0				1	00									cobbl							0.0		
		20.0 14.0					83 74									Grav							31.1		
		14.0 10.0 6.30	mm				74 73 72									San It & C							53.6 15.3		
		5.00 3.35	mm				71 70					L													
		2.00	mm				69					ſ				Pa	artic	le D	Diar	neter	- mr	n			
		1.18 630	mm) µm				68 66					ſ				D10	0						28		
		425	5 µm				57									D60						().48		
		200) µm) µm				41 28							Ur SHW se		D10 nity Co	oeffic						N/A		
) µm 3 µm				22 15					-								÷					
			•																Not	es EN ISO					
	Clay	Fir	1e		edium Silt	Co	arse		F	ine	Med Sa		C	Coars	e	Fi	ne			dium ravel	С	barse	;	Col	obles
100								Т														ТТ			
90											_														
80																					/				
~ ⁷⁰ '														#			1	T							
60			+++			+		+	$\left \right $		+	+	++			+		+	$\left \right \right $				+	+++	
sig 50			$\left \right $	+++		+		\parallel			+	\mathbb{A}	+++			-+	+	\parallel					+	$\left \right \right $	
Percentage Passing 05 05 09 09			Ш																						
ircen									$\left \right \right $																
Б 30 Д								\uparrow										\square							
20			+++	+++		+		╢	╟	$\rightarrow +$	+	+	+++			+	+	+					+	+++	
10			$\left \right $	+++		+		\square			+		+++			_	_	\parallel					+	$\left \right \right $	
0																									
5	0.0	02	0.0	06	0.	.02	C).06		0.2 Pa			0.6 ze - r	nm	2	2		6			20		60)	
Originato		hecke				P	PAR	TI	CI	_E SIZ	ZF	DI	STR		IJΤ	101	N				7				
Onginal									_																

		Site	TAMWOR	RTH			Contract No	16041
FERRA	TEK ID LABORATORY SERVICES						Hole	TP13
SITE INVESTIGATION AN	ID LADORAI ORT SERVICES	Client	Applied Ge	ology Limited			Depth (m)	1.50-2.00
		Engineer					Sample Type	В
				1	N	Non Engineering	Description	
Part	icle Size	% P	Passing			<u></u>	<u>, </u>	
	25.0 mm 90.0 mm 75.0 mm		100 100 100			n slightly clayey sl arse GRAVEL with		
	63.0 mm 50.0 mm		81 74			Sample Propo	ortions - %	
	37.5 mm		43			Cobbles		0.9
	28.0 mm		33			Gravel		9.5
	20.0 mm 14.0 mm		26 23			Sand		3.3
	10.0 mm		22		Si	ilt & Clay		5.4
	6.30 mm 5.00 mm		21 20					
	3.35 mm		20					
	2.00 mm 1.18 mm		20 19			Particle Diam	1	75
	630 µm		19			D100 D60		75 14
	425 μm 300 μm		18 17			D00 D10		.16
	200 µm		13		Uniform	nity Coefficient		·10 ′5.0
	150 µm		9 6		(SHW series 6	00, Table 6/1, footnote 5)	2,	0.0
	63 µm		0			Note	s	
					Sample does	s not comply with BS EN requireme		num mass
Clay	Fine M	ledium (Silt	Coarse F	Fine Mediur Sand	n Coarse	Fine Medi Gra		Cobbles
100			<u> </u>					
90								
80								
70								
» 70								
» 70								
» 70								
» 70								
de Passing - %								
× 70								
70 % - 60 50 40 30 20								
 70 60 50 40 30 20 10 								
 70 8 60 50 40 40 30 20 	2 0.006	0.02	0.06	0.2 Particle S	0.6 2	2 6	20	60
70 60 50 40 30 20 10 0 0.00 0.00	2 0.006		PARTIC		Size - mm	ION	20	60

747372							Site	e		TAN	/////	OR	тн												С	ont	ract	No	1	60	41	
																									Н	ole			ΤI	P15		
72.xls : San	311						Cili	ent gine	er	Appl	ied	Ge	ology	Lim	ited												n (m ole T) ⁻ ype	0. B	60-0	0.80	
1-1413		-					1						1			F																٦
B2492		F	Partic	le S	ize			%	6 Pa	issin	g					_				No	on E	Eng	ine	erii	ng l	Des	crip	tion				-
1263 - PSU - BS EN 17892 (P15 00:00 B - B2492/-/4/3/2.XIS : Sample ID /4/3/2			90	5.0 r 0.0 r 5.0 r	mm	۱				100 100 100							Ligl	ht b	rowr	n gra	avel	lly c		ey s coai		SAI	ND.	Gra	vel i	s fin	e to	
				3.0 r 0.0 r						100 100						Г					Sa	mn	ا ما	Pro	or	tion	s - '	2/2				٦
20-1			3	7.5 r	mm	า				98											bbl				501		3 -		0.0			-
101				8.0 r 0.0 r						95 95											irave								9.8			
2071			14	4.0 r	mm	า				95										S	Sano	b						(62.2			
			6.	0.0 r .30 r .00 r	mm	ı				94 94 93										Silt	& C	lay						2	28.0			
				.35 r .00 r						91 90						Г					Pa	rtic	le	Dia	me	ter ·	- mr	n				٦
				.18 r						89 85						┢					D100			2.					50			
				630 425						83										I	D60)						(0.20			
			2	300 200	μm	۱				78 61									Unifc V serie:	ormit		oeffic							N/A			
				150 63						42 28						-			v serie:	5 000,	, Table	8 0/1,										-
																-								Not	tes							-
		Cla	ay	Fine	9	M	lediu Silt		С	oarse	9	F	ine	Ν	<u>/lediu</u> San		(Coa	irse		Fi	ne			ediu		Са	barse	9	Col	obles]
	100		-																										$\neg \uparrow$			
	90		_																_	_	_	+	╞┤				\vdash					_
	80				_												1				_											_
	» 70				+										4						_											_
	- 60				+									f						_	_		\parallel									_
	Percentage Passing - % 0 0 0 0 0				+									4						_	+		\square									-
	40 enta		+																				\square									-
2	Der 30		+		+							4			-			\square		-	-	+	\mathbb{H}		+		-		+			_
0.01	20	-	+		+							\parallel		_	+					+	+	+							+	$\left \right $		_
	10		+		+							++				$\left \right $				+	+		\parallel									
	0	с	0.002	<u> </u>	0.0	006	<u> </u>	0.(02	<u> </u>	0.06	5	<u> </u>	0.2 Pa	rticle).6 e - I	mm	l	2			6		1	2	20	<u> </u>	60)	<u> </u>	
	Originato	or	Chec App						F	PAF	RTI	C	LES	SIZ	:Е Г	DIS	ST	RI	BU	TI	0	1				T	T					
	HL	C	Jar. 20/10	0/202	20			BS	S EN	N ISC	D 17	789)2-4 2	2016	6 Cla	aus	e 5	.2 -	Sie	evin	g N	1eth	100	I			-[K		S	heet 1	l of 1

		Site TAMWOR	TH			Contract No	16041
	RA TEK					Hole	TP17
	INVESTIGATION AND LADORALORY SERVICES	Client Applied Ge	ology Limited			Depth (m)	0.80-1.20
		Engineer				Sample Type	В
г			1	N	on Engineering		
	Particle Size	% Passing				Description	
-	125.0 mm 90.0 mm	100 100		Light brown gi	ravelly clayey silt mediur		el is fine to
	75.0 mm 63.0 mm	100 100					
	50.0 mm 37.5 mm	100 100			Sample Propo		
	28.0 mm	100			obbles).0 7 F
	20.0 mm 14.0 mm	100 99			Gravel Sand		7.5 5.8
	10.0 mm 6.30 mm 5.00 mm	97 96 95			t & Clay		6.7
	3.35 mm 2.00 mm	94 92			Particle Diam	eter - mm]
	1.18 mm	91			D100		20
	630 μm 425 μm	88 86			D60	0	.24
	300 µm	74			D10		
	200 μm 150 μm	49 37			ity Coefficient 0, Table 6/1, footnote 5)	Ν	I/A
	63 µm	27			Note	S	
	Clay Fine M	ledium Coarse F Silt	Fine Mediun Sand	n Coarse	Fine Medi Gra		Cobbles
100				I			
90							
80							
~ 70 ~							
60 guist							
ອ ຍິ່ງ ອ							
05 ntag							
Percentage Passing - % 09 05 05 09 00							
20							
10							
0	0.002 0.006	0.02 0.06	0.2 Particle S	0.6 2 Size - mm	6	20	60
Originator	Checked & Approved		LE SIZE D			TL	
HL	Jar. 20/10/2020	BS EN ISO 1789	2-4 2010 Ual	ise o.2 - Sievir			Sheet 1 of

FERRA TEK	Site TAMWORTH		Contract No 16041
SITE INVESTIGATION AND LABORATORY SERVICE		ited	Hole TP18
	Engineer		Depth (m) 0.70-1.00 Sample Type B
Particle Size	% Passing	Non Engineerin	g Description
125.0 mm 90.0 mm	100 100	Light brown gravelly clayey sil mediu	
75.0 mm 63.0 mm	100 100		
50.0 mm	100	Sample Prop	ortions - %
37.5 mm 28.0 mm	100 100	Cobbles	0.0
20.0 mm	100	Gravel	5.2
14.0 mm 10.0 mm	100 100	Sand Silt & Clay	68.3
6.30 mm	99	Sint & Clay	26.5
5.00 mm 3.35 mm	98 97		
2.00 mm 1.18 mm	95 93	Particle Dian	
630 µm	87	D100	14
425 μm 300 μm	84 71	D60 D10	0.22
200 μm	57	Uniformity Coefficient	N/A
150 μm 63 μm	40 27	(SHW series 600, Table 6/1, footnote 5)	
		Note	es.
Clay	Medium Coarse Fine M		
100 90 80 70 60 50 40 20 10 10 10 10 10 10 10 10 10 1	Silt		lium Coarse avel Cobbles
100 90 80 70 60 50 60 40 20 20	Silt		Coddles
100 90 80 70 60 50 40 20 10 0	Silt	Sand Gr.	
100 90 80 70 60 50 40 20 10 0	Silt	Sand Gr.	

- r

747374			P							Site	e		Т	ĀN	/\/\	/0	R٦	ГН															Co	ontr	act	No			04	1		
			R						- n F																								Ho	le			-	TP1	9			
s: san		JII JII L					ontre				ent		Α	ppl	iec	I G	eo	logy l	_imit	ed														pth)-2.2	20		
3/4.XI										En	gine	er																					Sa	Imp	le I	Туре)	В				
21-141		ſ																			ſ						lon		nai	inc		in	n D		orin	otior	<u> </u>				1	
- BZ49				Par	ticle	e S	ize	3			0	% F	Pas	sin	g														iig			шų	уD	630	unp	101	1					
1263 - PSU - BS EN 17892 (P19 01,80 B - B2492/-/4/3/4,XIS: Sample ID /4/3/4					75	.0 r .0 r	mn mn	n n					ç	90 90									Li	gh	t bro									sar 1 co		fine es.	e to	CO	arse			
EN 17						.0 r .0 r								77 50							ſ						S	an	nnl	<u>م</u>	Dro	าท	orti	ons	2 - 0	2/2					1	
20-					37	.5 r	nn	n					5	52							ŀ					0	Cob		-			-pr	Jin		5 -		26.	7				
101						.0 r .0 r								15 38													Gra										44.					
2021					14	.0 r	nn	n					3	34													Sa	ind									19.	7				
					6.3	0.0 r 30 r	mn	n					3	32 31												Si	lt &	CI	ay								9.6	6				
					3.3	00 r 35 r	nn	n					3	30 30							l r]	
						00 r 18 r								29 29															tic	le l	Dia	am	ete	er -	mr	n	4.0	_				
					6	30	μn	n					2	28													D1 D6										12 50					
						25 00								27 26													D										0.0					
					2	00 50	μn	n					2	22 5									(Unif V seri		nity	Co				5)					735					
						63							1	0							ſ										NI	ote									1	
																					ŀ		S	Sam	nple c	does	s not	cor	nply	wit	h B	S E			892-	-4 mii	nimu	m m	ass			
			С	lay		Fine	9			ediu			Coa	arse	•		Fi	ne		ledi Sai	ium		С	Coa	arse			Fin	е				lium		Са	Dars	e		Cobb	oles]	
		100	_				_			<u></u>			_	_														_	_				ave							,	_	
		90																																						/		
																																						$\left \right $				
		80																						Ħ								T						ľ				
	%.	70						++				-												\parallel		_		+				+					1					
	sing -	60						++																+		_		+				+		_			1	+			_	
	Pas	50								<u> </u>		+												+								+						\parallel			_	
	Percentage Passing - %	40						\parallel				\downarrow	_		Ц	\parallel							\parallel												/	1		\parallel				
	neore																															\parallel	_		_							
1.00	Å	30						T								\prod	Π			+	╀		Ħ	Ħ								T						Π				
20 07		20 10										t																														
															[
		0		0.00	02		0.0	006	;		0	.02			0.0	6	<u>. </u>).2 Part	icle		0.0 ze		nm	1	2	2			6				2	0		6	50			_	
	Orig	inato	r		neck ppro			T					_	۸ F	. .		~ 1	F 2	17	-	יח	6	T 7	יכ	ים																	
		HL		Jar	L.			┥			В	S E						.E S 2-4 2												00	ł					k						
Ľ				20	0/10/	/202	0																											Ļ					She	et 1	of 1	

TE				MWOF				Contract No Hole	16041 TP2
	SITE INVE	STIGATION AND LABORATORY SERVICE	^s Client App Engineer	lied Ge	ology Limited			Depth (m) Sample Type	1.80 B
	Γ	Particle Size	% Passir	ng]	I	Non Engineering	g Description	
		125.0 mm 90.0 mm 75.0 mm 63.0 mm 50.0 mm 37.5 mm 28.0 mm 20.0 mm 14.0 mm 10.0 mm 6.30 mm 5.00 mm	100 100 96 86 76 64 54 39 37 35 33 33				Clayey slightly sil GRAVEL with sc Sample Propo Cobbles Gravel Sand ilt & Clay	prtions - %	6.1 6.7 21.8 7.4
		3.35 mm 2.00 mm 1.18 mm 630 µm 425 µm 300 µm 200 µm 150 µm	30 29 29 27 25 19 13 10				Particle Diam D100 D60 D10 mity Coefficient 300, Table 6/1, tootnote 5)	C	90 33).14 35.7
		63 µm	7			Sample doe	Note s not comply with BS EI requirem	N ISO 17892-4 minir	mum mass
		Clay Fine M	Nedium Coars Silt	e f	Fine Mediui Sand		Fine Med Gra		Cobbles
Percentage Passing - %	00 90 90 90 90 90 90 90	0.002 0.006	0.02	0.06	0.2 Particle \$	0.6 Size - mm	2 6	20	60
Origir		Checked & Approved			LE SIZE D 92-4 2016 Clau			T _k	
Н	L	Sar. 20/10/2020					-		Sheet 1 of

TED	RA	TEL	Site	TAMV	VOR	TH						Contra	ct No	160	
	INVESTIGATION AND L	TEK ABORATORY SERVIC		• "								Hole		TP20	
			^{:s} Client Enginee		d Ge	ology Li	mited					Depth (i Sample		0.80- B	1.20
			<u> </u>			1		r				D			
	Partic	e Size	%	Passing					r	Non Engin	eering) Descr	iption		
TER	90	5.0 mm).0 mm 5.0 mm		100 100 100				Light br	own g	gravelly cla	iyey silt coarse		. Grav	el is fir	ne to
		3.0 mm).0 mm		100 100						Sample	Prope	ortions .	. %		
	37	7.5 mm		97						Cobbles	Flope			0.0	
		3.0 mm).0 mm		95 92						Gravel				2.7	
	14	1.0 mm		91						Sand				8.0	
	6. 5.).0 mm 30 mm 00 mm		90 89 89					Si	ilt & Clay			2	9.3	
		35 mm 00 mm		88 87						Particle	Diam	otor - n			
	1.	18 mm		87						D100				50	
		330 μm 125 μm		84 83						D60			0	.20	
	3	300 µm		77						D10					
		200 µm 150 µm		61 44						nity Coefficie			Ν	I/A	
		63 µm		29							Note	s			
	Clay	Fine	Medium	Coarse	F	ine	Mediur	n Coar	se	Fine	Medi	ium (Coarse		bbles
	City		Silt				Sand				Gra	vel		00	
100													\mathbb{Z}		
90											╆╋╫┼				
80															
70 %															
- bui							/	+ + + + + + -							
Sse 50															
40 tage															
cer					\parallel										
20															
10															
0	0.002	0.006	0.0	02 0.0	06	0. P		0.6 Size - mm	2	2	6	20		60	
Originato		ked & oved						ISTRIE							
HL	Jar. 20/10)/2020	BS	EN ISO 2	1789	2-4 20	16 Clai	use 5.2 -	Sievi	ing Metho	od		UK	S	Sheet 1 of 1

	RA TEK	Site TAMWOR	Hole TP21
		Client Applied Ge Engineer	eology Limited Depth (m) 0.80-1.20 Sample Type B
	Particle Size	% Passing	Non Engineering Description
	125.0 mm 90.0 mm 75.0 mm	100 100 100	Brown clayey silty gravelly SAND. Gravel is fine to coarse.
	63.0 mm 50.0 mm	100 97	Sample Proportions - %
	37.5 mm	95	Cobbles 0.6
	28.0 mm 20.0 mm	89 87	Gravel 19.0
	14.0 mm	85	Sand 54.8
	10.0 mm 6.30 mm 5.00 mm	84 83 82	Silt & Clay 25.6
	3.35 mm 2.00 mm	81 80	Particle Diameter - mm
	1.18 mm 630 µm	79 77	D100 63
	425 μm 300 μm	75 70	D60 0.24 D10
	200 μm 150 μm	53 39	Uniformity Coefficient N/A (SHW series 600, Table 6/1, footnote 5)
	63 µm	26	Notes
	Fine M	ledium Coarse F	Fine Medium Coarse Fine Medium Coarse Cobbles
100	Clay	Silt	Sand Gravel
100 90			
90			
90 80			
90 80 % 70		Silt	
90 80 % 70			
90 80 % 70			
90 80 % 70			
90 80 00 00 00 00 00 00 00 00 00 00 00 00			
90 80 % 70			
90 80 70 60 80 30 30 20			
90 80 70 60 50 40 30 20 10			
90 80 70 60 80 30 30 20		Silt	Sand Grave Grave Order Grave Order Grave
90 80 70 60 80 40 30 20 10		0.02 0.06	

	RA TEK	Site TAMWOR Client Applied Geo Engineer	RTH Contract No 16041 Hole TP23 Depth (m) 0.70-1.10 Sample Type B
	Particle Size	% Passing	Non Engineering Description
	125.0 mm 90.0 mm 75.0 mm	100 100 100	Brown clayey silty gravelly SAND. Gravel is fine to coarse.
	63.0 mm	100	
	50.0 mm 37.5 mm	100 96	Sample Proportions - %
	28.0 mm 20.0 mm	94 88	Cobbles 0.0 Gravel 19.5
	14.0 mm	87	Sand 56.5
	10.0 mm 6.30 mm 5.00 mm	85 84 84	Silt & Clay 24.1
	3.35 mm 2.00 mm	82 81	Particle Diameter - mm
	1.18 mm	79	D100 50
	630 μm 425 μm	77 75	D60 0.26
	300 μm 200 μm 150 μm	67 48 35	D10 Uniformity Coefficient N/A (SHW series 600, Table 6/1, footnote 5)
	63 µm	24	Notes
100 90 80 70 60 40 30 20 10 10 0		Silt	Fine Medium Coarse Fine Medium Coarse Cobbles Sand Gravel Cobbles
90 80 			Copples
90 80 	Clay	Silt	Sand Gravel Cobbles Image: I

TEDE	RA TEK	Site TAMWOR	TH			Contract No	16041
	VESTIGATION AND LABORATORY SERVICES		ology Limited			Hole	TP24
		Engineer	blogy Linned			Depth (m) Sample Type	2.00-2.30 B
		3					
Γ	Particle Size	% Passing		Non Engine	eering	Description	
F				Brown clayey silty very g	ravelly	SAND Grav	el is fine to
	125.0 mm	100			coarse		
	90.0 mm 75.0 mm	100 100					
	63.0 mm 50.0 mm	100 100		Sample I	Propo	rtions - %	
	37.5 mm 28.0 mm	100 100		Cobbles	-	(0.0
	20.0 mm	93		Gravel			5.1
	14.0 mm 10.0 mm	89 86		Sand Silt & Clay			3.8 1.1
	6.30 mm 5.00 mm	85 82					
	3.35 mm 2.00 mm	78 75		Particle	Diamo	eter - mm]
	1.18 mm 630 µm	72 69		D100		-	28
	425 µm	66		D60		0	.31
	300 μm 200 μm	60 45		D10 Uniformity Coefficien		٢	J/A
	150 μm 63 μm	35 21		(SHW series 600, Table 6/1, footr	note 5)		
					Notes	5	
[Clav	edium Coarse F Silt	Fine Medium Sand	n Coarse Fine	Mediu Grav		Cobbles
¹⁰⁰ [
90 -							
80 -							
~ 70 ~							
Percentage Passing - %							
де <u>–</u> 50 – 96							
- 04 centa							
Ъ <u>30</u> –							
20 -							
10 -							
₀ L	0.002 0.006	0.02 0.06	0.2 Particle S	0.6 2 6 ize - mm	;	20	60
Originator	Checked & Approved			ISTRIBUTION		T	
HL	Jan. 20/10/2020	BS EN ISU 1789	2-4 2016 Clau	ise 5.2 - Sieving Method	L		Sheet 1 of

	RA TEK VESTIGATION AND LABORATORY SERVICES		CTH ology Limited			Contract No Hole Depth (m)	16041 TP25 0.80-1.00
		Engineer				Sample Type	В
l r	Particle Size	% Passing		N	lon Engineering	g Description	
	125.0 mm 90.0 mm 75.0 mm	100 100 100		Light brown sli	ghtly gravelly sar mediu		vel is fine to
	63.0 mm 50.0 mm	100 100			Sample Propo	ortions - %	
	37.5 mm	100		C	obbles		0.0
	28.0 mm 20.0 mm	100 100			Gravel		2.2
	14.0 mm 10.0 mm 6.30 mm	100 96 96			Sand t & Clay		8.0 9.8
	5.00 mm 3.35 mm 2.00 mm	94 91 88			Particle Diam	eter - mm	
	1.18 mm 630 μm	85 82			D100		14
	425 μm 300 μm	80 77			D60 D10	0	.10
	200 μm 150 μm	73 68			ity Coefficient 0, Table 6/1, footnote 5)	١	I/A
	63 µm	50			Note	s	
	Clav	edium Coarse F Silt	ine Mediun Sand	n Coarse	Fine Med Gra		Cobbles
¹⁰⁰ [
90 -							
80 - . 70 -							
% - E							
Percentage Passing - %							
euta euta							
De 30							
20 -							
10 -							
0 L	0.002 0.006	0.02 0.06	0.2	0.6 2	6	20	60
			Particle S	ize - mm			
Originator	Checked & Approved					T _L	
HL	Jar. 20/10/2020	BS EN ISO 1789	92-4 2016 Clau	ise 5.2 - Sievii	ng Method		Sheet 1 of 1

	RA TEK	Site TAMWOR	Hole TP27
		Engineer	Depth (m) 1.00 Sample Type B
	Particle Size	% Passing	Non Engineering Description
	125.0 mm 90.0 mm 75.0 mm	100 100 100	Brown slightly gravelly sandy CLAY. Gravel is fine to coarse.
	63.0 mm 50.0 mm	100 100	Sample Proportions - %
	37.5 mm	96	Cobbles 0.0
	28.0 mm 20.0 mm	94 92	Gravel 18.5
	14.0 mm	90	Sand 50.4
	10.0 mm 6.30 mm 5.00 mm	88 87 85	Silt & Clay 31.2
	3.35 mm 2.00 mm	84 82	Particle Diameter - mm
	1.18 mm 630 µm	79 77	D100 50
	425 µm	75	D60 0.23
	300 μm 200 μm 150 μm	67 56 47	D10 Uniformity Coefficient N/A (SHW series 600, Table 6/1, footnote 5)
	63 µm	31	Notes
	Clay Fine M	ledium Coarse F Silt	Fine Medium Coarse Fine Medium Coarse Sand Gravel Cobbles
100			
90			
00			
80			
80			
80 % 70			
80 00 - 00 00 - 00 00 00 00 00 00 00 00 00 00 00 00 00			
80 % 70			
80 Dercentage Passing - % 00 00 00 00 00 00 00 00 00 00 00 00 00			
80 70 60 50 40 30 20	0.002 0.006	0.02 0.06	0.2 0.6 2 6 20 60 Particle Size - mm
80 70 60 50 40 30 20 10	Checked &	PARTICI	

ole ID 747387	٢E	R	R		-		_			Site			Т	AM	1W	/0	RT	ΤН															Cor Hol		act	No		16 1P2	04	1	
		I SITE	INVESTIC	GATION /	AND LAB	BORATO	ory Si	erviçe	ľ	Clier Engi		er	A	ppli	ied	l G	eo	logy	Lim	iteo	ł												Dep Sar					.60 3)		
21-1413		1							Т								٦												na	inc	or	inc	De		rint	lion					1
- DZ49				Par	ticle	e S	ize				%	b Pa	ass	sinę	g											-	101		ng			ing		-30	npi						
						.0 r .0 r	nm nm	า า					10 10 10	0								Li	ght	t bi	row								avel					vel	is f	ine	
					63 50	.0 r .0 r							9 9														5	Sar	npl	le l	Pro	рс	ortio	ns	- %	6					1
						.5 r .0 r							8 8													(Cok	oble	s			-					3.5	;			1
					20	.0 r	nm	۱					8	5													Gr	ave	el							:	20.4	4			
						.0 r .0 r							8 8													c		and & C									53.3				
					6.3 5.0	30 r)0 r	nm nm	า า					7 7	9 8												5		<u> </u>	lay								22.8	3			
					2.0	35 r 00 r	nm	۱						6													l	Pai	tic	le	Dia	am	ete	r - 1	mm	۱]
						18 r 30							7 7	5 2														100									75				
					4	25 00	μm	۱					7 6	0														960 910								(0.28	3			
					2	00 00 50	μm	۱					4 3	4										(SH	Uni _{W ser}		nity	Co				5)					N/A	•			
						63	μm	۱					2	3																	No	ote	s								1
		I	с	lay	F	ine)	N		diun Silt	n	С	coa	rse			Fi	ne	ſ		dium	1	C	Coa	arse	9		Fir	ie				um vel		Co	arse	9	C	obb	les]
		100								_	_						11							П								11									_
		90					_				_																										4				_
		80																														\parallel	/	1	1						
		70																					_	╢	_	_	F	T													
	% - b	60																		\langle																					
	assir	50																		/																					
	age P																		Τ																						
	Percentage Passing - %	40													T		Ħ				T			\parallel															\parallel		
	Pe	30					\uparrow		\parallel		_				Ţ	\downarrow	1	/	+	\uparrow	\dagger			\parallel				+	+	Ħ	\parallel	\parallel		+					\parallel		
		20 10													ſ														t												
		0																																							
		U		0.00)2		0.0	006			0.0	02		(0.0	6).2 Pa	rtic	le S	0. ize		nn	n	:	2			6				20)		6	0			_
	Orig	inato	r		neck ppro													E S																	Γſ						
	ŀ	ΗL		Jar 20)/10/	202	0				BS	5 El	NI	SC	1	78	92	2-4 2	010	d C	lau	se	5.	2	- Si	iev	ing	ţМ	eth	100	t					N	•		She	et 1	of 1

	RA TEK	Site TAMWOR	TH		Contract No Hole	16041 TP29
I III III SITE IN	WESTIGATION AND LABORATORY SERVICES	Client Applied Geo Engineer	blogy Limited			0.60 B
Г	Particle Size	% Passing		Non Engineerin	g Description	
-	125.0 mm 90.0 mm	100 100	Lig	ht brown clayey silty ve GRAV		coarse
	75.0 mm 63.0 mm	100 100				
	50.0 mm	100		Sample Prop	ortions - %	
	37.5 mm 28.0 mm	93 67		Cobbles		.0
	20.0 mm 14.0 mm	50 49		Gravel Sand		l.2).3
	10.0 mm 6.30 mm 5.00 mm	48 48 48 48		Silt & Clay		5.6
	3.35 mm 2.00 mm	47 46		Particle Dian	neter - mm	
	1.18 mm 630 µm	45 44		D100	1	0
	425 µm	43		D60	2	4
	300 μm 200 μm 150 μm	40 30 23	(SH	D10 Uniformity Coefficient W series 600, Table 6/1, footnote 5)	N	/Α
	63 µm	16		Note	es	
L	Clay Fine M			arse Fine Med		Cobbles
100 r		Silt	Sand		avel	
90						
80						
70						
° ຄິ						
assin						
Percentage Passing - %						
40 centa						
Ъ 30 Ч						
20						
10						
₀ [0.002 0.006	0.02 0.06	0.2 0.6 Particle Size - mm	2 6 n	20	60
Originator	Checked & Approved	PARTIC	_E SIZE DISTRI	BUTION	T	
			2-4 2016 Clause 5.2			

TER	RA TEK	Site TAMW	ORTH			Contract No	16041 TP3
	TE INVESTIGATION AND LABORATORY SERVICE	^S Client Applied Engineer	Geology Limited			Depth (m) Sample Type	0.80 B
	Particle Size	% Passing	7	N	on Engineering	Description	
	125.0 mm 90.0 mm 75.0 mm	100 100 100	_		slightly clayey sil fine to coarse with		
	63.0 mm 50.0 mm	96 96			Sample Propor	tions - %	
	37.5 mm	88			obbles	1	1.4
	28.0 mm	79 74			Gravel		4.4 3.5
	20.0 mm 14.0 mm	69			Sand		5.3
	10.0 mm 6.30 mm 5.00 mm	66 66 65		Silt	t & Clay		6.8
	3.35 mm 2.00 mm	63 62			Particle Diame	eter - mm	
	1.18 mm	61 58		[D100		75
	630 μm 425 μm	56			D60	0	.96
	300 μm 200 μm 150 μm	49 31 24		Uniformi	D10 ity Coefficient 0, Table 6/1, footnote 5)	Ν	I/A
	63 µm	17			Notes		
	Clay Fine N	Medium Coarse	Fine Mediun Sand	n Coarse	Fine Mediu Grav		Cobbles
100							
100 90							
90							
90 80 70							
90 80 70							
90 80 70							
90 80 70							
90 80 70							
90 80 00 05 00 05							
90 80 70							
90 80 70 60 50 40 30 20							
90 80 - 70 60 50 40 30 20 10							
90 80 70 60 50 40 30 20		0.02 0.0	6 0.2 Particle S	0.6 2 Size - mm	6	20	60
90 80 - 70 60 50 40 30 20 10	0.002 0.006			Size - mm		20	60

		Site TAMWOR				Contract No	16041
	RATEK					Hole	TP31
	STORTON AND ENDORSTORY SERVICES	Client Applied Ge	ology Limited			Depth (m)	1.80
		Engineer				Sample Type	В
Г			1	Ν	on Engineering		
	Particle Size	% Passing				Description	
	125.0 mm 90.0 mm 75.0 mm	100 100 100		Light brown g	ravelly clayey silt mediur		el is fine to
	63.0 mm 50.0 mm	100 100	ĺ		Sample Propo	vrtiona 9/	
	37.5 mm	100			sobbles		0.0
	28.0 mm 20.0 mm	100 100			Gravel		
	14.0 mm	99			Sand		1.9
	10.0 mm 6.30 mm 5.00 mm	99 98 96		Sil	t & Clay	2'	1.7
	3.35 mm 2.00 mm	95 94			Particle Diam	eter - mm	
	1.18 mm	89			D100		20
	630 μm 425 μm	85 77			D60	0.	31
	300 µm	58		11.17	D10		
	200 μm 150 μm	45 32			ity Coefficient 0, Table 6/1, footnote 5)	N	/A
	63 µm	22	ĺ		Note	<u> </u>	
Г	Clay Fine M		Fine Medium	n Coarse	Fine Medi		Cobbles
ـــــــــــــــــــــــــــــــــــــ		Silt	Sand		Gra	ivel	
90 —							
80 –							
° 20 −							
- 60 –							
Percentage Passing - %							
age							
04							
- 06 Ge							
20 —							
10 —							
٥L							
	0.002 0.006	0.02 0.06	0.2 Particle S	0.6 2 Size - mm	6	20	60
Originator	Checked & Approved					TL	
HL	Lar. 20/10/2020	BS EN ISO 1789	2-4 2016 Clau	15e J.2 - SIEVI	ng wethod		Sheet 1 of

ID 747384	ſFD	R	A	T	F۱	(Site		ΤA	MV	VOF	RTH											Cor Hole	ntrac	t No	1	604 1	
Sample			GATION AND	LABORAT	ORY SERV	ICES	Client		Ap	plie	d Ge	ology	_imite	ed										oth (m	.)		- 80-1.30	`
84.xls : 5							Engin	eer																	і) Гуре	0.0 B	50-1.30)
7-74738												7			_													_
B24927			Partic	cle S	ize			% Pa	assi	ng								Nc	on E	ngi	nee	ring	g De	escrip	otion			_
1263 - PSD - BS EN 17892 TP4 00.80 B - B24927-747384.xls : Sample ID 747384			9 7	25.0 0.0 75.0	mm mm				100 100 100)		-			ŀ	Brow	n clay	/ey s	silty	very		ivell arse		ND.	Grav	el is	s fine to	
S EN 1				3.0 0.0					100 98										Sar	nple	e Pr	орс	ortio	ns -	%			7
SD - B			3	7.5	mm				88 80	;									bble							0.6		
263 - F			2	0.0	mm				71										rave						З	87.0		
-				4.0 0.0					69 67									S Silt	Sand & C							3.8		
				.30					65 64									0		,					1	8.7		
			3	.35	mm				63	5																		_
				.00 .18					62 61										Pa		e Di	iam	eter	r - m		63		_
				630 425					60 58										D60).73		
				300	μm				49 33)							l In ife		D10	offici	ant							
				200 150	μm				25	;						(S	Unifo HW serie					e 5)			1	N/A		
				63	μm				19)					Γ						N	ote	s					٦
		C	lay	Fine	e		edium Silt	C	Coars	se		ine		ediur Sand	n	Со	oarse		Fir	ne		/ledi Gra		С	oarse		Cobbl	es
	100																	Т			Т					Л		
	90 80																											
	70																											
	Percentage Passing - % 0 0 0 0 0 0																	_	_	+	+	1						
	Passii 20													\square														
	1age F																											
N	Jercen 30																											
0.00.0	<u>م</u> 20											\square																
	10																											
10/71	0																											
Lab Project No 524927 : 20/10/2020 16:00:02	0	_	0.002		0.00	6	C).02	_	0.0	06).2 Parti	cle S	0. Size		m	2	_	_	6	_	_	20	_	60	_	
	Originato	or		cked prove			-					LE S 92-4 2									04			T	k			
Lap P	HL		Jar. 20/1	0/202	20				IN IC	.0	170	9∠*4 Z	010	Jal	JSt	, J.Z	- 316	2011	y IVI		Ju				- 1 1		Shee	t 1 of 1

		RA JESTIGATION A	_	TORY SERV	_	Site Client		TAN			RTH eology L	imite	ed									Cont Hole			TI	604	
D . SIX. 100						Engine	eer				0.											Deptl Samj			0. B	70-1	.00
141-176470	Γ	Part	icle S	Size		c	% Pa	assin	g]						No	n E	ngir	neer	ing	Des	scrip	otion			
	_		25.0 90.0 75.0	mm mm				100 100 100						Lig	ht b	orown	clay	vey s		/ery to co			SAN	ND. (Grav	/el is	fine
			63.0 50.0					100 97										San	nple	Pro	opo	rtion	ıs - '	%			
ל נ			37.5	mm				95										bble	-				-		0.6		
			28.0 20.0					92 88									G	rave	I					2	21.8		
			14.0 10.0 6.30	mm mm				85 82 81										and & Cl	ay						52.1 25.5		
			5.00 3.35 2.00	mm				80 79 78						I				Par	ticle		200	eter	- mr	n			
			1.18	mm				76										Pai 0100		ים י	31110				63		
			630 425	μm				74 71										D60						(0.28		
			300 200 150	μm				64 43 34							(SI	Unifo	ormit				5)				N/A		
				μm				25												No	otes						
	L 	Clay	Fin	e		edium Silt	C	oarse	9		Fine		ediur	n	Сс	oarse		Fin	e		ledi Gra		С	oarse	<u>.</u>	Cob	bles
1	⁰⁰ г									Π							_								й		
	90																_										
	80			+					$\left \right $	+				+			╞	+	┿	++	╀		-	$\left \right $	+		
%	70			++						+				1	\square		+	-	+						+		
Issi	60 50																										
tage F	40											/															
srcent	30																										
Å	20								ŀ	1																	
	10																										
	0 L	0.00	2	0.00	6	0	.02		0.0)6		.2 Partio	cle S	0.6 Size		 m	2			6			20		60)	
		-																									
Origin		Ap	ecked prove			В					LE S 92-4 20									od			Į	k			
H	L	Lar 20	/10/202	20														-						- •		Sh	eet 1 of 1

Image: control of the second		:D	RA TE	ľ	Site	ТАМ	WOR	TH							act No	1604	1
14.0 mm 99 10.0 mm 98 6.30 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 37 150 µm 30 63 µm 24			NVESTIGATION AND LABORATORY	SERVICES		٨٥٥٢	od Co	ology	mitod					Hole		TP7	
14.0 mm 99 10.0 mm 98 6.30 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 37 150 µm 30 63 µm 24	Kls : Sa						eu Ge		mileu								20
14.0 mm 99 10.0 mm 98 5.00 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 50 200 µm 37 150 µm 30 63 µm 24	/368.)				Enginee	:[
14.0 mm 99 10.0 mm 98 6.30 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 37 150 µm 30 63 µm 24	327-74	Г						1		Г		Non Er	naineerin	a Des	cription		
14.0 mm 99 10.0 mm 98 5.00 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 50 200 µm 37 150 µm 30 63 µm 24	- 18249		Particle Size	е	%	Passing	1						- <u>j</u>	3			
14.0 mm 99 10.0 mm 98 5.00 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 50 200 µm 37 150 µm 30 63 µm 24	/892 IP/ 00./0 B		90.0 mi 75.0 mi	n n		100 100					Light brown	gravelly			ID. Grav	el is fine	to
14.0 mm 99 10.0 mm 98 5.00 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 37 150 µm 30 63 µm 24										Г		Sam	nle Prop	ortions	3 - %		
14.0 mm 99 10.0 mm 98 5.00 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 37 150 µm 30 63 µm 24	ä ,		37.5 mi	m		100										0	
14.0 mm 99 10.0 mm 98 6.30 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 59 2.00 µm 37 150 µm 30 63 µm 24	0 1 2												3				
6.30 mm 98 5.00 mm 97 3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 59 200 µm 37 150 µm 30 63 µm 24 Notes N/A	071					99											
3.35 mm 96 2.00 mm 94 1.18 mm 90 630 µm 81 425 µm 76 300 µm 59 200 µm 37 150 µm 30 63 µm 24 Notes Notes Image: state of 1, tornose 0 NA Silt Sand Gravel Cobles			6.30 mi	m		98					S	Silt & Cla	ау		24	4.3	
1.18 mm 90 630 µm 81 425 µm 76 300 µm 59 200 µm 37 150 µm 300 63 µm 24 Notes Notes Clay Fine Medium Coarse Sit Sand Gravel			3.35 mi	m		96						_					
630 µm 81 425 µm 76 59 200 µm 060 0.31 010 Uniformity Coefficient (SHW series 600, Table 61, toornete 5) 0.31 N/A 150 µm 30 63 µm 24 Notes Image: Clay Fine Medium Coarse Fine Medium Coarse Cobles Image: Clay Silt Sand Gravel Cobles Image: Clay Silt Sand Gravel Cobles Image: Clay Fine Medium Coarse Fine Medium Image: Clay Silt Sand Gravel Cobles Image: Clay Fine Medium Coarse Cobles Image: Clay Fine Medium Gravel Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay Image: Clay <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>┝</td> <td></td> <td></td> <td>icle Diam</td> <td>neter -</td> <td></td> <td>20</td> <td></td>										┝			icle Diam	neter -		20	
100 µm 100 200 µm 37 150 µm 30 63 µm 24 Image: Stress s																	
150 µm 30 63 µm 24 Notes Notes Image: Clay Fine Medium Coarse Fine Medium Coarse Cobles 100 Image: Clay Silt Sand Gravel Cobles 100 Image: Clay Silt Sand Gravel Cobles 100 Image: Clay Image: Clay Image: Clay Cobles												D10					
Notes Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Medium Coarse Fine Medium Coarse Cobbles Image: Clay Fine Mediu			150 μι	m		30									Ν	I/A	
Clay Silt Sand Gravel 100 0 0 0 0 90 0 0 0 0 80 70 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 0 90 0 0 0 90 0 0			63 µi	n		24				Γ			Note	es			
90 80 70 50 60 50 40 40		L	Clay	M		Coarse	F	ine			Coarse	Fine			Coarse	Cobb	oles
80 70 % 70 60 50 40 40		100								_							
% 70 % 60 9 50 40 9		90								_		\vdash					
% 70 % 60 50 60 40 60		80															
60 60 60 60 40 60 60 60 60 60 60 60 60 60 6										1							
Originator Checked & Approved Approved PARTICLE SIZE DISTRIBUTION BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method	- 6	70							/								
A 50 40	ssing	60															
Image: dot	Je Pa	50							7	+							
Property 30 20 20 20 20 20 20 20 10 20 10 20	entag	40							/	+							
20 10 <td< td=""><td>Perc</td><td>30</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Perc	30								+							
10 0		20					1			_							
0 0.002 0.006 0.02 0.06 0.2 0.6 2 6 20 60 0 0.002 0.006 0.02 0.06 0.2 0.6 2 6 20 60 Originator Checked & Approved Approved PARTICLE SIZE DISTRIBUTION Tick HL Jun Station 10000 BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method Tick		10															
Originator Checked & Approved PARTICLE SIZE DISTRIBUTION BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method Tick																	
Originator Checked & Approved PARTICLE SIZE DISTRIBUTION HL Jar. BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method	102 . 126420	U	0.002 0.	.006	0.0	2 0	0.06					2	6	2	0	60	
HL dar BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method	Ori	ginator													T.		
20/10/2020 Sheet 1 of 1		HL	Jar. 20/10/2020		BS	EN ISO	1789	92-4 20	16 Cla	us	e 5.2 - Siev	ving Me	ethod		υK	She	et 1 of 1

	RA T		Site Client Engineer	TAMV Applied		RTH ology Limited					Ho De	ntract N le pth (m) mple Ty	-	160 TP9 0.70- B	
	Particle S	Size	% F	assing]		1	Non Eng	jinee	ring D	escripti	on		
	125.0 90.0 75.0	mm mm		100 100 100			Light I	orown c	layey silty	-	v gravel coarse.	Iy SANE). Gra	aveli	s fine
	63.0 50.0			100 100					Samn	lo Pr	onortic	ons - %			
	37.5	mm		96					Cobbles		oportic	5113 - 70	0.0	0	
	28.0 20.0			90 84					Gravel				25.		
	14.0	mm		80					Sand				52.	.2	
	10.0 6.30 5.00	mm		79 78 77				S	ilt & Clay	,			22.	.4	
	3.35 2.00			76 75					Partic	le Di	iamete	r - mm			
	1.18 630			73 70					D100		-		50)	
	425	μm		64					D60				0.3	9	
	300 200 150	μm		49 36 31			(S		D10 mity Coeffi		e 5)		N/J	A	
		μm		22						N	otes				
400	Clay	e M	ledium (Silt	Coarse	F	Fine Mediu Sano		oarse	Fine		/ledium Gravel	Coa	rse	Co	bbles
100													\land		
90												\square			
80										+++					
°70 ∾								T T							
09 ging															
Se 50															
Percentage Passing - % 09 09 30				+ $+$ $+$ $+$	+++							_	+		
erce 30															
يت 20					$\parallel \parallel$										
10															
0	0.002	0.006	0.02	0.0)6	0.2 Particle	0.6 Size - m		2	6		20	6	50	J
	Checked					LE SIZE D						T]		
Originato	" Approve	a		FARI				IDU I					_		

Carl Sellers Applied Geology Ltd Lowton Business Park Newton Road Lowton Warrington WA3 2AN

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 20-33390

Project / Site name:	Tamworth	Samples received on:	01/10/2020
Your job number:	AG3185-20	Samples instructed on/ Analysis started on:	01/10/2020
Your order number:	16042	Analysis completed by:	14/10/2020
Report Issue Number:	1	Report issued on:	15/10/2020
Samples Analysed:	29 soil samples		

Signed: M. Cherwinsica

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

				1638071	1000	10000	10000-
Lab Sample Number					1638072 TD15	1638073 TD16	1638074 TD17
Sample Reference	TP14	TP15	TP16	TP17			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.20	0.20	0.20	0.20			
Date Sampled	17/09/2020 None Supplied	17/09/2020	17/09/2020	17/09/2020			
Time Taken					None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detecti on	Accredi tation Status				
(Soil Analysis)	ti si	" ti f	edi on tus				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	11	10	10	9.4
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	0.8
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	6.6	6.6	6.5	6.3
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	46	58	33	37
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.023	0.029	0.016	0.019
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	23.1	29.1	16.4	18.5
Total Chloride	mg/kg	5	NONE	-	-	-	-
Organic Matter	%	0.1	MCERTS	2.3	4.1	1.8	1.9
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	-	-
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
T-4-1 DAU							
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Henry Matela / Matell 11							
Heavy Metals / Metalloids		1		_ .			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.1	7.8	6.9	7.4
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.78	0.86	0.8	0.86
Boron (total)	mg/kg	1	MCERTS	5.9	4.9	4.3	4.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	0.3	0.2	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	21	34	56	23
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	36	57	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	16	11	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	38	40	32	27
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	19	21	21	22
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.1	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	28	30	29	31
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	89	81	71	72

Lab Sample Number				1638071	1638072	1638073	1638074
Sample Reference	TP14	TP15	TP16	TP17			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.20	0.20	0.20	0.20			
Date Sampled	17/09/2020	17/09/2020	17/09/2020	17/09/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
					None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detecti on	Accredi tation Status				
(Soil Analysis)	2	- fi of	edi on us				
Magnesium (water soluble)	mg/kg	5	NONE	19	19	17	13
Monoaromatics & Oxygenates							
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC12 - EC10	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)		10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg mg/kg	10	NONE	< 10	< 10	< 10	< 10
	iiig/ ky	10	NUNL	< 10	< 10	< 10	~ 10
TPHCWG - Total C5 - C44 Aliphatic & Aromatic	mg/kg	10	NONE	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

				1638075	n	1	
Lab Sample Number					1638076	1638077	1638078
Sample Reference					TP27	TP1	TP4
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.20	1.00	0.20	0.80			
Date Sampled	21/09/2020	21/09/2020	16/09/2020	16/09/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	ç	Limit of detecti on	Stat Ac				
(Soil Analysis)	Units	nit o on	Accredi tation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.1 N/A	NONE	11	10	12	14
Total mass of sample received	kg	0.001	NONE	1	10	1.2	0.5
	Ng	0.001	NONE	1	1	1.2	0.5
Asbestos in Soil	Turne	N/A	ISO 17025	Not-detected	-	Not-detected	-
	Туре	N/A	130 17025	Not-detected	-	Not-detected	-
Concern Incorporation							
General Inorganics							67
pH - Automated	pH Units	N/A	MCERTS	6.6	6.6	6	6.7
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	35	57	19	15
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.017	0.029	0.0094	0.0074
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	17.3	28.7	9.4	7.4
Total Chloride	mg/kg	5	NONE	-		-	-
Organic Matter	%	0.1	MCERTS	2.4	< 0.1	2.3	0.3
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	-	-
Total Disease							
Total Phenols	-	1					
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.5	4.3	6.7	6.1
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.93	0.71	0.91	0.68
Boron (total)	mg/kg	1	MCERTS	5.1	4.6	4.8	2.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	0.3	0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	27	16	25	20
Chromium (agua regia extractable)	mg/kg	1	MCERTS	28	16	28	20
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12	9.6	11	4.6
Lead (aqua regia extractable)	mg/kg	1	MCERTS	24	8.6	34	40
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	23	17	20	25
Selenium (aqua regia extractable)		1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg				22		21
	mg/kg	1	MCERTS	35 71	30	38 71	68
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	/1	30	/1	δQ

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Lab Sample Number				1638075	1638076	1638077	1638078			
Sample Reference	TP27	TP27	TP1	TP4						
Sample Number					None Supplied	None Supplied	None Supplied			
Depth (m)	None Supplied 0.20	1.00	0.20	0.80						
Date Sampled	21/09/2020	21/09/2020	16/09/2020	16/09/2020						
Time Taken					None Supplied	None Supplied	None Supplied			
					Holle Supplied	Hone Supplied	none supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status							
	ي ا	면 역	s n ibi							
Magnesium (water soluble)	mg/kg	5	NONE	16	9	16	5.4			
Monoaromatics & Oxygenates	Monoaromatics & Oxygenates									
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
Petroleum Hydrocarbons										
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001			
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001			
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001			
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0			
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0			
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0			
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4			
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10			
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10			
				0.001	0.001	0.001	0.004			
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001			
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001			
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001			
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0			
TPH-CWG - Aromatic > EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10			
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10			
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4			
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10			
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10			
TPHCWG - Total C5 - C44 Aliphatic & Aromatic	mg/kg	10	NONE	< 10	< 10	< 10	< 10			
	iiig/kg	10	NONE	× 10	× 10	× 10	× 10			

U/S = Unsuitable Sample I/S = Insufficient Sample

				1638079	-		
Lab Sample Number					1638080	1638081	1638082
Sample Reference	TP3	TP4	TP5	TP7			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.20	0.20	0.20	0.20			
Date Sampled	16/09/2020	16/09/2020	16/09/2020	16/09/2020			
Time Taken					None Supplied	None Supplied	None Supplied
Analytical Parameter	ç	Limit of detecti on	A tab				
(Soil Analysis)	Units	nit o etect	Accredi tation Status				
	1		• =				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.1 N/A	NONE	9.5	9.9	10	11
Total mass of sample received		0.001	NONE	9.5	9.9 1	0.8	0.9
Total mass of sample received	kg	0.001	NONE	L	L	0.8	0.9
Ashastas is Cail			100 17005	National Astronomy	Nat data stad	Nat data stad	Nat data at a
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	-						
pH - Automated	pH Units	N/A	MCERTS	6.4	6.4	6.5	6.9
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	9.9	16	28	19
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.005	0.008	0.014	0.0096
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	5	8	14.1	9.6
Total Chloride	mg/kg	5	NONE	-	-	-	-
Organic Matter	%	0.1	MCERTS	1.8	1.5	1.7	1.7
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	-	-
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
	66						
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
	111g/ Ng	0.0	TIGENTS	- 0.00	- 0.00	- 0.00	- 0.00
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	m = //	4	MCERTS	6.2	EO	6.6	7.5
	mg/kg	1		6.3	5.9	6.6	7.3
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.8	0.67	0.78	0.84
Boron (total)	mg/kg	1	MCERTS	4.9	3.4	4.3	4.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	0.2	0.3	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	25	21	22	23
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	27	22	23	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.8	9.1	12	11
Lead (aqua regia extractable)	mg/kg	1	MCERTS	38	31	29	32
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	20	22	22
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	35	28	31	32
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	91	72	69	73

Lab Sample Number				1638079	1638080	1638081	1638082
Sample Reference				TP3	TP4	TP5	TP7
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.20	0.20	0.20
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
	-	<u>e</u> E	S the P				
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
	S	±i ti	idi Is				
Magnesium (water soluble)		5	NONE	11	14	12	15
Magnesium (water soluble)	mg/kg	5	NONE	11	14	12	15
Monoaromatics & Oxygenates		-					
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons		-					
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10
			-				
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10
TPHCWG - Total C5 - C44 Aliphatic & Aromatic	mg/kg	10	NONE	< 10	< 10	< 10	< 10

				1 60 0000	1000001	1000005	1 520205
Lab Sample Number				1638083	1638084	1638085	1638086
Sample Reference				TP2	TP10	TP11	TP12
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.80	0.20	0.20	0.20
Date Sampled				16/09/2020	17/09/2020	17/09/2020	17/09/2020
Time Taken	1			None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detecti on	Accredi tation Status				
(Soil Analysis)	ដ	n ecti	ion tus				
	8						
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	11	11	12	13
Total mass of sample received	kg	0.001	NONE	0.5	1.2	1.2	1.2
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected	Not-detected
	71.5	,					
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.4	6.9	6.5	6.7
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	30	66	60	60
Water Soluble S04 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.015	0.033	0.03	0.03
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/i mg/l	1.25	MCERTS	14.9	32.9	30.1	29.9
Total Chloride	mg/kg	5	NONE	-	-	-	-
Organic Matter	//////////////////////////////////////	0.1	MCERTS	< 0.1	1.8	2.3	2
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	-	-
	פיי ופייי	-					
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
	iiig/ kg	1	PICERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
-		0.05	MCEDIC	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	mg/kg	0.05	MCERTS				< 0.05
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05
•	mg/kg		MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05		< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	0.44	< 0.05
	mg/kg			< 0.05	< 0.05	0.44	< 0.05
Pyrene Ranza/a)anthracana	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.46	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	0.29	< 0.05
Chrysene Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
ecure/Aui/bervieue	mg/kg	0.05	PICENT3	< 0.05	< 0.03	< 0.05	< 0.03
Total PAH							
Speciated Total EPA-16 PAHs	ma/ka	0.8	MCERTS	< 0.80	< 0.80	1.45	< 0.80
	mg/kg	0.0	PICERTS	< 0.00	< 0.00	1.73	< 0.00
Heavy Metals / Metalloids							
	mellie	4	MCEDIC	2.1	0 5	07	7 1
Arsenic (aqua regia extractable)	mg/kg	1 0.06	MCERTS	3.1 0.86	8.5 0.78	8.7 1.1	7.1
Beryllium (aqua regia extractable) Boron (total)	mg/kg	0.06	MCERTS MCERTS	1.8	3.3	3.8	3.4
Boron (total) Cadmium (aqua regia extractable)	mg/kg			0.3	0.3	0.4	0.4
	mg/kg	0.2	MCERTS				
Chromium (hexavalent) Chromium (III)	mg/kg	4	MCERTS	< 4.0 21	< 4.0 25	< 4.0 29	< 4.0 27
	mg/kg		NONE				
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21 6.7	27 7.8	30 13	28 11
Copper (aqua regia extractable)	mg/kg	1	MCERTS	84	37	51	54
Lead (aqua regia extractable)	mg/kg	1	MCERTS		< 0.3	< 0.3	< 0.3
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3 27	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS				
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	22	34	43	38
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	67	83	81

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Lab Sample Number				1638083	1638084	1638085	1638086
Sample Reference				TP2	TP10	TP11	TP12
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.80	0.20	0.20	0.20
Date Sampled				16/09/2020	17/09/2020	17/09/2020	17/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
		<u>م</u> ۲	Ω + Þ	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
	2	£; of	edi on us				
Magnesium (water soluble)	mg/kg	5	NONE	5.2	17	19	19
Monoaromatics & Oxygenates							
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6		0.001	MCEDIC	< 0.001	< 0.001	< 0.001	< 0.001
	mg/kg		MCERTS				< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001 < 0.001	< 0.001 < 0.001	
TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	0.001	MCERTS	< 0.001 < 1.0		< 1.0	< 0.001
	mg/kg	1	MCERTS	< 2.0	< 1.0 < 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic > EC16 EC21	mg/kg		MCERTS				
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS MCERTS	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0	< 8.0 < 8.0
	mg/kg	8.4		< 8.4	< 8.0	< 8.0	< 8.4
TPH-CWG - Aliphatic > EC35 - EC44 TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	8.4 10	NONE	< 10	< 10	< 10	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg mg/kg	10	MCERTS NONE	< 10	< 10	< 10	< 10
Trifewo - Alphate (Les - Leff)	ilig/kg	10	NONL	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10
				-	-	-	
TPHCWG - Total C5 - C44 Aliphatic & Aromatic	mg/kg	10	NONE	< 10	< 10	< 10	< 10
·····							

Lab Sample Number				1638087	1638088	1638089	1638090
Sample Reference				TP13	TP18	TP16	TP20
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.20	0.60	0.20
Date Sampled				17/09/2020	17/09/2020	18/09/2020	18/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	⊊	Limit of detecti on	A table				
(Soil Analysis)	Units	nit o stect	Accredi tation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.1 N/A	NONE	10	9.9	8.2	8.8
Total mass of sample received		0.001	NONE	1.2	0.9	0.5	0.9
	kg	0.001	NONL	1.2	0.9	0.5	0.9
Ashartas in Sail	Turne	NI/A	ISO 17025	Not-detected	Not-detected	-	Not-detected
Asbestos in Soil	Туре	N/A	150 17025	Not-delected	Not-delected	-	Not-detected
e de la construcción de la constru							
General Inorganics						()	6.5
pH - Automated	pH Units	N/A	MCERTS	6.6	6.6	6.7	6.5
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	63	26	24	37
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.032	0.013	0.012	0.019
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	31.6	13	12.1	18.6
Total Chloride	mg/kg	5	NONE	-	-	-	-
Organic Matter	%	0.1	MCERTS	1.7	1.7	0.2	1.9
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	-	-
Total Phenols	1	-		-	-	-	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.5	6.8	3	6.4
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.8	0.77	0.83	0.82
Boron (total)	mg/kg	1	MCERTS	3.2	2.2	2	3.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	0.3	< 0.2	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	24	24	22	24
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	24	22	26
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	13	6	16
Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	26	12	23
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	20	26	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	36	34	20	34
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	71	66	47	69
(aqua regia ena actualic)	iiig/ kg		TICLINI J	/1	00	17	0,

Lab Sample Number				1638087	1638088	1638089	1638090
Sample Reference				TP13	TP18	TP16	TP20
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.20	0.60	0.20
Date Sampled				17/09/2020	17/09/2020	18/09/2020	18/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
	_	<u>م</u> ۲	Ω + Þ	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detecti on	Accredi tation Status				
(Soil Analysis)	ي. ا	란이	edi on us				
Magnesium (water soluble)	mg/kg	5	NONE	14	7.8	5.1	15
Monoaromatics & Oxygenates							
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8		0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	5. 5	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic > $EC35$ - $EC44$	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	0.4 10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10
		10	HOLL	. 10	. 10	. 10	- 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	< 10	< 10
	و بر						-
TPHCWG - Total C5 - C44 Aliphatic & Aromatic	mg/kg	10	NONE	< 10	< 10	< 10	< 10
	er, 16						

				1620001	1620002	1620002	1620004
Lab Sample Number				1638091 TP21	1638092 TP21	1638093 TP23	1638094 TP24
Sample Reference					None Supplied	-	None Supplied
Sample Number				None Supplied 0.20	0.80	None Supplied 0.20	0.20
Depth (m) Date Sampled				18/09/2020	18/09/2020	18/09/2020	18/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
	1	<u>م</u> ۲	(0 + P	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detecti on	Accredi tation Status				
(Soil Analysis)	ស	£; of	edi on us				
		-				-	
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	10	7.8	9.4	9.3
Total mass of sample received	kg	0.001	NONE	0.9	0.5	1	1
		-					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	Not-detected
General Inorganics		-				-	
pH - Automated	pH Units	N/A	MCERTS	6.5	7.8	6.5	6.5
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	31	27	45	40
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.016	0.014	0.022	0.02
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	15.7	13.6	22.4	19.9
Total Chloride	mg/kg	5	NONE	-	-	-	-
Organic Matter	%	0.1	MCERTS	2	0.2	1.9	1.9
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	-	-
Total Phenols			-		1	1	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs			-		1		
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Serie (Burlie Field	····9/ N9	0.05	TICENTS	- 0.05	- 0.05	- 0.05	- 0.00
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
		010	HIGERTO	1 0100	. 0.00		. 0.00
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.9	3.6	6.2	5.8
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.86	0.87	0.82	0.82
Boron (total)	mg/kg	1	MCERTS	3.6	2	3.3	3.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	< 0.2	0.3	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	23	22	23	25
Chromium (agua regia extractable)	mg/kg	1	MCERTS	25	22	25	26
Copper (aqua regia extractable)	mg/kg	1	MCERTS	14	7.2	12	12
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26	5.1	21	21
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	27	20	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.1	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	33	22	32	34
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	72	46	66	70
		· ·		,		30	. 0

Sample Reference IT21 TT21 TT21 TT21 TT23 TT23 <th>Lab Sample Number</th> <th></th> <th></th> <th></th> <th>1638091</th> <th>1638092</th> <th>1638093</th> <th>1638094</th>	Lab Sample Number				1638091	1638092	1638093	1638094
Sample Number None Supplied None Sup								
Depth (m) 0.20 0.80 0.20 0.20 Date Sampled 18(99/2020 19/20 10						None Supplied	None Supplied	
Date Sampled 18/09/2020 18/09/2020 18/09/2020 18/09/2020 18/09/2020 Time Taken Nore Supplied Nore Sup								
Time Taken None Supplied None Suplied None Supplied None Supplie								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
Magnesium (water soluble) mg/kg 5 NONE 14 5.4 9.9 11 Monoaromatics & Oxygenates Benzene µg/kg 1 MCERTS <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th></th> <th>_</th> <th><u>م</u> ت</th> <th>Ω + Þ</th> <th>None Supplied</th> <th>None Supplied</th> <th>None Supplied</th> <th>None Supplied</th>		_	<u>م</u> ت	Ω + Þ	None Supplied	None Supplied	None Supplied	None Supplied
Magnesium (water soluble) mg/kg 5 NONE 14 5.4 9.9 11 Monoaromatics & Oxygenates Benzene µg/kg 1 MCERTS <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		Unit	on	atio				
Monoaromatics & Oxygenates Benzene $\mu g/kg$ 1 MCERTS < 1.0	(Soli Analysis)	ίδ.	of cti	edi on us				
Monoaromatics & Oxygenates Benzene $\mu g/kg$ 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 Toluene $\mu g/kg$ 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 Benzene $\mu g/kg$ 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 Benzene $\mu g/kg$ 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Magnesium (water soluble)	mg/kg	5	NONE	14	5.4	9.9	11
Toluene μ_{g}/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 Ethylbenzene μ_{g}/kg 1 MCERTS < 1.0	Monoaromatics & Oxygenates							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Oxylene Jup/g 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic > EC5 - EC6 mg/kg 0.001 MCERTS < 0.001	o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ma/ka	0.001	MCEDTS	< 0.001	< 0.001	< 0.001	< 0.001
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
TPH-CWG - Aliphatic > EC12 - EC16 mg/kg 2 MCERTS < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0								
TPH-CWG - Aliphatic >EC16 - EC21 mg/kg 8 MCERTS < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.0 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0		5, 5			-	-	-	
TPH-CWG - Aliphatic > EC21 - EC35 mg/kg 8 MCERTS < 8.0 < 8.0 < 8.0 < 8.0 TPH-CWG - Aliphatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4								
TPH-CWG - Aliphatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4 < 8.4 < 8.4 < 8.4 TPH-CWG - Aliphatic (EC5 - EC35) mg/kg 10 MCERTS < 10								
TPH-CWG - Aliphatic (EC5 - EC35) mg/kg 10 MCERTS < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <								
TPH-CWG - Aliphatic (EC5 - EC44) mg/kg 10 NONE < 10 < 10 < 10 < 10 TPH-CWG - Aromatic >EC5 - EC7 mg/kg 0.001 MCERTS < 0.001								
TPH-CWG - Aromatic >EC5 - EC7 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 TPH-CWG - Aromatic >EC7 - EC8 mg/kg 0.001 MCERTS < 0.001			-		-	-		
TPH-CWG - Aromatic >EC7 - EC8 mg/kg 0.001 MCERTS < 0.001	,	ی بی			-	-	-	
TPH-CWG - Aromatic >EC7 - EC8 mg/kg 0.001 MCERTS < 0.001	TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0								
TPH-CWG - Aromatic >EC10 - EC12 mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 TPH-CWG - Aromatic >EC12 - EC16 mg/kg 2 MCERTS < 2.0	TPH-CWG - Aromatic >EC8 - EC10		0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC12 - EC16 mg/kg 2 MCERTS < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 TPH-CWG - Aromatic >EC16 - EC21 mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic >EC21 - EC35 mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 10 < 10 < 10 TPH-CWG - Aromatic (EC5 - EC35) mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic (EC5 - EC35) mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic (EC5 - EC44) mg/kg 10 NONE < 10 < 10 < 10 < 10	TPH-CWG - Aromatic >EC10 - EC12		1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC16 - EC21 mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic >EC21 - EC35 mg/kg 10 MCERTS < 10	TPH-CWG - Aromatic >EC12 - EC16		2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic > EC21 - EC35 mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4	TPH-CWG - Aromatic >EC16 - EC21		10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
TPH-CWG - Aromatic (EC5 - EC35) mg/kg 10 MCERTS < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	TPH-CWG - Aromatic > EC35 - EC44		8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC44) mg/kg 10 NONE < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	TPH-CWG - Aromatic (EC5 - EC35)		10	MCERTS	< 10	< 10	< 10	< 10
							•	
1211 MONE < 10 < 10 < 10 < 10 < 10 < 10 < 10	TPHCWG - Total C5 - C44 Aliphatic & Aromatic	mg/kg	10	NONE	< 10	< 10	< 10	< 10

				100005	1000000	4 6 9 9 9 9 7	1 (200000
Lab Sample Number				1638095	1638096	1638097	1638098
Sample Reference				TP14	TP26	TP28	TP30
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.20	0.20	0.20
Date Sampled				18/09/2020	18/09/2020	21/09/2020	21/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	Units	Limit of detecti on	Accredi tation Status				
(Soil Analysis)	its	n ecti	redi ion tus				
		-10					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	9.7	12	11	9.4
Total mass of sample received	kg	0.001	NONE	0.5	1	1	1
	5						
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected	Not-detected
	11	,					
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	5.4	6.8	6.9	7.2
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	55	43	23	31
Water Soluble Sol 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.028	0.021	0.011	0.016
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/i mg/l	1.25	MCERTS	27.6	21.4	11.4	15.5
Total Chloride	mg/kg	5	NONE	210	-		-
Organic Matter	//////////////////////////////////////	0.1	MCERTS	1.1	2.6	1.9	1.6
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	7.1	-	-	-
				<i>··•</i>		8	1
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
	iiig/kg	1	PICEICIO	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
				. 5100	. 5.00		1 0.00
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	4.3	8	5.8	6.8
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.72	1.2	0.85	0.93
Boron (total)	mg/kg	1	MCERTS	3.6	5.5	4.3	4.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.4	0.3	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (III)	mg/kg	4	NONE	21	35	26	27
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	35	20	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	7.3	13	12	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	21	48	20	19
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	26	20	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	1.2
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	24	49	35	35
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	59	100	68	68
בוויב (מקטמ ובשום באנו מנומטוב)	шу/ку	1	PICER13	JZ	100	00	00

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Sample Reference IP:14 TP:26 IP:28	Lab Sample Number				1638095	1638096	1638097	1638098
Sample Number None Supplied None Sup								
Depth (m) 0.50 0.20 0.20 0.20 0.20 0.20 Date Sampled 18/09/2020 18/09/2020 18/09/2020 21/09/2020 21/09/2020 Time Taken None Supplied None Supplied </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th>						-	-	
Date Sampled 18/09/2020 18/09/2020 21/09/2020 21/09/2020 21/09/2020 21/09/2020 21/09/2020 21/09/2020 None Supplied N								
Time Taken None Supplied None Suplied None Supplied None Supplie								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
Magnesium (water soluble) mg/kg 5 NONE 8.5 16 8.8 10 Monoaromatics & Oxygenates Benzene µg/kg 1 MCERTS <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		-	<u>e</u> E	S et P				
Magnesium (water soluble) mg/kg 5 NONE 8.5 16 8.8 10 Monoaromatics & Oxygenates Benzene $\mu g/kg$ 1 MCERTS <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th></th> <th>Jnit</th> <th>etec on</th> <th>ocre atio tatu</th> <th></th> <th></th> <th></th> <th></th>		Jnit	etec on	ocre atio tatu				
Monoaromatics & Oxygenates Benzene $\mu g/kg$ 1 MCERTS < 1.0		S	±. of	idi Is				
Monoaromatics & Oxygenates Benzene $\mu g/kg$ 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 Toluene $\mu g/kg$ 1 MCERTS < 1.0								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Magnesium (water soluble)	mg/kg	5	NONE	8.5	16	8.8	10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Monoaromatics & Oxygenates							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Oxylene Jug/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic > EC5 - EC6 mg/kg 0.001 MCERTS < 0.001	o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.001	MCEDIC	< 0.001	< 0.001	< 0.001	< 0.001
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
TPH-CWG - Aliphatic > EC12 - EC16 mg/kg 2 MCERTS < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0								
TPH-CWG - Aliphatic >EC16 - EC21 mg/kg 8 MCERTS < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.0 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.0 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0		5, 5			-	-	-	
TPH-CWG - Aliphatic > EC21 - EC35 mg/kg 8 MCERTS < 8.0 < 8.0 < 8.0 < 8.0 TPH-CWG - Aliphatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4								
TPH-CWG - Aliphatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4 < 8.4 < 8.4 < 8.4 TPH-CWG - Aliphatic (EC5 - EC35) mg/kg 10 MCERTS < 10			-					
TPH-CWG - Aliphatic (EC5 - EC35) mg/kg 10 MCERTS < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10<			-					
TPH-CWG - Aliphatic (EC5 - EC44) mg/kg 10 NONE < 10 < 10 < 10 < 10 TPH-CWG - Aromatic >EC5 - EC7 mg/kg 0.001 MCERTS < 0.001								
TPH-CWG - Aromatic >EC5 - EC7 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 TPH-CWG - Aromatic >EC7 - EC8 mg/kg 0.001 MCERTS < 0.001			-		-	-		. ==
TPH-CWG - Aromatic >EC7 - EC8 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 $< 0.$			10		. 10	. 10	. 20	. 20
TPH-CWG - Aromatic >EC7 - EC8 mg/kg 0.001 MCERTS < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 $< 0.$	TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 mg/kg 0.001 MCERTS < 0.001								
TPH-CWG - Aromatic >EC10 - EC12 mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 TPH-CWG - Aromatic >EC12 - EC16 mg/kg 2 MCERTS < 2.0	TPH-CWG - Aromatic >EC8 - EC10				< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC12 - EC16 mg/kg 2 MCERTS < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 TPH-CWG - Aromatic >EC16 - EC21 mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic >EC21 - EC35 mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic >EC35 - EC44 mg/kg 8.4 NONE < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 10 < 10 < 10 TPH-CWG - Aromatic (EC5 - EC35) mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic (EC5 - EC35) mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic (EC5 - EC44) mg/kg 10 NONE < 10 < 10 < 10 < 10	TPH-CWG - Aromatic >EC10 - EC12		1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC21 mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic >EC21 - EC35 mg/kg 10 MCERTS < 10								
TPH-CWG - Aromatic > EC21 - EC35 mg/kg 10 MCERTS < 10 < 10 < 10 < 10 TPH-CWG - Aromatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4				MCERTS			< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44 mg/kg 8.4 NONE < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 < 8.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
TPH-CWG - Aromatic (EC5 - EC35) mg/kg 10 MCERTS < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10						< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC44) mg/kg 10 NONE < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	TPH-CWG - Aromatic (EC5 - EC35)		10	MCERTS	< 10	< 10	< 10	< 10
1211 MONE < 10 < 10 < 10 < 10 < 10 < 10 < 10	TPHCWG - Total C5 - C44 Aliphatic & Aromatic	mg/kg	10	NONE	< 10	< 10	< 10	< 10

Lab Sample Number				1638099
Sample Reference				TP31
Sample Number				None Supplied
Depth (m)		0.20		
Date Sampled	21/09/2020			
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	N/A	NONE	8.8
Total mass of sample received	kg	0.001	NONE	1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.1
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	49
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.024
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	24.4
Total Chloride	mg/kg	5	NONE	-
Organic Matter	%	0.1	MCERTS	1.7
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80

Heavy Metals / Metalloids

neury neuro / neurolas				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.2
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.99
Boron (total)	mg/kg	1	MCERTS	4.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0
Chromium (III)	mg/kg	1	NONE	27
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12
Lead (aqua regia extractable)	mg/kg	1	MCERTS	23
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.1
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	37
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	74

Lab Sample Number				1638099			
Sample Reference				TP31			
Sample Number				None Supplied			
Depth (m)							
Date Sampled	21/09/2020						
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Magnesium (water soluble)	mg/kg	5	NONE	11			

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10
TPHCWG - Total C5 - C44 Aliphatic & Aromatic	mg/kg	10	NONE	< 10

Analytical Report Number : 20-33390

Project / Site name: Tamworth

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1638071	TP14	None Supplied	0.2	Brown sandy loam with gravel.
1638072	TP15	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638073	TP16	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638074	TP17	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638075	TP27	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638076	TP27	None Supplied	1	Light brown clay and sand with gravel.
1638077	TP1	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638078	TP4	None Supplied	0.8	Light brown clay and sand with gravel.
1638079	TP3	None Supplied	0.2	Brown sandy loam with vegetation.
1638080	TP4	None Supplied	0.2	Brown sandy loam with gravel and vegetation.
1638081	TP5	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638082	TP7	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638083	TP2	None Supplied	0.8	Light brown clay and sand with gravel.
1638084	TP10	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638085	TP11	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638086	TP12	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638087	TP13	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638088	TP18	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638089	TP16	None Supplied	0.6	Light brown sand with vegetation.
1638090	TP20	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638091	TP21	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638092	TP21	None Supplied	0.8	Light brown sand with gravel.
1638093	TP23	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638094	TP24	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638095	TP14	None Supplied	0.5	Brown sandy loam with gravel and vegetation.
1638096	TP26	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638097	TP28	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638098	TP30	None Supplied	0.2	Brown sandy loam with vegetation and gravel
1638099	TP31	None Supplied	0.2	Brown sandy loam with vegetation and gravel

Analytical Report Number : 20-33390 Project / Site name: Tamworth

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS	
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025	
Chloride in soil	Determination of acid soluble chloride in soil by extraction with nitric acid, addition of silver nitrate followed by titration against thiocyanate.	In-house method	L075-PL	D	NONE	
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS	
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE	
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	w	MCERTS	
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS	
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS	
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS	
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE	
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	w	NONE	
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS	
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE	

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number : 20-33390 Project / Site name: Tamworth

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG Ali Aro Sum	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	NONE
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

4041

Analytical Report Number : 20-33390 Project / Site name: Tamworth

TP1 None Supplie TP1 None Supplie TP10 None Supplie TP10 None Supplie TP11 None Supplie TP12 None Supplie TP13 None Supplie TP14 None Supplie TP15 None Supplie TP14 None Supplie TP15 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP15 None Supplie TP16 None Supplie TP17 None Supplie TP16 None Supplie TP17 None Supplie TP18 None Supplie TP17 None Supplie TP2 None Supplie <		Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
TP10 None Supplie TP10 None Supplie TP11 None Supplie TP11 None Supplie TP12 None Supplie TP13 None Supplie TP14 None Supplie TP13 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP16 None Supplie TP17 None Supplie TP18 None Supplie TP20 None Supplie TP20 None Supplie TP20 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie<	ed	S	1638077	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
TP10 None Supplie TP11 None Supplie TP11 None Supplie TP12 None Supplie TP12 None Supplie TP13 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP18 None Supplie TP17 None Supplie TP18 None Supplie TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP24 None Supplie<	ed	S	1638077	с	TPH in (Soil)	L076-PL	с
TP11 None Supplie TP11 None Supplie TP12 None Supplie TP12 None Supplie TP13 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP17 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP24 None Supplie<	ed	S	1638084	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP11 None Supplie TP12 None Supplie TP12 None Supplie TP13 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP17 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP20 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP27 None Supplie<	ed	S	1638084	с	TPH in (Soil)	L076-PL	с
TP12 None Supplie TP12 None Supplie TP13 None Supplie TP13 None Supplie TP14 None Supplie TP14 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP16 None Supplie TP17 None Supplie TP18 None Supplie TP17 None Supplie TP18 None Supplie TP20 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP26 None Supplie TP26 None Supplie<	ed	S	1638085	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP12 None Supplie TP13 None Supplie TP13 None Supplie TP14 None Supplie TP14 None Supplie TP14 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP16 None Supplie TP17 None Supplie TP18 None Supplie TP17 None Supplie TP18 None Supplie TP20 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP26 None Supplie TP26 None Supplie<	ed	S	1638085	с	TPH in (Soil)	L076-PL	с
TP13 None Supplie TP13 None Supplie TP14 None Supplie TP14 None Supplie TP14 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP16 None Supplie TP17 None Supplie TP18 None Supplie TP17 None Supplie TP18 None Supplie TP20 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP27 None Supplie TP23 None Supplie TP24 None Supplie TP26 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie <td>ed</td> <td>S</td> <td>1638086</td> <td>с</td> <td>BTEX and MTBE in soil (Monoaromatics)</td> <td>L073B-PL</td> <td>с</td>	ed	S	1638086	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP13 None Supplie TP14 None Supplie TP14 None Supplie TP14 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP16 None Supplie TP17 None Supplie TP18 None Supplie TP17 None Supplie TP18 None Supplie TP20 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP27 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie <td>ed</td> <td>S</td> <td>1638086</td> <td>с</td> <td>TPH in (Soil)</td> <td>L076-PL</td> <td>с</td>	ed	S	1638086	с	TPH in (Soil)	L076-PL	с
TP14 None Supplie TP14 None Supplie TP14 None Supplie TP14 None Supplie TP15 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP18 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie	ed	S	1638087	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP14 None Supplie TP14 None Supplie TP14 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4	ed	S	1638087	с	TPH in (Soil)	L076-PL	с
TP14 None Supplie TP14 None Supplie TP15 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP2 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP24 None Supplie TP34 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie	ed	S	1638071	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP14 None Supplie TP15 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP2 None Supplie TP21 None Supplie TP24 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie <	ed	S	1638071	с	TPH in (Soil)	L076-PL	с
TP15 None Supplie TP15 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP2 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP25 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie <	ed	S	1638095	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP15 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP2 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie <td>ed</td> <td>S</td> <td>1638095</td> <td>с</td> <td>TPH in (Soil)</td> <td>L076-PL</td> <td>с</td>	ed	S	1638095	с	TPH in (Soil)	L076-PL	с
TP16 None Supplie TP16 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP2 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie	ed	S	1638072	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP16 None Supplie TP16 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP2 None Supplie TP2 None Supplie TP20 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie	ed	S	1638072	с	TPH in (Soil)	L076-PL	с
TP16 None Supplie TP16 None Supplie TP17 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP24 None Supplie TP26 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie	ed	S	1638073	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP16 None Supplie TP17 None Supplie TP17 None Supplie TP18 None Supplie TP18 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie	ed	S	1638073	с	TPH in (Soil)	L076-PL	с
TP17 None Supplie TP17 None Supplie TP18 None Supplie TP18 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie	ed	S	1638089	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP17 None Supplie TP18 None Supplie TP18 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP20 None Supplie TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP26 None Supplie TP27 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie	ed	S	1638089	с	TPH in (Soil)	L076-PL	с
TP17 None Supplie TP18 None Supplie TP18 None Supplie TP2 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP27 None Supplie TP28 None Supplie TP29 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie	ed	S	1638074	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP18 None Supplie TP2 None Supplie TP2 None Supplie TP2 None Supplie TP20 None Supplie TP20 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP27 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638074	с	TPH in (Soil)	L076-PL	с
TP18 None Supplie TP2 None Supplie TP2 None Supplie TP20 None Supplie TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP27 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie	ed	S	1638088	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP2 None Supplie TP2 None Supplie TP20 None Supplie TP20 None Supplie TP20 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP25 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638088	c	TPH in (Soil)	L076-PL	с
TP2 None Supplie TP20 None Supplie TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP26 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie	_	S	1638083	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP20 None Supplie TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638083	c	TPH in (Soil)	L076-PL	с
TP20 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638090	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
TP21 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638090	c	TPH in (Soil)	L076-PL	c
TP21 None Supplie TP21 None Supplie TP21 None Supplie TP23 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638091	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
TP21 None Supplie TP21 None Supplie TP23 None Supplie TP23 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie	_	S	1638091	c	TPH in (Soil)	L076-PL	c
TP21 None Supplie TP23 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie TP3 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie TP4 None Supplie	_	S	1638092	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
TP23 None Supplie TP23 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638092	c	TPH in (Soil)	L076-PL	c
TP23 None Supplie TP24 None Supplie TP24 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638093	c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	c
TP24 None Supplie TP24 None Supplie TP26 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638093	c	TPH in (Soil)	L075D1L	c
TP24 None Supplie TP26 None Supplie TP26 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638094	c	BTEX and MTBE in soil (Monoaromatics)	L070-PL	c
TP26 None Supplie TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638094	с с	TPH in (Soil)	L073B-PL L076-PL	с с
TP26 None Supplie TP3 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638094	c	BTEX and MTBE in soil (Monoaromatics)	L076-PL L073B-PL	c
TP3 None Supplie TP3 None Supplie TP4 None Supplie	_	S	1638096	c	TPH in (Soil)	L073B-PL L076-PL	c
TP3 None Supplie TP4 None Supplie	-	S	1638079	c	BTEX and MTBE in soil (Monoaromatics)	L070-PL	c
TP4 None Supplier TP4 None Supplier TP4 None Supplier	_	S	1638079		TPH in (Soil)	L073B-PL L076-PL	c
TP4 None Supplier TP4 None Supplier	_	S	1638079	C C	BTEX and MTBE in soil (Monoaromatics)	L076-PL L073B-PL	с
TP4 None Supplier	-	S	1638078	c	TPH in (Soil)	L0736-PL	c c
	_	S	1638078	-		L076-PL L073B-PL	
	-	S		c	BTEX and MTBE in soil (Monoaromatics)	L073B-PL L076-PL	c
TP4 None Supplier TP5 None Supplier	_	S	1638080 1638081	c	TPH in (Soil) BTEX and MTBE in soil (Monoaromatics)	L076-PL L073B-PL	c c
	_	-		c	· · · · · · · · · · · · · · · · · · ·		c
TP5 None Supplier	_	S S	1638081	c	TPH in (Soil)	L076-PL	c
TP7 None Supplier	_	S	1638082 1638082	c c	BTEX and MTBE in soil (Monoaromatics) TPH in (Soil)	L073B-PL L076-PL	c c

Project Number: AG3185-20

Date and Time of Monitoring: Tuesday 29th September - 12:00 Phase of Monitoring: 1 of 4

BH No.	Flow Range (litres/hr over 3 mins)			Differential Pressure (mb) Methane % v/v Carbon dioxide % v/v Oxygen % v/v				Diameter of installation (mm)	Water level (m bgl)			
	Max	Min	Avg	()	Peak	Steady	Peak	Steady	Min	Steady	(((((((((((((((((((((((((((((((((((((((
CP1	0.1	<0.1	0.1	<1	<0.1	<0.1	1.7	1.7	20.2	20.2	50	DRY
CP4	<0.1	<0.1	<0.1	<1	<0.1	<0.1	1.2	1.2	20.2	20.2	50	DRY
CP6	<0.1	<0.1	<0.1	<1	<0.1	<0.1	0.2	0.2	20.7	20.7	50	DRY
CP7	<0.1	<0.1	<0.1	<1	<0.1	<0.1	0.2	0.2	20.5	20.5	50	1.00

Additional gases (if required)

BH No.	VOCs (ppm)		
CP1	0.2		
CP4	0.2		
CP6	<0.1		
CP7	0.1		

Meterological Data

Atmospheric Pressure (mb)	Start:	1005	
Atmospheric Pressure (mb)	Finish:	1005	
Pressure Rising or Falling	Falling		
Weather Conditions	1/8 clouds		
Atmospheric Oxygen (% vol)	20.9		
Wind Speed & Direction	3mph N		
Ambient Air Temperature (°C)		17.0	

General Notes:

1. Instrument specification data and calibration information provided on a separate sheet

Borehole specific comments/observations					

Site Data

Monitoring Personnel	Carl Sellers
GPS Instrument	
Gasmeter Serial Number	G503948
PID Serial Number	110423
Ground Conditions (vegetation stress	, visual contamination):

APPLIED GEOLOGY

AG-S-07 Issue 9 11.09.19

Project Name: Tamworth

Project Number: AG3185-20 Project Name: Tamworth

Date and Time of Monitoring: Wednesday 7th October 2020 - 09:15 Phase of Monitoring: 2 of 4

BH No.	Flow Ran	ge (litres/hr ov	er 3 mins)	Differential Pressure (mb)	Methar	ne % v/v	Carbon dio	xide % v/v	Oxyge	n % v/v	Diameter of installation (mm)	Water level (m bgl)
	Max	Min	Avg	()	Peak	Steady	Peak	Steady	Min	Steady	(((((((((((((((((((((((((((((((((((((((
CP1	0.1	<0.1	0.1	-0.19	<0.1	<0.1	1.9	1.9	19.3	19.3	50	Dry
CP4	<0.1	<0.1	<0.1	0.07	<0.1	<0.1	1.3	1.3	19.6	19.6	50	Dry
CP6	<0.1	<0.1	<0.1	0.09	<0.1	<0.1	1.5	1.5	19.4	19.4	50	Dry
CP7	<0.1	<0.1	<0.1	-0.12	<0.1	<0.1	0.6	0.6	20.3	20.3	50	0.88

Additional gases (if required)

BH No.	VOCs (ppm)		
CP1	<0.1		
CP4	<0.1		
CP6	<0.1		
CP7	<0.1		

Meterological Data

Atmospheric Pressure (mb)	Start:	999	
Atmospheric Pressure (mb)	Finish:	1002	
Pressure Rising or Falling	Rising		
Weather Conditions	Hazy cloud		
Atmospheric Oxygen (% vol)	20.7		
Wind Speed & Direction	10mph W		
Ambient Air Temperature (°C)		11.0	

General Notes:

1. Instrument specification data and calibration information provided on a separate sheet

Borehole specific comments/observations					

Site Data

Monitoring Personnel	Malcolm McGlone			
GPS Instrument				
Gasmeter Serial Number	G506760			
PID Serial Number	109598			
Ground Conditions (vegetation stress	s, visual contamination):			

APPLIED GEOLOGY

AG-S-07 Issue 9 11.09.19

Project Number: AG3185-20 Project Name: Tamworth

Date and Time of Monitoring: Wednesday 14th October 2020 - 13:15 Phase of Monitoring: 3 of 4

BH No.	Flow Ran	ge (litres/hr ov	er 3 mins)	Differential Pressure (mb)	Methar	ie % v/v	Carbon dio	xide % v/v	Oxyge	n % v/v	Diameter of installation (mm)	Water level (m bgl)
	Max	Min	Avg	(Peak	Steady	Peak	Steady	Min	Steady	(((((((((((((((((((((((((((((((((((((((
CP1	<0.1	<0.1	<0.1	-0.09	<0.1	<0.1	1.4	1.4	19.5	19.5	50	Dry
CP4	<0.1	<0.1	<0.1	0.03	<0.1	<0.1	1.0	1.0	20.2	20.2	50	Dry
CP6	<0.1	<0.1	<0.1	0.05	<0.1	<0.1	1.1	1.1	19.9	19.9	50	Dry
CP7	<0.1	<0.1	<0.1	-0.05	<0.1	<0.1	0.7	0.7	20.3	20.3	50	0.98

Additional gases (if required)

BH No.	VOCs (ppm)		
CP1	<0.1		
CP4	<0.1		
CP6	<0.1		
CP7	<0.1		

Meterological Data

Atmospheric Pressure (mb)	Start:	1015	
	E :	4045	
Atmospheric Pressure (mb)	Finish:	1015	
Pressure Rising or Falling	Rising		
Weather Conditions	Sunny, cloud building.		
Atmospheric Oxygen (% vol)	21.9		
Wind Speed & Direction	11mph NNE		
Ambient Air Temperature (°C)		12.0	

General Notes:

1. Instrument specification data and calibration information provided on a separate sheet

Borehole specific comments/observations						

Site Data

Monitoring Personnel	Malcolm McGlone			
GPS Instrument				
Gasmeter Serial Number	G505737			
PID Serial Number	109598			
Ground Conditions (vegetation stress, visual contamination):				

APPLIED GEOLOGY

AG-S-07 Issue 9 11.09.19

Project Number: AG3185-20 Project Name: Tamworth

Date and Time of Monitoring: Wednesday 21st October 2020 - 14:15 Phase of Monitoring: 4 of 4

BH No.	Flow Range (litres/hr over 3 mins)			Differential Pressure (mb)	Methar	ne % v/v	Carbon dio	xide % v/v	Oxyge	n % v/v	Diameter of installation (mm)	Water level (m bgl)
	Max	Min	Avg	(Peak	Steady	Peak	Steady	Min	Steady	(((((((((((((((((((((((((((((((((((((((
CP1	<0.1	<0.1	<0.1	-0.09	<0.1	<0.1	0.8	0.8	20.3	20.3	50	2.61
CP4	<0.1	<0.1	<0.1	0.03	<0.1	<0.1	1.2	1.2	20.0	20.0	50	Dry
CP6	<0.1	<0.1	<0.1	-0.02	<0.1	<0.1	0.4	0.4	19.8	19.8	50	Dry
CP7	<0.1	<0.1	<0.1	-0.02	<0.1	<0.1	1.5	1.5	19.4	19.4	50	0.99

Additional gases (if required)

BH No.	VOCs (ppm)		
CP1	<0.1		
CP4	<0.1		
CP6	<0.1		
CP7	<0.1		

Meterological Data

Atmospheric Pressure (mb)	Start:	984	
Atmospheric Pressure (mb)	Finish:	984	
Pressure Rising or Falling		Rising	
Weather Conditions	Overcast / rain		
Atmospheric Oxygen (% vol)		21.5	
Wind Speed & Direction		7mph SSW	
Ambient Air Temperature (°C)		15.0	

General Notes:

1. Instrument specification data and calibration information provided on a separate sheet

Borehole specific comments/observations						

Site Data

Malcolm McGlone
G505737
109598
, visual contamination):

AG-S-07 Issue 9 11.09.19

APPLIED GEOLOGY

Gas Monitoring Equipment Specification and Accuracy Details

Instrument Specifications

Instrument	Atmospheric Pressure Range	Temperature Range	Flow Range	Flow Resolution	Borehole Pressure Range
GA5000	500-1500 mb +/- 5 mb	-10°C to + 50°C	0-20 lt/hr +/- 0.3 l/hr	0.1l/hr	.+500/-500 mbar +/- 4 mbar
Phocheck Tiger	-	-20 to + 60°C (Certified to - 15 to + 45°C)	-	-	-

Instrument Accuracy

Instru	ment	Methane	Lower Explosive Limit	Carbon Dioxide	Oxygen	Volatile Organic Compounds	Hydrogen Sulphide	Carbon Monoxide
	Detection Range	0-100%	-	0 -100%	0-25%	NA	0 -50ppm response <30 secs	0 - 1000ppm response <30 Secs
GA5000	Detection Accuracy	.+/- 0.5% @ 0 to 70%, +/-1.5% @ 70 to 100% Response < 10 secs	N/A	.+/- 0.5% @ 0 to 60%, +/-1.5% @ 60 to 100% Response < 10 secs	.+/- 1.0% @ 0 to 25%, Response < 20 secs	NA	.+/- 1.5% FS	.+/- 2% of FS
	Detection Range	N/A	N/A	N/A	N/A	1 ppb - 10,000 ppm	N/A	N/A
Phocheck Tiger	Detection Accuracy	N/A	N/A	N/A	N/A	+/- 1ppb +- 5% of actual displayed accuracy +/- One digit Response < 2sec	N/A	N/A

Calibration Frequency	Equipment Serial Numbers	
Details of the instrument calibration certificates and service records are available if required.	GA5000 (G503948, G505383, G505737) Phocheck Tiger - (T-108308, T-109597, T-109598, T-110423)	APPLIED GEOLOGY

15/01/2021

GEOLABS Limited Unit D3 HRS Business Park Granby Avenue Birmingham B33 0SJ

Date of sample disposal

Applied Geology First Floor Lowton Business Park Newton Road Lowton St. Mary's	Tel: +44(0) 121 2 Fax: +44(0) 121 2 email: admin@ge web: www.geola	296 4599 olabs.co.uk
Warrington WA3 2AN	18 De	cember 2020
WAS ZAN	Report No : G	EO/32315/01
For the attention of Mr C Sellers / Mr P Gabrielle		Page 1 of 1
Dear Sirs	Date samples received	04/12/2020
Dear Sirs	Date written instructions received	04/12/2020
		•
Our ref GEO / 32315	Date testing commenced	05/12/2020

 Our ref
 GEO / 32315

 Your Ref
 AG3185-20

Project TAMWORTH

Further to your instructions we have pleasure in enclosing the results of the tests you requested in the attached figures.

LABORATORY TEST REPORT

Item No	Test Quantity	Description
1	,	Geochemical Test Summary
~	5	BRE SD1 Suite B - Natural ground + pyrite
2	5	Particle Size Distribution
3	3	Moisture Content / Dry Density Relationship

Any opinions or interpretations expressed herein are outside the scope of UKAS accreditation. All results contained in this report are provisional unless signed by an approved signatory. The results contained in this report relate only to samples received in the laboratory and are tested 'as received' unless otherwise stated. This report should not be reproduced, except in full, without the written approval of the laboratory.

All the necessary data required by the documented test procedures has been recorded and will be stored for a period of not less than 6 years. This data will be issued to yourselves at your request. All samples will be disposed of after the date shown above. Written confirmation will be required to retain the samples beyond this period and a storage charge may be applied.

We trust that the above meets your requirements and should you require any further information or assistance, please do not hesitate to contact us.

Yours faithfully

on behalf of GEOLABS Limited

Laboratory Manager

"Geolabs" and the Geolabs logo are registered trademarks in the name of Geolabs Limited Registered Office: Bucknalls Lane Garston Watford Hertfordshire WD25 9XX Registered in England and Wales No: 3177641 1131 - Chemical Test Summary - 32315.XLSM

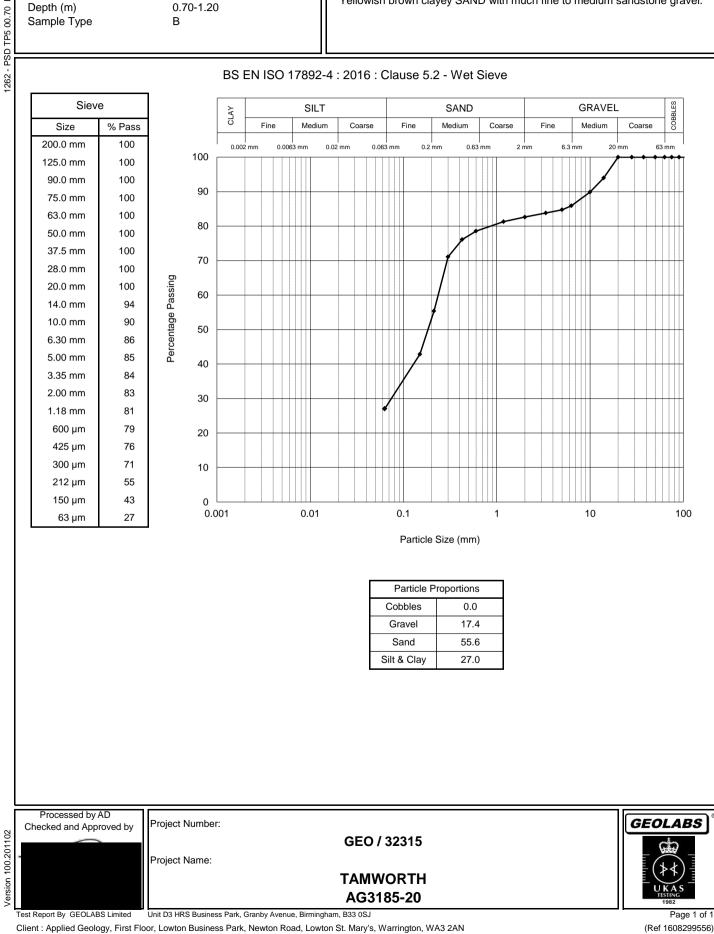
SUMMARY OF CHEMICAL TESTS ON SOIL

Location	Depth m	Sample Ref	Sample Type	pH Value	Total Acid Soluble Sulphate as SO4	Water Soluble Sulphate as SO4 2:1 Water:Soil Extract	% Total Sulphur	Q Water Soluble Chloride	⊖ Water Soluble Nitrate	⊆ Magnesium	% Organic Content	% Mass Loss on Ignition	% Carbonate Content
TP15	1.30-1.50		В	5.3	0.021	< 0.010	0.020	-	-	-	-	-	-
TP21	1.90-2.20		В	8.3	0.020	< 0.010	< 0.010	-	-	-	-	-	-
TP28	0.70		В	8.4	0.010	< 0.010	< 0.010	-	-	-	-	-	-
TP5	0.70-1.20		В	7.5	< 0.010	< 0.010	0.013	-	-	-	-	-	-
TP7	1.80-2.20		В	8.3	< 0.010	< 0.010	< 0.010	-	-	-	-	-	-
			Te	sted by C	Chemtest I	_td : MCE	RTS / UK	AS No 21	83				

Checked and Approved by: Project Number: Project Name: TAMWORTH AG3185-20

Test Report By GEOLABS Limited Unit D3 HRS Business Park, Granby Avenue, Birmingham, B33 0SJ Client : Applied Geology, First Floor, Lowton Business Park, Newton Road, Lowton St. Mary's, Warrington, WA3 2AN

PARTICLE SIZE DISTRIBUTION


Description

Yellowish brown clayey SAND with much fine to medium sandstone gravel.

1262 - PSD TP5 00.70 B - 32315-220905.XLSM

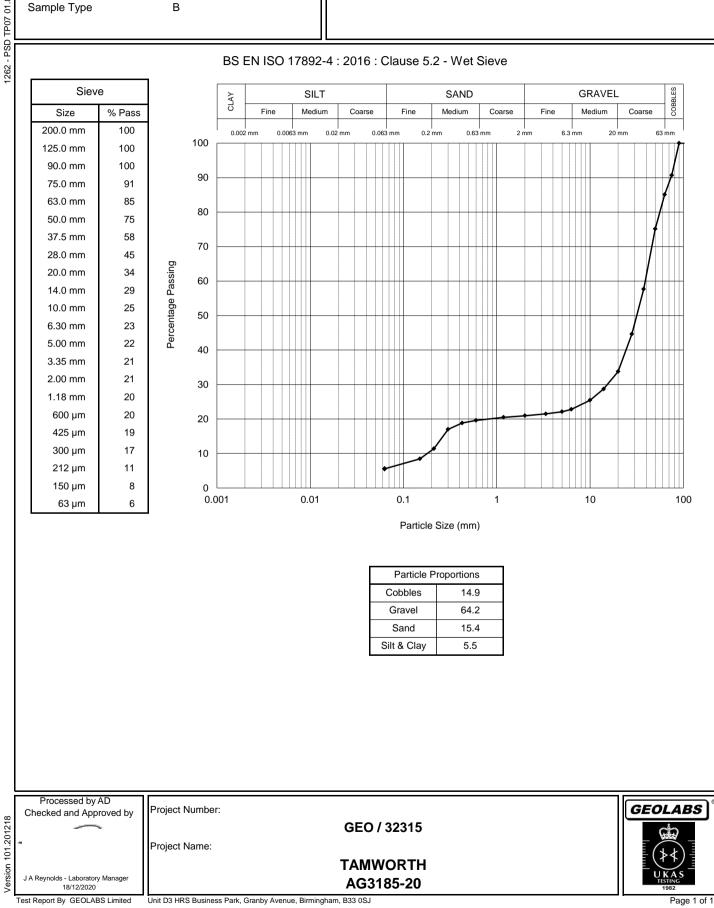
Location

TP5

PARTICLE SIZE DISTRIBUTION

Description

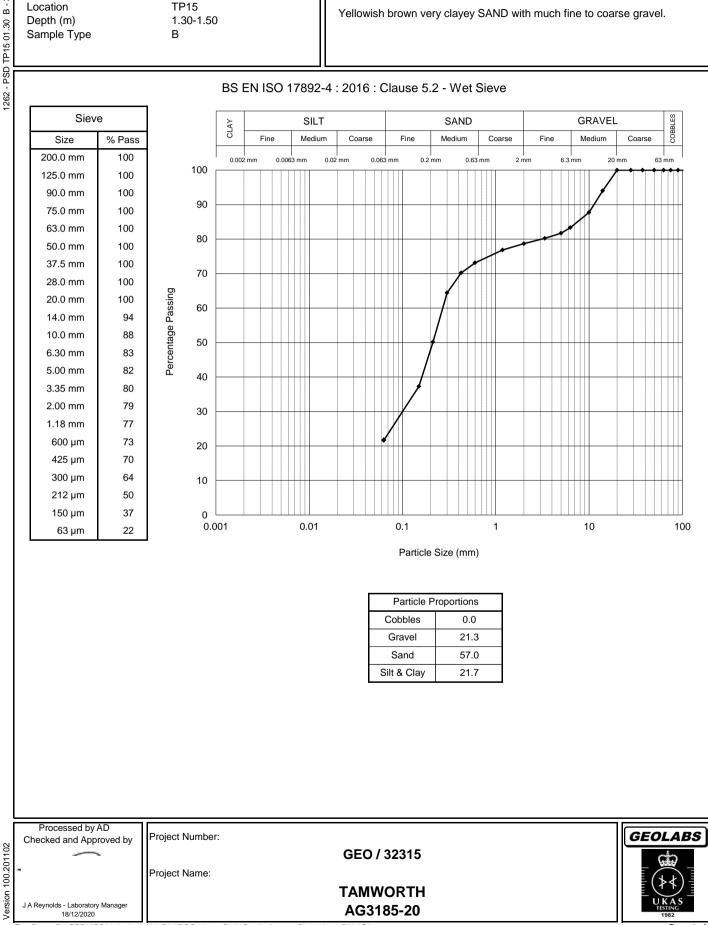
Yellowish brown slightly clayey sandy fine to coarse sandstone GRAVEL.


1262 - PSD TP07 01.80 B - 32315-220902.XLSM

Location

Depth (m)

TP7


1.80-2.20

PARTICLE SIZE DISTRIBUTION

Description

1262 - PSD TP15 01.30 B - 32315-220904.XLSM

Test Report By GEOLABS Limited Unit D3 HRS Business Park, Granby Avenue, Birmingham, B33 0SJ

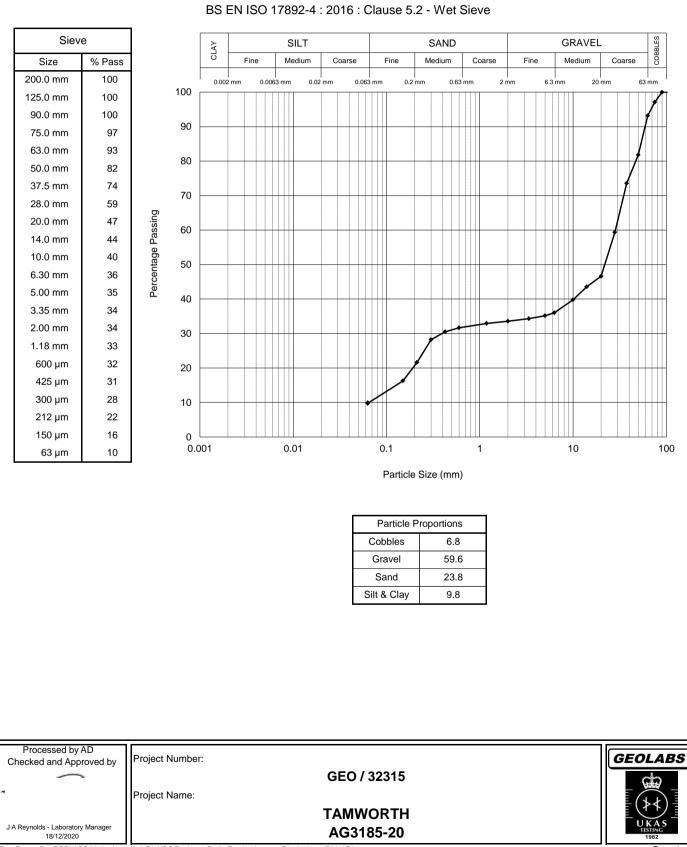
PARTICLE SIZE DISTRIBUTION

Description

Location Depth (m) Sample Type

be

TP21


В

1.90-2.20

Yellowish brown clayey sandy fine to coarse sandstone GRAVEL with rare cobbles.

Version 100.201102

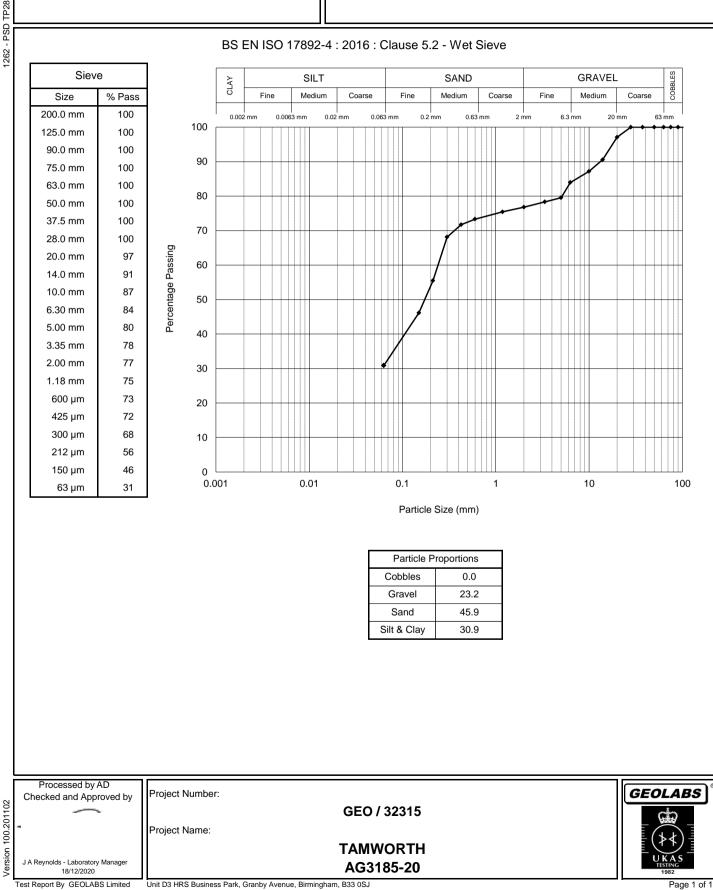
Test Report By GEOLABS Limited Unit D3 HRS Business Park, Granby Avenue, Birmingham, B33 0SJ

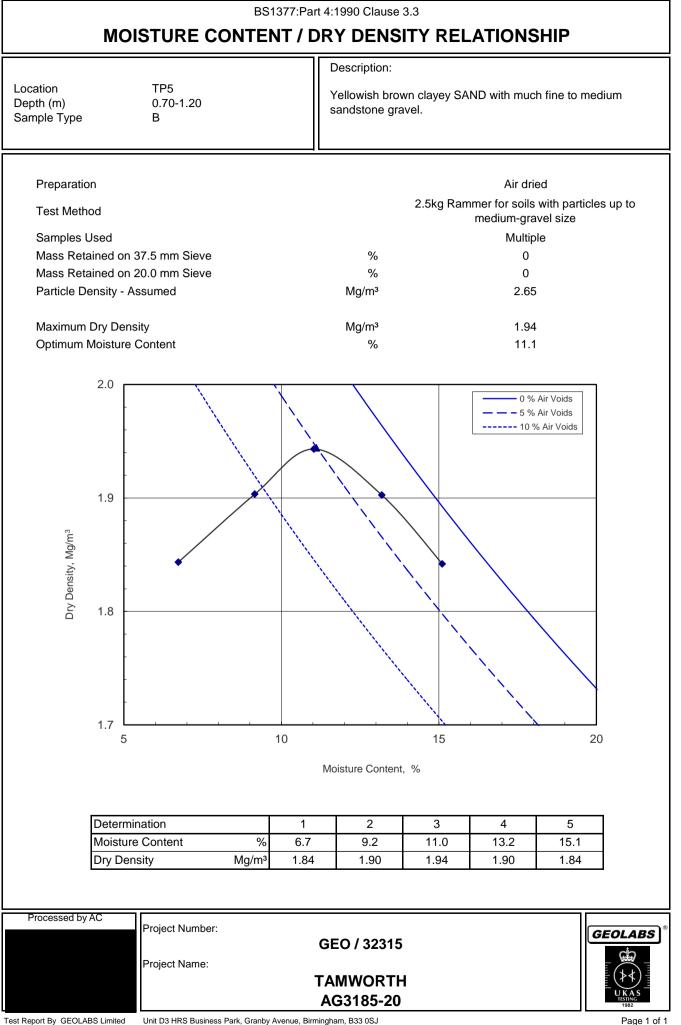
PARTICLE SIZE DISTRIBUTION

Description

Yellowish brown clayey SAND with much fine to medium sandstone gravel.

Location

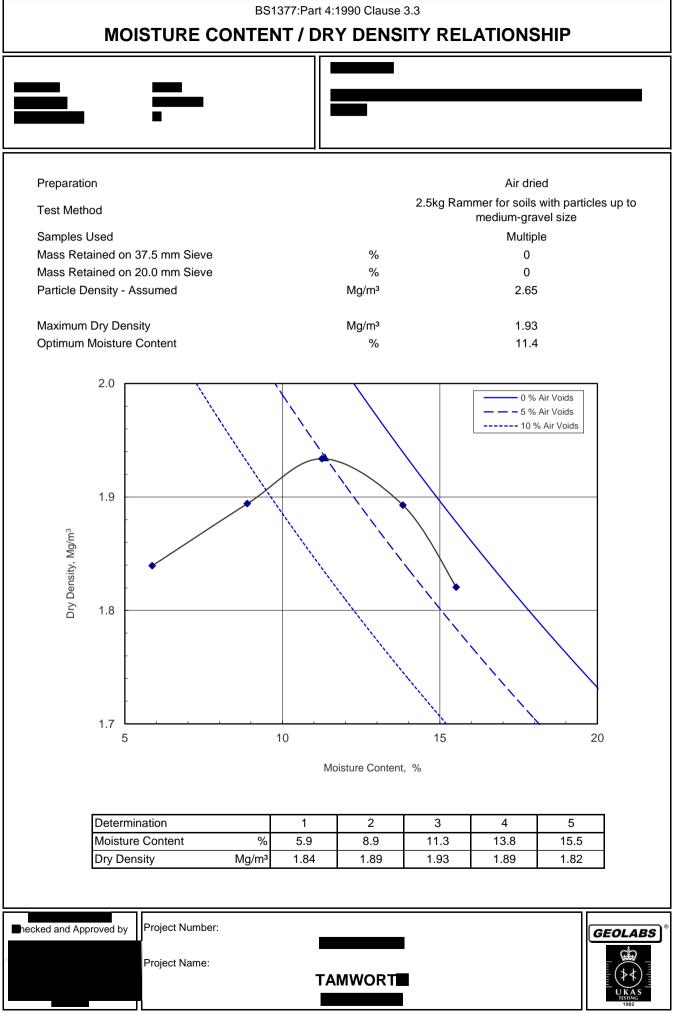

Depth (m)


Sample Type

TP28

0.70

В



Client : Applied Geology, First Floor, Lowton Business Park, Newton Road, Lowton St. Mary's, Warrington, WA3 2AN

Page 1 of 1 (Ref 1608299572)

Version 47.201007



 Test Report By GEOLABS Limited
 Unit D3 HRS Business Park, Granby Avenue, Birmingham, B33 0SJ

 Client : Applied Geology, First Floor, Lowton Business Park, Newton Road, Lowton St. Mary's, Warrington, WA3 2AN

Page 1 of 1 (Ref 1608299562)

Version 47.201007

 Test Report By GEOLABS Limited
 Unit D3 HRS Business Park, Granby Avenue, Birmingham, B33 0SJ

 Client : Applied Geology, First Floor, Lowton Business Park, Newton Road, Lowton St. Mary's, Warrington, WA3 2AN

Version 47.201007