Land North-East of Jn10 M42 Motorway, North Warwickshire

784-B033920

Revised Transport Assessment

DOCUMENT CONTROL

Document:	Revised Transport Assessment
Project:	Land North-East of Jn10 M42 Motorway, North Warwickshire
Client:	Hodgetts Estates
Project Number:	784-B033920
File Origin:	
Ids-dc-vm-101\Data\Projects\784-B033920 Land NE of M42 Jn10\60 Project Output\61 Work in Progress\Draft Documents\Transport Assessment\Proposed Employment Land Northeast of J10 M42 - Transport Assessment.docx	

Revision:	$\mathbf{0}$	Prepared by:	GW/ EB
Date:	21 December 2022	Checked by:	NRB
Status:	Draft	Approved By:	NRB
Description of Revision:			

Revision:	$\mathbf{1}$	Prepared by:	GW/ EB	
Date:	3 February 2023	Checked by:	NRB	
Status:	Final	Approved By:	NRB	
Description of Revision:				

Revision:		Prepared by:	
Date:		Checked by:	
Status:		Approved By:	
Description of Revision:			

Revision:		Prepared by:	
Date:		Checked by:	
Status:		Approved By:	
Description of Revision:			

TABLE OF CONTENTS

1.0 INTRODUCTION 1
2.0 POLICY 4
National Planning Policy Framework (NPPF) 4
DfT Circular 01/2022: The Strategic Road Network and the Delivery of Sustainable Development
North Warwickshire Borough Council Local Plan (Adopted September 2021) 8
Warwickshire Third Local Transport Plan (2011-2026) 13
Midlands Connect 14
Staffordshire County Council 15
3.0 EXISTING CONDITIONS 17
Site Location and Surrounding Area 17
Local Highway Network 17
Future Highway Schemes - Road Investment Strategy 19
Future Highway Schemes - A5 Dordon-Atherstone 19
Traffic Surveys 20
Existing Pedestrian and Cycle Movements 20
Walking, Cycling and Horse-riding Assessment (WCHAR) 21
4.0 ACCESSIBILITY 22
Walking. 22
Cycle Travel 26
Bus Travel 27
Rail Travel 28
Summary 29
5.0 HIGHWAY SAFETY 30
Personal Injury Accident Data 30
Pennine Way Roundabouts \& A5 up to Junction 10 30
M42 Junction 10 Interchange 32
A5 between M42 Junction 10 and Core 42 34
Summary 35
6.0 PROPOSED DEVELOPMENT 36
Development Masterplan 36
Highway Access 38
Pedestrian \& Cycle Connectivity 39
Public Transport Connectivity 41
Proposed Highway Improvements 42
Framework Travel Plan 43
Construction Traffic 43
Summary. 43
7.0 OPERATIONAL ASSESSMENT 45
Scope of Impact 45
Baseline Transyt16 Model 45
Transyt16 A5 and M42 Junction 10 Assessment 46
A5/ Pennine Way Assessment 48
Road Safety Implications 49
Summary 50
8.0 SUMMARY AND CONCLUSIONS 52

APPENDICES

Appendix A Modelling Strategy Note
Appendix B Transyt 2022 Baseline Validation Report
Appendix C Transyt Future Year Modelling Report
Appendix D South Pennine Way Modelling Report
Appendix E WCHAR
Appendix F Public Transport Strategy
Appendix G Figures
Appendix H A5 Dordon To Atherstone Project Public Consultation
Appendix I Bancroft Consulting Radar Speed Meter Survey Results 26 April 2021
Appendix J Road Safety Data
Appendix K Illustrative Masterplan
Appendix L Drawings
Appendix M Connectivity Plans
Appendix N MDS Transmodal Report

1.0 INTRODUCTION

1.1 Tetra Tech (TT) have been engaged by Hodgetts Estates to prepare a Revised Transport Assessment (TA) for a major development consisting of 100,000sqm of employment uses and a 150-space lorry park with 400sqm amenity block, located off the A5 Watling Street, north-east of the M42 Junction 10 (M42 Jn10) interchange, in Warwickshire.
1.2 An outline planning application for the development site was submitted to North Warwickshire Borough Council (NWBC). The application (ref: PAP/2021/0663) was validated on 2 December 2021. The application was supported by a TA produced by Bancroft Consulting.
1.3 The TA (dated November 2021) produced by Bancroft Consulting followed extensive scoping discussions with National Highways (NH) and Warwickshire County Council (WCC). As agreed with highway officers at WCC and NH, the Atherstone A5 model prepared by Vectos on behalf of Warwickshire CC for the North Warwickshire Local Plan evidence base was used for trip distribution and the production of No Development and With Development traffic flows.
1.4 The Atherstone A5 model (referred to below as the Vectos model) extends from the eastern part of Tamworth and includes the whole of Dordon and Atherstone. The Vectos model assesses a Reference Case which comprises committed developments and highway schemes in 2026 and in 2031, and a Local Plan case which includes committed developments, local plan allocations, committed highway schemes and additional highway proposals to mitigate the impact of the local plan allocations, including an improvement scheme at M42 Jn10, in 2031. Of particular relevance to this application, the Vectos model includes the A5/ Pennine Way junction, M42 Jn10, A5 Birch Coppice, A5/ Core 42 and the A5/ Long Street junctions.
1.5 The trip rates to be used in the assessment were agreed by Bancroft Consulting with NH and WCC.
1.6 The agreed methodology has been retained for this revised assessment.
1.7 There were some initial scoping discussions between Bancroft Consulting and Staffordshire County Council (SCC) which are reported in Appendix G of the Bancroft TA, but the scope of the TA was not agreed with SCC at that time.
1.8 Based on the outputs from the Vectos Model, and as agreed with NH and WCC, the submitted Bancroft TA assessed the impact of the proposed development at the M42 Jn10, the A5/ proposed site access junction and the A5/ Birch Coppice junction in 2026 and in 2031. The assessment used the 2026 and 2031 Reference Cases, and in 2031, the Local Plan Case.
1.9 The Bancroft TA used LINSIG to assess the individual traffic signal junctions in isolation from each other, and therefore did not model queuing interactions between junctions, platooning of traffic flows on downstream junctions, or the potential effects of blocking back/ lane starvation. Their analysis showed that long queues and delay were predicted on the M42 northbound off-slip, which was at variance with the Vectos model results.
1.10 National Highways in their consultation response dated 31 Dec 2021 to the planning application recommended that planning permission not be granted for a period of 3 months (until 31 March 2022) in order for more information to be submitted. Specifically, in relation to the TA, NH
requested the junction models and flow derivations. NH also requested a Stage 1 Road Safety Audit (RSA) and a Walking, Cycling, Horse-Riding Assessment (WCHAR).
1.11 Tetra Tech (TT) was engaged by Hodgetts Estates in January 2022 to reassess the impact of the proposed development on the highway network and provide the additional information requested by NH.
1.12 The transport impacts of the proposed development were discussed with NH, WCC, Bancroft Consulting, Hodgetts Estates and TT on 15 March 2022. From that meeting TT produced a Modelling Strategy Note (dated 18 March 2022, Appendix A refers) in which it was proposed to model the M42 Jn10, the A5/ proposed site access junction, the A5/ Birch Coppice, and the A5/ Core 42 junctions using Transyt 16, a network model which models the interaction of queuing, lane starvation, blocking back effects and platooned arrivals. The Transyt model would be based on 2022 survey data and would be validated. The Modelling Strategy Note was agreed by WCC on 7 April 2022 on the provision that NH are satisfied with a TRANSYT model, NH subsequently confirmed on 11 April 2022 that the Modelling Strategy Note is acceptable.
1.13 Traffic surveys at M42 Jn10, A5/ Birch Coppice and A5/Core 42 took place on Wednesday 23 March 2022 between 07:00 to 09:30 and 16:00 to 18:30. The surveys included manual classified turning traffic flows, lane allocations, green times, queue lengths and saturation flows. A Transyt16 model was prepared and validated using the surveyed data. A Baseline Validation Report dated May 2022 was produced (Appendix B refers) and submitted to NH and WCC for approval which was received from NH and WCC on 1 August 2022.
1.14 Following agreement of the 2022 Transyt model, the model was used to assess the impact of the proposed development. For the No Development scenarios, the model was amended to include the Reference Case flows for 2026 and 2031 and the Local Plan flows and highway proposals for the 2031 as appropriate. For the With Development scenarios, the site access junction was added together with the With Development Reference case and With Development Local Plan flows for 2026 and 2031 as appropriate. The Local Plan improvements for M42 Jn10 included a left turn slip road from the M42 southbound off-slip to the A5 eastbound exit arm. In the Local Plan With Development scenario this was removed when the proposed site access junction was added. The analysis indicated that in the 2031 Reference Case, capacity improvements were needed on the A5 eastbound approach to M42 Jn10. The schemes included in the 2031 Local Plan showed that mitigation was not required to accommodate the proposed development.
1.15 A Transyt Future Year Modelling Report was submitted to NH, WCC and SCC on 2 December 2022 (Appendix C refers). The proposed improvements had a beneficial effect in the AM peak, reducing delays on the A5 eastbound approach to M42 Jn10, in the PM peak there was a small increase in queues and delays on the A5 westbound approach to M42 Jn10. Taking the two peak hours together the overall effect was positive with lower levels of delay.
1.16 In addition to addressing NH's comments, TT also further consulted with SCC. SCC highway officers requested a separate Census based distribution of the generated traffic on the west side of M42 Jn10. Following agreement of the distribution in November 2022 the two A5/ Pennine Way roundabouts required assessment. A South Pennine Way Modelling Report was submitted to SC, NH and WCC on 23 November 2022 (Appendix D refers). The assessment showed that the proposed
development had a small impact on the operation of the two roundabouts and that no mitigation works were needed.
1.17 In addition to the highway impact assessments, the opportunities to provide for sustainable transport access to and though the sites have been explored. A WCHAR assessment, as requested by NH, was carried out by an independent consultancy to review the designs, and identify measures which could be considered, (Appendix E refers). The assessment was reviewed by NH on 29 September and a review of the scheme design arising from the Transyt modelling was requested. An updated WCHAR will be submitted.
1.18 A Public Transport Strategy (PTS) was prepared in consultation with the bus operator Stagecoach and WCC Public Transport team. The agreed PTS is appended at Appendix F.
1.19 A Road Safety Audit brief has been prepared and was submitted to NH, WCC and SCC on 22 December 2022. When this is agreed a Stage 1 Road Safety Audit will be carried out.
1.20 This TA has been produced having regard to the advice contained in:

- National Planning Policy Framework (NPPF) published by Ministry of Housing, Communities \& Local Government (MHCLG).
- Circular 01/2022 Strategic Road Network and the delivery of Sustainable Development Department for Transport December 2022
- MHCLG's Transport Assessment and Travel Plan guidelines set out in Planning Practice Guidance.
- Design Manual for Roads and Bridges, endorsed by National Highways, specifically chapters CA 185, CD 123, CD 143.
- DfT's LTN 1/20 Cycle Infrastructure Design, 2020.
- The Warwickshire Guide, Warwickshire County Council, 2001.
- Staffordshire Residential Design Guide, Staffordshire County Council, 2000.
1.21 The main purposes of this TA are to establish the traffic impacts of the proposed development on the M42 Jn10, provide an assessment of junctions within Staffordshire to satisfy Staffordshire County Council highways, provide an enhanced set of walking and cycling proposals and produce a public transport strategy for the site.
1.22 This TA draws on Bancroft Consulting's TA and reproduces some sections, as noted where relevant in the text. This Revised TA has been prepared solely in connection with the proposed development. Whilst every reasonable effort has been made to ensure its accuracy, use of the information contained in the report by a third party for any other purpose is entirely at their own risk.

2.0 POLICY

2.1 Sections of this chapter have been extracted from the Bancroft TA, updated where applicable.

National Planning Policy Framework (NPPF)

2.2 The NPFF is the overarching Government guidance on planning with the latest version released in July 2021. In respect of planning obligations, Paragraph 57 states how contributions must only be sought where they meet all the following tests:
"a) necessary to make the development acceptable in planning terms;
b) directly related to the development; and
c) fairly and reasonably related in scale and kind to the development."
2.3 The NPPF sets out the importance of sustainability, where Paragraph 105 sets out that:
"The planning system should actively manage patterns of growth in support of these objectives. Significant development should be focused on locations which are or can be made sustainable, through limiting the need to travel and offering a genuine choice of transport modes. This can help to reduce congestion and emissions and improve air quality and public health. However, opportunities to maximise sustainable transport solutions will vary between urban and rural areas, and this should be taken into account in both planmaking and decision-making."
2.4 Paragraph 110 goes on to set out key criteria that development sites should establish. It states:
"In assessing sites that may be allocated for development in plans, or specific applications for development, it should be ensured that:
a) appropriate opportunities to promote sustainable transport modes can be - or have been - taken up, given the type of development and its location;
b) safe and suitable access to the site can be achieved for all users;
c) the design of streets, parking areas, other transport elements and the content of associated standards reflects current national guidance, including the National Design Guide and the National Model Design Code; and
d) any significant impacts from the development on the transport network (in terms of capacity and congestion), or on highway safety, can be cost effectively mitigated to an acceptable degree."
2.5 Paragraph 111 of the NPPF states:
"Development should only be prevented or refused on highways grounds if there would be an unacceptable impact on highway safety, or the residual cumulative impacts on the road network would be severe."
2.6 Based on the above guidance, developments should only be refused where the residual cumulative transport impacts can be defined as 'severe', or if the traffic increases would cause an unacceptable impact on highway safety.
2.7 Paragraph 112 of the NPPF goes on to set out a list of preferred criteria for applications for development. It recommends that priority is given to pedestrian and cycle movements and minimising the scope for conflict with vehicles.
2.8 Paragraph 113 provides a summary of the above policies and outlines the level of detail that should be provided as part of any application, in relation to highways and transportation. It sets out the following requirements:
> "All developments that will generate significant amounts of movement should be required to provide a travel plan, and the application should be supported by a transport statement or transport assessment so that the likely impacts of the proposal can be assessed."
2.9 The NPPF is supported by a range of associated Planning Practice Guidance (PPG) documentation. This includes advice on 'Transport evidence bases in plan making and decision taking' (updated March 2015), which provides guidance to assist local planning authorities when assessing strategic transport needs and identifying suitable mitigation within Local Plans. The PPG documentation also includes 'Travel Plans, transport assessments and statements in decision-taking' (updated March 2014). This document provides general advice on the scope of Transport Assessments and where they might be required, considering Paragraph 111 of the NPPF, although it does not include any specific prescriptive guidance for assessments (see below for further details).

DfT Circular 01/2022: The Strategic Road Network and the Delivery of Sustainable Development

2.10 The Circular was published in December 2022, and sets out the policy of the Secretary of State with regard to the SRN when planning authorities are setting policies and making decisions on planning and development proposals. It also sets out how National Highways will engage to assist the delivery of sustainable development. It advises that the circular should be read in conjunction with the NPPF, other national planning policies and guidance, the Manual for Streets and LTN 1/20 among others. The Circular also provides advice on special types of development including roadside facilities.
2.11 Paragraph 6 notes that the SRN has an essential role the transport decarbonisation plan, reduce the need to travel and to make walking, wheeling, cycling a natural first choice. Alongside this Paragraph 7 advises that NH undertakes "effective engagement in the planning system, to enable the delivery of sustainable development, support the needs of the freight and logistics sector, and mitigate the impact of growth on the natural environment." It also advises that NH will share evidence and data and will work collaboratively and constructively on development proposals.
2.12 Paragraph 11 defines sustainable development as "encouraging economic growth while protecting the environment and improving safety and quality of life for current and future generations".
2.13 In relation to new connections to the SRN, paragraph 19 advises that these should be identified in the local plan process and that NH will need to be satisfied that "all reasonable options to deliver modal shift, promote walking, wheeling, cycling, public transport and shared travel to assist in reducing car dependency and locate development in areas of high accessibility by sustainable transport modes (or areas which can be made accessible) have been exhausted before considering new connections". Paragraph 20 says that "where this has not occurred, there will be no new
connections on those sections of the network designed for high speed traffic" except for certain specialised road related schemes. In footnote 10 defines the high speed traffic routes as motorways and all purpose dual carriageways with partially or comprehensively limited access.
2.14 Paragraph 21 sets out a graduated and less restrictive approach to the formation of new connections elsewhere on the SRN, determining each case on its own merits.
2.15 In the context of the proposed development which includes a new connection to the A5, a dual carriageway with a 70 mph speed limit, it is important to assess whether the A5 is a high speed traffic route, and the key determinant is the number and type of accesses on the section. Between M42 jn 10 and Dordon Island, a distance of 1.8 km there are:

- Access to a disused parking area, farm track and bridleway on the north side
- Separate accesses to 3 private houses on the north side
- Separate accesses to 4 private houses on the south side
- Field access on the south side
- A signal controlled junction to Birch Coppice industrial / distribution estate
- Field access on the north side
- A signal controlled junction to Core 42 industrial / distribution estate
- Access to Quarry Close, a small residential estate on the north side with access through the central reserve.
- Separate accesses to 2 private houses on the north side
- Access to Birch Coppice Miners Social Club on the south side,
- Separate access to some 7 private houses on the south side
- Access to Vicarage Close, a small residential estate on the north side with access through the central reserve
- Accesses to New Street a residential road in Dordon village
- A row of houses on the north and south sides with on street parking on the A5.
2.16 The A5 between M42 Jn10 and Dordon Island has a range of different types of access from field gates to residential streets and industrial estates, the access policy is neither partially or comprehensively limited, and is reflective of the historic development on this section of Watling Street. As such the graduated and less restrictive approach to access formation in Paragraph 21 is appropriate. The development proposals also include measures to improve sustainable access on foot, by bike and by bus, and which will have wide public benefits.
2.17 Paragraph 28 states that "local authorities should ensure that the SRN is not being relied upon for the transport accessibility of site allocation except where this relates to road side facilities or SRN dependent sectors (such as logistics and manufacturing)" This indicates that roadside facilities and logistics are land uses which are particularly related to access to the SRN.
2.18 Paragraph 42 advises that "new development should give priority to walking, wheeling, cycling movements and facilities access to high quality public transport where possible. In the chapters
below a comprehensive walking and cycling improvement scheme is proposed together with direct bus access into the site.
2.19 Paragraph 43 deals with capacity enhancement and confirms "the company expects development promoters to enable a reduction in the need to travel by private car and prioritise sustainable transport opportunities ahead of capacity enhancements and new connections on the SRN."
2.20 Paragraph 44 refers to travel plans. The proposed development includes a Framework Travel plan with clear targets and a monitoring regime.
2.21 Paragraph 46 requires that"new goods distribution centres should make sufficient provision for HGV drivers, which should include overnight parking and an adequate level of welfare facilities. The proposed development includes a 150 space lorry park with welfare facilities available to all HGV drivers.
2.22 Paragraph 48 advises that "where a development has not been identified in an up to date local plan, developers should demonstrate that the development would be located in an area of high accessibility by sustainable transport modes and would not create a constraint to the delivery of any planned improvements". The assessment below demonstrates that the proposed development can be delivered in the Local Plan case.
2.23 Paragraph 81 states "In areas where there is an identified need ${ }^{26}$, the company will work with relevant local planning authorities to ensure that local plan allocations and planning application decisions address the shortage of HGV parking on or near to the SRN. In these circumstances, local planning authorities should have regard to the following spacing requirements:

1. the maximum distance between motorway facilities providing HGV parking (being service areas, rest areas or truckstops) should be no more than 14 miles; and
2. the maximum distance between APTR [all-purpose trunk roads] facilities providing HGV parking (being service areas or truckstops) should be the equivalent of 20 minutes driving time for HGVs."
2.24 Footnote 23 states: "This will be informed by regular updates to the Department for Transport's National Lorry Parking Survey and demand assessments undertaken by the company to ensure that appropriate evidence is available on the national picture."
2.25 At paragraph 82, it states: "Where the general spacing distances above are met but a need for HGV parking still arises, the Company will support the case to address unmet demand, subject to an assessment of the safety of the proposed access or egress arrangements."
2.26 Paragraph 74 states "Roadside facilities perform an important safety function by providing opportunities for the travelling public to stop and take a break during their journey".
2.27 In considering the location of roadside facilities Paragraph 7677 advises how "the maximum distance between signed motorway service areas should be 28 miles. ... The distance between services can be shorter, but to protect the safety and operation of the network, the access/egress arrangements of facilities must comply with the requirements of DMRB, which includes provisions in respect of junction separation".
2.28 Paragraph 83 addresses the delivery of roadside facilities and the principle of trip generation. It states, "Roadside facilities should be well-designed to serve passing traffic and not be destinations in
their own right. Consequently, the Transport Assessment to accompany a planning application for a new or improved facility must show that there would only be a minimal overall increase in trip mileage to be acceptable in this regard. An exception will be made for any predicted increase in HGV mileage, as the provision of facilities that would meet the needs of commercial drivers should be encouraged".
2.29 Paragraph 84 confirms "On-line (between junctions) service areas are more accessible to users of the SRN and as a result more conducive to encouraging drivers to stop and take a break. They also help to avoid an increase in traffic demand at junctions with all-purpose roads". Paragraph 85 then states, "in circumstances where competing sites are under consideration, on the assumption that all other factors are equal, new facilities must be provided at on-line locations".
2.30 Table 1 of Annex A provides the 'minimum requirements for roadside facilities to be eligible for signing from the SRN'. These requirements are classified as 'Mandatory' and 'Permitted' for truckstops on all-purpose trunk roads and listed as follows:

- Available at least between 8am and 8pm every day except Christmas Day, Boxing Day and New Year's Day [Mandatory]
- Free parking for minimum of 2 hours for all vehicles permitted to use the facility [Mandatory]
- Segregated parking for refrigerated vehicles with access to appropriate mains electrical supply and noise abatement [Permitted]
- Provision of security monitoring equipment including appropriate lighting and CCTV systems [Mandatory]
- Free-to-use toilets with hand washing facilities, and at least one changing places toilet and one for people with disabilities, and no need to make a purchase during opening hours [Mandatory]
- Shower and washing facilities for HGV drivers (separate provision for men and women), including secure lockers in the shower/washing area. [Mandatory]
- Provision of fuel for petrol and diesel vehicles and EV chargepoints [Permitted]
- Hot drinks and cooked hot food available for purchase during all opening hours for consumption on the premises [Permitted]
- Hot drinks and hot food available at least 8 am to 8 pm for consumption on the premises [Mandatory]
- Access to free-of-charge telephone for emergency use, Wi-Fi, and power points available for device charging [Mandatory]
- Use as an operating centre for the purposes of the Goods Vehicles (Licensing of Operators) Act 1995 or the Public Passenger Vehicles Act 1981 [Permitted]

North Warwickshire Borough Council Local Plan (Adopted September 2021)

2.31 Chapter 5 of the North Warwickshire Borough Council Local Plan sets out the following objectives for the Local Plan.

1. To secure a sustainable pattern of development reflecting the rural character of the Borough
2. To provide for the housing needs of the Borough
3. To develop and grow the local economy for the benefit of local residents
4. To maintain and improve the vitality of the Market Towns
5. To promote rural diversification
6. To deliver high quality developments based on sustainable and inclusive designs
7. To protect and enhance the quality of the natural environment and conserve and enhance the historic environment across the Borough
8. To establish and maintain a network of accessible good quality Green Infrastructure, open spaces, sports and recreational facilities
9. To ensure the satisfactory provision of social and cultural facilities
2.32 It also presents the following key policies relating to new development.

LP1 Sustainable Development

Planning applications that accord with the policies in this Plan (and where relevant, with other development plan policies including those in Neighbourhood Plans) will be approved without delay, unless material considerations indicate otherwise. Where there are no relevant development plan policies, or the policies which are most important for determining the application are out-of-date, applications will be determined in accordance with the presumption in favour of sustainable development.

Quality of Development / Place

All development proposals must;

- be supported by the required infrastructure
- be consistent with the approach to place making set out through development management policies, including, where relevant
- integrate appropriately with the natural and historic environment, protecting and enhancing rights of way network where appropriate
- demonstrate a high quality of sustainable design that positively improve the individual settlement's character; appearance and environmental quality of anarea;
- deter crime;
- sustain, conserve and enhance the historic environment;
- provide, conserve and enhance biodiversity; and,
- create linkages between green spaces, wildlife sites and corridors.

Development should protect the existing rights of way network and where possible contribute to its expansion and management.

Implementation and Infrastructure

Infrastructure will be sought where it is necessary, directly related to the development and is fairly and reasonably related in scale and kind to the development. It may be related to social, economic and/or environmental issues. Supplementary Planning Guidance and documents will be used to guide provision, Infrastructure requirements are outlined in the Infrastructure Delivery Plan (For clarity, infrastructure projects drawn from the IDP are itemised and indicated to be either critical to the Plan's strategy as a whole, or necessary in association with particular allocations or projects, along with indicative timings are itemised in NWBC26, Appendix A) and the supporting documents contained in Appendix C of the Local Plan. The list is not exhaustive as each will be taken on a site by site basis and will depend on the viability of the scheme. Other site specific measures will be considered at the time of the planning permission. These will be secured through conditions, S106's or other agreements considered appropriate to ensure its delivery. It will be necessary to ensure the ongoing maintenance, where appropriate, of any infrastructure provision.

Where development is proposed in excess of plan requirements and would assist in the provision of or enabling infrastructure, particularly that related to facilitating development in the long term, or of affordable housing relative to needs, that will carry weight in favour of granting permission.
2.33 Chapter 12 of the Local Plan addresses transport and access plans for North Warwickshire. It identifies how the area is well served by transport links, including road, rail, and air. The following policies are presented in this regard.

LP23 Transport Assessments

Transport Assessments appropriate to the scale of development proposed, will be required to accompany development proposals (including that that is below the indicative threshold in Appendix G). Assessments will also be required where there is a cumulative effect created by additional floor space or traffic movement on the site or in the vicinity, or where there are demonstrable shortcomings in the adequacy of the local transport network to accommodate development of the scale proposed.

These Assessments should address impacts on both the local and strategic highway networks and should be scoped so as to be bespoke to the nature of the development proposals. They should also ensure that proposals provide appropriate infrastructure measures to mitigate the adverse impacts of development traffic and other environmental and safety impacts either individually or cumulatively. Appropriate provision for, or contributions towards the cost of any necessary highway improvements should also be addressed. Widening opportunities to access new developments for all sections of the community will need also to be addressed through the provision and enhancement of public transport services and facilities together with walking and cycling facilities.

The Assessments should assess the impact on level crossings in the vicinity of the development.
Travel Plans will be required to be submitted alongside these Assessments.

Travel Plan

Development will be expected to link with existing road, cycle and footpath networks. Developments that are likely to generate significant amounts of traffic and particularly larger developments will be expected to focus on the longer-term management of new trips; encourage the use of public and shared transport as well as appropriate cycle and pedestrian links. Increasing the opportunity to access these developments for all sections of the community should be addressed. This will be secured through a Travel Plan and/or financial contributions which will be secured either through planning conditions or the provisions of Section 106.

LP26 Strategic Road Improvements A5

A study has been undertaken in respect of the future of the A5 Trunk Road and the outcome of this will become a material planning consideration in respect of future development proposals that might impact on the A5.

The Council will work alongside the appropriate Agencies to develop the A5 Strategy and options and funding opportunities for its dualling.

Land to the north of Grendon through Site RH1 will be protected from any development to ensure the dualling of the A5 can take place. If RH1 is brought forward for development no part will prejudice the implementation of the future dualling of this route.

When the dualling of the A5 trunk road has been implemented the existing Watling Street will be downgraded, wherever possible, and walking, including the provision of pedestrian crossings, and cycling routes will be actively encouraged and promoted.

A446
Improvement of the A446 including the dualling over the River Tame will be sought as well as improved cycling links.
2.34 Chapter 13 of the Local Plan addresses development considerations for North Warwickshire. LP27 considers walking and cycling considerations as set out below.

LP27 Walking and Cycling

The Borough Council will develop a Walking and Cycling Strategy.

All developments should consider what improvements can be made to encourage safe and fully accessible walking and cycling.

2.35 The Local Plan identifies two major housing allocations in the local area. Policy H4 Land to the East of Polesworth and Dordon identifies land for at least 2000 new homes and a new primary school and plans for a new distributor road between the A5 and the B5000. Policy H5 Land West of Robeys Lane Tamworth allocated land for 1270 new homes. These two allocations show that there are large scale housing proposals near to the proposed development site which if developed will provide nearby housing for the people near to the major employment corridor that the A5, in the vicinity of M42 Jn10, has become.
2.36 The Local Plan includes a car parking standard Supplementary Planning Document which provides the following advice:

- Industry: 1 standard space per $100 \mathrm{~m}^{2}, 1$ cycle space per $500 \mathrm{~m}^{2}, 1$ motorcycle space plus 1 additional per 10 standard spaces.
- Warehousing: 1 standard space per $150 \mathrm{~m}^{2}$, 1 cycle space per $1000 \mathrm{~m}^{2}$, 1 motorcycle space plus 1 additional per 10 standard spaces.
- For Business Use car parks over 200 spaces, disabled provision is 6 bays plus 2\%.
2.37 The Local Plan includes Policy 34 which is set out below and sets out that electric charging points will be provided as part of all relevant proposals and acknowledges a demand for lorry parking in the Borough:

LP34 Parking

Adequate vehicle parking provision commensurate to a proposed development will be expected, as guided by the standards in the Document "Parking Standards". Greater emphasis will be placed on parking provision in areas not served by public transport whilst lower provision within the main towns may be appropriate.

Town Centres

Within the defined Town Centres new residential development must provide the minimum parking spaces necessary to enable and service the development, with 1 parking space per flat or 2 per house. No reduced level of car parking provision will be acceptable unless the following circumstances are clearly evidenced:

- there is spare capacity available in nearby public car parks or adjacent on street car parking (that is available for long stay use); or
- where the exercise of flexibility would assist in the conservation of the built heritage, facilitating a better quality of development and the beneficial re-use of an existing historic building.

Airport Parking

Proposals for remote parking of passengers or visitor vehicles in the Borough will not generally be permissible given existing constraints on parking provision and infrastructure demands. Any such proposals must demonstrate that they would (i) not compromise delivery of the plan strategy as a whole (ii) that there is a clear justification for provision in the location proposed, and (iii) that the benefits of such provision would outweigh any adverse effects, including by consequence of occupying land that could be put to a viable alternative use.

Electric Vehicle Charging points

Electric charging points will be provided as part of all relevant developments to an agreed specification and location dependent on the scheme proposed and applicable technical guidance. Rapid charging points will be provided on sites when located in the public realm. On housing sites homes with on- site parking will provide an electric charging point in an accessible location close to the parking space(s). On commercial sites there will be employee and visitor rapid charging points.

Lorry Parking

Proposals which reduce lorry parking (either informal or formal parking areas) should be accompanied by evidence to support its loss and explore opportunities for alternative provision. In recognition of the Borough's strategic location and demand for lorry parking, the Council will give weight to lorry parking provision and facilities, and opportunities for alternative provision and for improved management in decision-taking.

Warwickshire Third Local Transport Plan (2011-2026)

2.38 Section 1 of the Warwickshire LTP 2011-2026 (Part A) explains how it "sets out the transport strategy and policies for the County from 2011 to 2026". Section 3 of the LTP sets out the following revised objectives:

```
                    Warwickshire's Local Transport Plan 3 Objectives
1. To promote greater equality of opportunity for all citizens in order to promote a
    fairer, more inclusive society;
2. To seek rellable and efficient transport networks which will help promote full employment and a strong, sustainable local and sub-regional economy;
3. To reduce the impact of transport on people and the [built and natural] environment and improve the journey experience of transport users;
4. To improve the safety, security and health of people by reducing the risk of death, injury or illness arising from transport, and by promoting travel modes that are beneficial to health;
5. To encourage integration of transport, both in terms of policy planning and the physical interchange of modes;
6. To reduce transport's emissions of carbon dioxide and other greenhouse gases, and address the need to adapt to climate change.
```

2.39 Table 4.6 at Page 31 of the LTP3 provides a summary of challenges in achieving the objectives.
2.40 Page 54 of the LTP3 sets out the 'Strategy for the A5', stating "the A5 is an important strategic link which runs along the northern and eastern edge of the County boundary with Staffordshire, Leicestershire and Northamptonshire, and provides access to a number of major industrial areas such as Birch Coppice. Within Northern Warwickshire, the road also provides an important access to the M42/A42, the M69/M1 and the M6 Toll".
2.41 WCC are in the early stages of updating their Local Transport Plan to LTP4 and have recently consulted on their six key strategies which comprise:

- Active Travel: a strategy to promote walking and cycling in Warwickshire to bring the physical and mental health benefits from these forms of transport to more people and protect the environment.
- Public Transport: how we intend to work with bus and rail companies to improve the existing public transport network in Warwickshire.
- Motor Vehicles: recognising the role of motor vehicles in the county as we move towards more sustainable transport options such as electric vehicles and hydrogen-fueled transport.
- Managing Space: making changes to public spaces to make them more attractive places to be, cleaner and less dominated by vehicles, with the routes that connect them less congested.
- Safer Travel: reducing the number of people injured on Warwickshire's roads and increasing the safety and attractiveness of all travel options.
- Freight Strategy: managing freight movements across the county to promote and grow our successful economy.
2.42 In June 2022 Warwickshire County Council published for consultation their draft Local Cycling and Walking Infrastructure Plan. The report contains updates and formalises the walking and cycling network development plans for each of the main urban areas and sets out a priorities programme of delivery for cycling schemes for the next 10 years.
2.43 The Bus Services Improvement Plan was published in October 2021 and sets out the vision that "Bus services in Warwickshire will better meet the aspirations of local communities by becoming more frequent, more reliable, and better integrated with other travel options. New ticket options, marketing campaigns, promotional fares and supportive local policies will help to drive growth in local bus patronage. Along with emerging technologies and clearer information about bus schedules, all components will help to reduce and simplify the cost of bus travel while sustaining a comprehensive network of bus services across the county.
2.44 The Warwickshire Rail Strategy 2019-2034 provides plans to improve the rail offer in Warwickshire. The Strategy is a non-statutory policy document supporting LTP3, but it is intended it will form part of LTP4, which is in preparation as mentioned above.

Midlands Connect

2.45 The 'Midlands Connect Strategic Transport Plan: Greener, Fairer, Stronger' sets out the future of transport in the Region. Below are a set of the outlined short term priority objectives. The plan identifies requirements for major investment needed, from both the public and private sectors, in programmes for:

- Electric vehicle charging infrastructure;
- Alternative fuels, including natural gas and hydrogen for HGVs;
- Boosting mobility in rural areas;
- Creating more space for passengers and freight on our rail network;
- A 'tap and cap' smart ticketing solution for passengers using buses, trams, bike hire and the rail network across the Midlands (similar to the system used in London).
2.46 The needs of the freight industry are a vital component of the plan with an emphasis placed on both improving infrastructure to support the transport and logistics sector, as well as a focus on how public and private sectors can work together to ensure that the impacts of HGVs on our roads are best managed.
2.47 The Midlands Freight Route Map sets out the current challenges for freight and the work that is being done to deliver solutions and the objectives of the Strategic Transport Plan. In doing so, the report sets out five key objectives that support the Plan:
- Objective 1 'Economy' - Exploit the natural advantages of the region's location and ensure freight is able to support and grow the Midlands and wider economy.
- Objective 2 ‘Rail Capacity’ - Ensure rail capacity, particularly by HS2, benefits rail freight so that the network is able to accommodate a growth in freight moved by rail.
- Objective 3 'Mode Shift' - Where practicable, encourage modal shift to more sustainable modes.
- Objective 4 'Decarbonisation' - Decarbonise freight movements with a particular focus on road freight, contributing to the 'Net Zero' Carbon Target.
- Objective 5 'Integration' - Enhance integration between freight modes to provide a more resilient and effective supply chain.
2.48 The above mentioned opens opportunities such as an improvement of international connectivity, the acceleration of the use of alternative fuels. An investment of rail opportunities, planning access to strategic rail freight interchanges, facilitating urban deliveries and maximising the opportunities of freeports.

Staffordshire County Council

2.49 Although the development site lies outwith Staffordshire CC, and the traffic impact is largely concentrated to the SRN under NH control, the traffic assessment includes two SCC junctions, namely those either side of the Pennine Way overbridge. Therefore, SCC policies have been reviewed in relation to the development.
2.50 SCC's Local Transport Plan 2011 stresses the need for sustainable development, stating in Policy 1.3, "We will support the adoption of sustainable land-use planning polices and reduce the impact of development where it negatively affects the highway network." This will be achieved through the following:

Working with local planning authorities and developers through the Local Development Framework process to:

- Encourage the design and layout of new development that maximises access by smarter travel modes, especially in urban areas.

Improve street design to create inclusive environments, especially in town centres whilst reconciling safety issues.

Promote the retrofit of existing developments in order to maximise access by smarter travel modes, especially in urban areas.

Policy 1.8:
We will improve the efficiency of freight distribution.

This will be achieved through the actions set out in the Staffordshire Freight Strategy (Appendix L).

- Seek development mixes and patterns that are accessible to a broad range of services and facilities, which reduce the need to travel by private motor vehicle.

Working with local planning authorities to include planning obligations which secure highway capacity improvements, pedestrian and cycling facilities, new or improved bus services, demand management measures, public realm enhancements, and travel plans.

Ensuring that travel plans, when required to support new development, include modal shift targets, annual performance monitoring, remedies and enforcement obligations.

Improving the Efficiency of Freight Distribution

The movement of goods across and within the county is vital for Staffordshire's economy to prosper. On local roads, freight accounts for between 5% and 10% of all traffic and is the second largest user by mode, behind private motor cars. Between 2006 and $2008,214,000,000$ t of freight either originated or was destined for Staffordshire ${ }^{17}$. Given the volume of freigh movement in the county, attempting to improve operations will have benefits for business (in terms of efficiency savings) and residents (in terms of quality of life).
2.51 The Plan includes a policy relating to freight distribution:
2.52 SCC's Local Cycling and Walking Infrastructure Plan 2021-2031 (adopted April 2021) states it "focuses on identifying where we [SCC] should be targeting our investment in infrastructure within the
compact urban areas of Burton upon Trent, Cannock, Lichfield, Newcastle-under-Lyme, Stafford and Tamworth, which are of a size that can support journey distances that can be made by walking and cycling."
2.53 In paragraph 2.9, it notes, "It is considered that Stafford and Tamworth have the most extensive existing cycle networks." In Tamworth, "the local cycle network is extensive covering 30 miles within a 12 square mile area and positive progress in encouraging modal shift has been achieved in recent years."
2.54 At paragraph 2.11, it notes "Cycling schemes will need to recognise LTN $1 / 20$ which is new national guidance published in July 2020 on delivering high quality cycle infrastructure. In Staffordshire, the two key priorities will be to:

- Deliver new LTN 1/20 standard links on the prioritised cycle networks in the six urban areas.
- Upgrade existing substandard cycle routes to LTN $1 / 20$ standard on the prioritised cycle network in the six urban areas, tying in where necessary to existing shared use facilities".

3.0 EXISTING CONDITIONS

Site Location and Surrounding Area

3.1 The development site is located to the north-east of the M42 Jn10 and immediately to the north of the A5 Watling Street. The site lies on open fields with an area of hardstanding in the south and is bounded to the north by village of Birchmoor, to the east by agricultural fields, to the south by the A5 Watling Street and to the west by the M42 motorway. A site location plan is shown at Figure 1 at Appendix G.

Local Highway Network

3.2 Details for this section of the report have been extracted from the Bancroft TA.
3.3 The site is currently primarily served via an access at the A5 frontage. It comprises a 16 metre wide dropped kerb arrangement with an access width of 8 m . Given that the A5 is dualled past the site, this junction only accommodates left-in and left-out turning movements. There is a secondary point of access to the east from the A5 opposite Core 42 Business Park (Core 42) and via the existing farm track, which in part also serves as part of Footpath AE46.
3.4 The A5 is a key strategic route that extends between Junction 9 of the M1 Motorway (north of London) and Holyhead in North Wales. In the vicinity of the site, it extends between Tamworth to the north-west and Hinckley to the east. The A5 is dualled as it passes the site with two traffic lanes in each direction, measuring approximately 19.5 metres wide with a kerbed central reserve (approximately 6.4 m wide) and footways with street lighting on both sides of the carriageway. Traffic passing the site is subject to the national speed limit, which reduces to 50 mph approximately 180 m to the east of the existing access. Within Dordon the speed limit on the A5 is 40mph.
3.5 In the vicinity of the site frontage, the eastbound carriageway includes a 90 m long layby facility approximately 235 m from the roundabout at M42 Jn10. On-site observations suggest this has a capacity of around four articulated lorries. Continuing east there is a bus layby approximately 140 m from the parking layby. A further 15 m east of this point is a staggered uncontrolled pedestrian crossing that passes through the central reserve. Except for a short section between the parking and bus laybys where a substantial 3 m verge exists, the northern edge of the carriageway is bound by the shared footway/cycleway only.
3.6 At the southern edge of the A5 carriageway (westbound flow) a further parking layby exists approximately 320 m from the roundabout at M42 Jn10. The layby has a length of approximately 46.6 m and can accommodate up to three articulated lorries. On approach to the Jn10 roundabout the westbound carriageway widens from two lanes to four at the signal-controlled stop lines. These comprise a 120 m long flare at the off-side lane and a nearside left turn only flared lane that extends for around 50 m . The southern edge of the westbound carriageway is also bound only by a footway, with no verge.
3.7 The A5 carriageway includes street lighting and footways/cycleways at both edges. It is also understood that both parking laybys are well used by drivers throughout the week at all times of the day.
3.8 Approximately 580 m east of the existing site access, there is a signal-controlled T-junction that serves the Birch Coppice Business Park. The layout includes three lanes on the A5 westbound approach, two for ahead only movements and one for left turns. The A5 eastbound approach comprises four lanes, two for ahead only movements and two for right-turns.
3.9 The minor arm (Danny Morson Way) approach includes three lanes, two for left-turns and one for right-turns. This arrangement also includes another signal-controlled access road adjacent to the minor arm, which extends from the radius of the junction and serves to maintain an existing right of access in favour of land under the control of Hodgetts Estates. Staggered signal-controlled pedestrian/ cycle crossings are located at the eastern side of the junction; Danny Morson Way has uncontrolled pedestrian and cycle crossings. As discussed in greater detail in the 2022 TRANSYT Baseline Validation Report, the junction performs well in the AM and PM peaks in 2022 with traffic progressing through the junction within one cycle. The MOVA set up works well reacting to traffic demands, resulting in varying cycle times and green splits for each phase.
3.10 Some 330m east of the Birch Coppice Junction there is another traffic signal controlled junction serving the Core 42 Business Park, a mixed-use industrial scheme, which is nearly completed with 1 small plot remaining. It was developed by Hodgetts Estates. The layout includes two lanes on the A5 westbound approach and three lanes on the A5 eastbound approach, two for ahead only movements and one for right-turns. The minor arm (Meridian Drive) has a 2 lane approach, one for right turning traffic and one for left turning traffic. Staggered signal-controlled pedestrian/ cycle crossings are located at the eastern A5 arm of the junction and across Meridian Drive. As discussed in greater detail in the 2022 TRANSYT Baseline Validation Report, the junction performs well in the AM and PM peaks in 2022 with traffic progressing through the junction within one cycle. The MOVA set up works well reacting to traffic demands, such that when no vehicles are waiting to turn right out of Core 42, the traffic signal for this phase is not activated, thus ensuring maximum efficiency and minimal delays to drivers.
3.11 Approximately 520 m east of the A5/ Core 42 junction there is a roundabout junction with Long Street and Gypsy Lane, known locally as Dordon Island. The A5 speed limit reduces to 40 mph approximately 150 m east of the A 5 / Core 42 access junction. Long Street extends north from Dordon Island and is subject to a 30 mph speed limit with traffic calming and signage confirming it as being 'unsuitable for HGVs'. Residential on-street parking restricts the available carriageway width to approximately 3.5 m . To the east of Dordon Island, the A5 continues as a single carriageway road with direct frontage access to properties, footways/streetlighting and a 40mph speed limit to Grendon where there is a roundabout junction with Spons Lane and Boot Hill.
3.12 Approximately 360 m to the west of the site, the A5 leads to a large grade-separated roundabout with Jn10 of the M42 Motorway, which is fully signal-controlled. As well as linking the M42 with the A5, this junction also provides access to Trinity Road to the south (which leads to Freasley and Tamworth Logisitcs Park) and to Green Lane to the north (which leads to Relay Business Park and Tamworth Moto motorway services area). To the north, the M42 extends to the M1 Motorway for Nottingham, and Derby, and to the south it extends to the M6 Motorway for Birmingham to the
south. Pedestrian and cycle crossing across the M42 on and off slips, Trinity Road and at Green Lane are all uncontrolled. There are no pedestrian and cycle crossings of the A5 approaches to the junction. As discussed in greater detail in the 2022 TRANSYT Baseline Validation Report, the junction experiences notable queues and delays on the A5 eastbound approach in the AM peak hour, with queues on average over 30pcu in each lane, and at times the queues extend back beyond the Pennine Way overbridge. All other approaches to the roundabout generally operated well. The roundabout junction operated in a similar manner in the PM peak, although the queues and delays on the A5 eastbound approach are not as extensive, whilst all other approaches generally operated well.
3.13 To the west of M42 Jn10, A5 is known as the Fazely-Two Gates-Wilnecote Bypass. It is a dual carriageway road with street lighting and is subject to the National Speed Limit of 70 mph . There are narrow shared foot/cycleways on both north and south sides between Jn10 and the slip roads to Pennine Way,but no footways further west. Eighty metres west Jn10 there is a left turn slip road on the eastbound carriageway to Kensall Green with a substandard diverge lane. Kensall Green provides a route to Green Lane avoiding the traffic signals on the A5 approach to Jn10.
3.14 Some 260 m west of Jn10 there is an all-movements interchange with Pennine Way with trumpet form slip roads on both sides of the A5. At the head of each slip road there is a 54 m ICD roundabout which are connected by a bridge over the A5. The southern roundabout gives access to Centurion Park, a business park, to the south and to the B5404 Quarry Hill to the west. The B5404 serves the residential areas of Wilnecote, Belgrave and Two Gates. The northern roundabout gives access via Pennine Way to the Stonydelph residential area and other residential areas in eastern Tamworth via the B5000.

Future Highway Schemes - Road Investment Strategy

3.15 The Road Investment Strategy (RIS) is a multi-year investment plan covering the costs of operating, maintaining, renewing and enhancing the Strategic Road Network in five-year time horizons. RIS1 covered the period 2015 to 2020 and RIS2, covering the period 2020 to 2025, is being delivered. Part of RIS2 sets out the research priorities for schemes to be developed for implementation during the RIS3 period (2025 to 2030). One such scheme is the A5 Hinkley to Tamworth Improvement for which proposals are being developed and a Strategic Outline Business Case is being prepared. It is at an early stage in its development, with a request in August 2021 to stakeholders for feedback on the existing issues with the route to help inform the development of options for the schemes.
3.16 As yet no firm proposals have been published. Although WCC state in their consultation response to this application, "the unallocated proposal currently being considered should be permitted only if it can be satisfactorily demonstrated that the development would not prejudice the design or delivery of any such scheme. It is not considered that the proposal as submitted or revised has adequately demonstrated this." It is considered unreasonable to prevent the delivery of development when no firm proposals have been identified.

Future Highway Schemes - A5 Dordon-Atherstone

3.17 National Highways are preparing an improvement scheme for the A5 between Dordon and Atherstone. A copy of the consultation document is appended at Appendix H . Three options were
out for public consultation in September and October 2022. The scheme broadly consists of improvements to Dordon Island, an offline new dual carriageway link between Dordon and Grendon, improvements to Grendon roundabout, on line improvements to the A5 between Grendon and Atherstone and improvements to the A5/ Holly Lane roundabout at Atherstone. The main differences between the options are the junction arrangements at Dordon.

Traffic Surveys

3.18 As set out in the Modelling Strategy Note, the Transyt model for the assessment was to be validated using observed 2022 traffic flows, signal timings, queues and where appropriate, saturation flows.
3.19 Traffic surveys were undertaken on Wednesday 23 March 2022 for the AM peak period (7am-9.30am) and PM peak period (4pm-6.30pm) at the following locations:

- M42 Junction 10
- A5 Watling Street / Danny Morson Way (Birch Coppice)
- A5 Watling Street / Meridian Drive (Core 42)
- A5 / Kinsall Green
3.20 The traffic surveys recorded volume and class and captured individual traffic streams. The surveys also recorded queue lengths and signal cycle counts, green times, and saturation flows. The results are described in more detail in the Transyt 2022 Baseline Validation Report attached at Appendix B.
3.21 Bancroft Consulting carried out a radar speedmeter survey of the A5 at the layby adjacent to the site access. The eastbound survey took place between 09:00 and 09:45 on Monday 26 April 2021, recording approach speeds at a point approximately 150 m from the proposed site access location. The results were in Appendix M of the Bancroft TA and, for ease of reference, are included at Appendix I of this Revised TA. A total of 200 readings were collected and the corresponding $85^{\text {th }}$ percentile speed was calculated to be 49.6 mph (79.8 kph). The westbound survey took place on the same day between 10:30 and 11:15, also recording approach speeds at a point approximately 150 m from the proposed site access location. Again 200 readings were taken; the corresponding $85^{\text {th }}$ percentile speed was calculated to be 55.1 mph (88.7 kph). The appropriate DMRB stopping sight distances are therefore 160 m for eastbound traffic and 215 m for westbound traffic.
3.22 For the SCC assessment, manual classified turning counts and queue observations per lane were carried out at the two Pennine Way roundabouts on Wednesday 5 October 2022. These are described in further detail in the South Pennine Way Modelling Report attached at Appendix D.

Existing Pedestrian and Cycle Movements

3.23 Surveys were undertaken to record the existing pedestrian and cycle movements to gain an understanding of the existing sustainable travel activity in the vicinity of the site, and to inform the WCHAR assessment. On Wednesday 8 June 2022, directional pedestrian and cycle volumes between the hours of 7am and 7pm were recorded at 18 locations in the vicinity of Jn10, Relay Park and Birchmoor. Figure 2 in Appendix G shows the survey locations and results.
3.24 On the A5 passing the site, there were 11 pedestrian movements on the north side and 13 on the south side during the 12 -hour survey period. During the same time there were 38 cycle movements on the north side and 51 on the south side.
3.25 At Jn10 of the M42 Motorway, the surveys identified that existing pedestrian movements were low, with 11 pedestrian movements on the northern overbridge over the 12-hour period. There were more cycle movements with 38 movements at the same location over 12 hours.
3.26 In Birchmoor, on Green Lane, there were 188 pedestrian movements and 55 cycle movements.
3.27 In Relay Park, on the cycle path to the north, there were 294 pedestrian movements and 58 cycle movements.
3.28 The Bancroft TA at Appendix R reported a survey of bus passengers using the bus stop adjacent to the site on 23 September 2021 between 7.00am and 7.00pm. During this period no bus passengers were recorded using the stop.

Walking, Cycling and Horse-riding Assessment (WCHAR)

3.29 A Walking, Cycling and Horse-riding Assessment (WCHAR) has been undertaken by Drummond Black Consulting Ltd in July 2022. The findings of the WCHAR informed the design of various sustainable travel elements of the proposed scheme. The WCHAR is attached at Appendix E.

4.0 ACCESSIBILITY

4.1 NPPF was updated and revised in February 2019, replacing the 2012 version of the Framework, then updated again in July 2021. At Paragraph 104 c) NPPF identifies "opportunities to promote walking, cycling and public transport use are identified and pursued" for development proposals and at Paragraph 105 it indicates "opportunities to maximise sustainable transport solutions will vary between urban and rural areas, and this should be taken into account in both plan-making and decision-making". The accessibility of the proposed development has been considered based on the guidance in NPPF.
4.2 Some details for this section, including photos, have been taken from the Bancroft TA.

Walking

4.3 In the vicinity of the site, a narrow $1.2 \mathrm{~m}-1.5 \mathrm{~m}$ wide footway, extends along the southern edge of the A5 carriageway. This may also be a shared unsegregated cycleway, although the signing is somewhat ambiguous. Along the northern edge of the carriageway, a typically 2 m wide shared unsegregated footway / cycleway exists. The June 2022 surveys recorded less than 15 pedestrians in the 12 hour period on each side of the A5.
4.4 To the west, these facilities extend to Jn10 interchange where, the M42 slip road and the Green Lane arms include unsignalised dropped kerbs and tactile paving crossings. There are no pedestrian crossings over the A5 approaches to Jn10. Photos showing the above are provided below.

Existing crossing facilities at M42 Junction 10: Green Lane (left) North Facing Off Slip (right)

Existing footways at site frontage on A5 (left) and at northern edge of M42 Junction 10 (right)

4.5 Figure 3, Appendix G, identifies opportunities for pedestrian travel to the site, based on a 1.95 km walking distance (Local Transport Today in October 2017). This is a 24 -minute walk at a typical walking speed of 1.3 m per second. The catchment area extends north to the B5000/ Common Lane junction, encompassing Birchmoor and the southwestern part of Polesworth which includes a significant amount of residential development, approximately a 16-17 minute walk from the centre of the proposed site using the new footpath from the site entering Birchmoor through Cockspur Street, before heading east along Birchmoor Road, then south on Dordon Road.
4.6 The eastern edge of the catchment drops down from the B5000/Common Lane junction to the west of Common Lane. It then extends further to the east encompassing most of Drodon, including Browns Lane and the southern end of Long Street. This includes local shops and restaurants at Browns Lane along with further residential development. For example, Happy Dinner, FOCHA Turkish Kitchen and Dordon Fish Bar can all be accessed within a 22-23 minute walk from the centre of the site. This would involve exiting the site to the south and heading eastbound on the proposed foot/ cycle way alongside the A5 and the public footpath link to Browns Lane in Dordon. It is also important to note that many of the local roads within Polesworth and Dordon are traffic calmed, helping to keep speeds low and thereby improving conditions for pedestrian movement. Photos showing the above are provided below.

Local shops at Browns Lane (left) and traffic calming on Whitehouse Road (right)

4.7 South of the site, the majority of the Birch Coppice and Core 42 business park sites are within a reasonable walking distance. The two bus stops located within Birch Coppice can be accessed by a 16-17 minute walk from the centre of the proposed site whilst the entrance to Core 42 Business Park can be accessed within a 17-18 minute walk from the proposed site. Access to these areas requires crossing of the A5, which can be done via controlled crossing at the Birch Coppice or Core 42 junctions, or the uncontrolled crossing of the A5 dual carriageway opposite the existing bus stop layby.
4.8 Each of these sites has comprehensive internal pedestrian and cyclist infrastructure to facilitate movement. Photos showing examples of these existing crossing facilities are provided below.

Crossing facilities on A5 at Birch Coppice access (left) and at Core 42 (right)
4.9 The catchment then extends further west via Watling Street to include Relay Park, the Moto services, Centurion Park and a small part of the Stoneydelph residential area.
4.10 The area covered by the catchment north of the A5, west of Jn10, comprises a mixture of residential and employment uses. It is connected to the site via Birchmoor using Cockspur Street and Green Lane, these have footways along the entire length of the route and some sections with a footway on both sides of the carriageway. At the western end of Green Lane, the speed limit changes from 30 mph to national speed limit restrictions as the road splits to the north and south. The existing footway facilities at Green Lane are shown below.

Footways on Green Lane (bridge over M42 motorway)
4.11 Continuing south from this junction the route is via a Permissive Footpath that extends through to the northern edge of the Tamworth Moto service area as a traffic free route. From this, the catchment extends west to include additional residential development within Tamworth. Photos showing parts of the pedestrian route to the south are provided below.

Pedestrian facilities on route south from Green Lane
4.12 Turning right and heading north from the Green Lane junction there is a foot/cycleway which provides various opportunities to cut into the adjacent residential areas and access the Tamworth foot/cycle network. The first of these is a segregated footpath/cycle path which extends through to
the eastern edge of the residential estate and then offers convenient access to Pennine Way (B5080).

Pedestrian facilities on route north from Green Lane
4.13 There are a number of Public Rights of Way (PROW) within the surrounding area. Bancroft TA Figure 23, reproduced in Figure 4 Appendix G, shows the designated PROWs in the area.
4.14 Public Bridleway 166/AE45/1 runs along the eastern site boundary in a north / south direction between Birchmoor and the A5 which will be slightly diverted at the southern end to accommodate the new site access as shown at Figure 7 in Appendix G. In addition, Figure 7 also shows how an existing public Footpath (166/AE46/1) which extends east from the centre of the site and arches round to the south will also be slightly diverted. The Footpath connects onto the A5, immediately west of the Core 42 access. Continuing further east along the northern side of the A5 leads to another Footpath 166/AE48/2 that connects northeast into Browns Lane.
4.15 Walking infrastructure upgrades associated with the development (discussed in detail in Chapter 6 below) provides improvements for commuters travelling by foot to the proposed development and to nearby employment areas.

Cycle Travel

4.16 Figure 5, Appendix G, shows a 7.2 mi cycle catchment area centred on the site. It demonstrates how a large number of the surrounding residential areas would be within a reasonable cycling distance. This includes the densely populated residential areas east of Tamworth, such as Kettlebrook, Glascote, Glascote Heath, Belgrave, Wilnecote, and Stoneydelph, as well as the majority of Tamworth other than the residential areas on its western edge. To the northeast and east, residential areas within Polesworth, Dordon, Grendon, Baddesley Ensor, and the western residential areas of Atherstone would also be within cycling distance of the site.
4.17 Figure 6, Appendix G, shows an extract from 'Cycling in Lichfield' map published online by Staffordshire County Council. It shows how the site is surrounded by a network of cycle facilities, ranging from traffic-free cycle paths through to advisory cycle routes along quiet roads. In the immediate vicinity of the site these facilities include advisory cycle routes at Birchmoor Road and

Trinity Road, shared footway/cycleway at the northern edge of the A5 (including a Toucan crossing at the Birch Coppice access), and further cycle paths routing through the residential areas of Stoneydelph and Glascote Heath. This demonstrates how the proposed development would be well connected to the surrounding local cycle network, ensuring that cycling trips to and from the surrounding site area are within a comfortable distance and with suitable facilities.

Cyclists using existing facilities at A5 passing the site frontage
4.18 Cycle infrastructure upgrades associated with the development (discussed in detail in Chapter 6 below) provide improvements for commuters travelling by bike to the proposed development and to nearby employment areas.

Bus Travel

4.19 The closest bus stop is located at the northern edge of the A5, approximately 200 m to the east of the proposed site access, and 650m from the centre of the site. This comprises a bus layby with no flag and pole (photo below refers) and serves eastbound services for Routes 766 and 767. To access westbound services, the closest bus stop is located within the Birch Coppice Business Park, a further 400 m east.

Existing bus stop facilities at A5 eastbound
4.20 Table 4.1 below lists the services which call at the A5 Watling Street eastbound bus stop.

Table 4.1: Bus Routes - A5 Watling Street

Route No.	Route Description	Monday to Friday		Saturday Daytime	Sunday
		Daytime	Evening		
$\begin{aligned} & \text { Stagecoach } \\ & 766 / 767 \end{aligned}$	Tamworth to Nuneaton Via Birch Coppice, Dordon Baddesley Ensor, Grendon, Atherstone, Mancetter, Hartshill	$\begin{aligned} & \text { Every 1-2 } \\ & \text { hours } \end{aligned}$	No Service	Every 1-2 hours	Every 1-2 hours

4.21 The 766/ 767 provide direct journey opportunities to a range of large residential areas, where employees may live including Tamworth, Atherstone and Nuneaton.
4.22 There are a pair of bus stops served by the 766 and 767 services at Birch Coppice Business Park, which are approximately $1,300 \mathrm{~m}$ from the centre of the application site. These stops can be reached by footway along the northside of Watling Street, the controlled pedestrian crossing facility on the A5 and footway through the business park.
4.23 There are two bus stops on Birchmoor Road to the north of the application site which can be reached within an approximate 800 m walk from the centre of the application site. The stops can be reached via a proposed footway connection to Cockspur Street / public bridleway AE45 and then continuous footway on Cockspur Street and Birchmoor Road. The eastbound stop provides a flag/ pole arrangement, and the westbound stop provides a flag/ pole arrangement and timetable information. Table 4.2 below lists the services which call at the Birchmoor Road stops.

Table 4.2: Bus Routes - Birchmoor Road

Route No.	Route Description	Monday to Friday		Saturday	Sunday
	Daytime	Evening	Daytime		
Arriva 785/ 786	Tamworth to Austrey Via Arrington, Shuttington, Newton Regis, Wartyon, Polesworth	5 morning services then every 2 hours approx	No Service	5 morning services then every 2 hours approx	7 services

4.24 The 785/ 786 services provide direct journey opportunities to Tamworth and other residential areas where employees may live, including Polesworth and Shuttington.

Rail Travel

4.25 Polesworth Station is located approximately 2.8 km to the north of the site and has an extremely limited train service with only one train, early morning, per day (Monday to Saturday), and only in one direction (northbound) because the southbound platform is inaccessible.
4.26 Wilnecote Train Station is approximately 3.5 km to the west of the site and could be cycled to as part of a shared journey. Tamworth Station is approximately 7 km northwest and is at the limit of a reasonable cycle ride, but could be used as part of a shared journey. Both Tamworth and Wilnecote Train Stations operate regular services to key surrounding towns that could fit with conventional working times for employees at the site.
4.27 For freight activities, the site is also close to the Birmingham Intermodal Freight Terminal (BIFT) at Birch Coppice Business Park. This is operated by Maritime Transport and provides a 24/7 operation with capacity for holding 3,000 containers. On a typical weekday, the terminal receives three trains a day from the Port of Felixstowe and two trains a day from the Port of Southampton. This provides a clear opportunity for goods associated with the proposed development to be delivered by rail rather than road, thereby reducing highway impact and increasing accessibility by sustainable modes.

Summary

4.28 The proposed development has good levels of accessibility on foot and by cycling to a range of useful local destinations. With the proposed bus service diversions, the majority of the site will be within an accessible walk distance to bus services that provide regular journey opportunities to a number of useful destinations. The nearby BIFT rail terminal provides an excellent opportunity for rail-road intermodal freight, which could relace of 10% of HGV movements thereby reducing both HGV milage and CO2 emissions.
4.29 Overall, the accessibility of the site, taking into account the proposed connectivity improvements outlined elsewhere in this report is considered to be very good.

5.0 HIGHWAY SAFETY

Personal Injury Accident Data

5.1 Road traffic collision records for the most recent pre-Covid 3-year period ending the 31 December 2019 have been obtained from Warwickshire County Council (WCC) and Staffordshire County Council (SCC). The study area comprises the A5 from Pennine Way to Core 42Dordon, and includes the M42 Jn10 and proposed site access location.
5.2 Summary details of the accidents are given below (from west to east) and copies of the highway safety records are attached in Appendix J. It should be noted that WCC's records do not specify the factors involved in the accident, so this information is interpreted from the incident descriptions where possible.

Pennine Way Roundabouts \& A5 up to Junction 10

5.3 In the assessment period 10 accidents were reported at the Pennine Way roundabouts and on the A5 Fazeley-Two Gates-Wilnecote Bypass, as summarised in Table 5.1 below. Of the 10 accidents, 5 occurred at the Pennine Way South roundabout, 1 at the Pennine Way north roundabout, 3 occurred at the Pennine Way/ A5 slip roads, and 1 at the Kensall Green junction. There were no accidents at the other locations, such as the Pennine Way bridge.

Table 5.1: Pennine Way Roundabouts and A5 Bypass up to Junction 10

| Reference/ Date | Location
 Pennine Way South Roundabout | | | Lighting | Dry/ Wet | Severity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Casualties

A car travelling northwest on Centurion Way has collided with a cyclist travelling southwest on the roundabout circulatory.
Factors - Failed to look properly, passing too close to cyclist, horse rider or pedestrian, cyclist wearing dark clothing at night, not displaying lights at night or in poor visibility

$4-17189916$ $03 / 06 / 2017$	Pennine Way Roundabout junction with Thomas Guy Way	Daylight	Dry	Slight

A car travelling southeast at the roundabout was waiting to enter roundabout when a second car has collided with its rear.
Factors - Not reported

$5-18299447$ $21 / 04 / 2018$	Thomas Guy Way A5 northbound exit slip by Premier Inn	Daylight	Wet/Damp	Slight	1 driver

A car travelling to the northwest towards roundabout has braked suddenly and skidded.
Factors - Poor turn or manoeuvre, sudden breaking, loss of control

$6-18322469$ $02 / 07 / 2018$	Watling Street B5404 Junction with Quarry Hill	Daylight	Dry	Slight	1 cyclist and 1 driver

A car travelling northeast at was stationary at the junction approach on to the roundabout when a cyclist travelling southwest collided with its side.
Factors - cyclist illegal turn or direction of travel and cyclist entering road from pavement.

$7-18338615$ $25 / 09 / 2018$	Quarry Hill B5404 Junction with Pennine Way	Daylight	Dry	Slight	1 driver

A car approaching the junction on to the roundabout heading northwest failed to look and collided into the rear of a stationary vehicle also travelling northwest.
Factors - Failed to look properly.

Pennine North Roundabout					
$3-17157293$	A5 Eastbound				
16/02/2017	Daylight	Dry	Slight	1 driver	
	Pennine Way B05080				

Two cars both travelling southeast towards the junction on to the roundabout circulatory when one of the vehicles broke suddenly resulting in the vehicle behind it colliding with its rear.
Factor- Failed to look properly, failed to judge other person's path or speed, following too close, sudden breaking.

A5 / Pennine Way Slips					
$1-17143638$	A5 eastbound exit slip to Stoneydelph	Daylight	Wet/Damp	Serious	1 driver
$04 / 01 / 2017$					

A car travelling south to go ahead was approaching junction when it collided with a car travelling north in the opposite lane due to the first vehicle travelling too fast for the wet conditions.
Factors - Travelling too fast for conditions.

$8-19400169$ $28 / 05 / 2019$	Thomas Guy Way A5 approximately 60 meters from M42 Island	Daylight	Dry	Slight	1 motorcyclist

A motorcyclist travelling northwest on main carriageway was distracted by the light from the sun before falling.
Factor - Dazzling sun

$$
9-19868172
$$

A5 Northbound
junction with
Stoneydelph exit

Daylight	Dry	Slight	1 motorcyclist

A motorcyclist travelling west was turning left on to the main carriageway when the light from the sun caused the rider to swerve and fall from the motorbike.
Factors - Dazzling sun, swerved

A5 / Kinsall Green					
$\begin{aligned} & 10-19887971 \\ & 07 / 09 / 2019 \end{aligned}$	A5 Approx 38 meters south east of junction with Kinsall Green	Daylight	Dry	Slight	1 passenger

A car was travelling southeast on the A5 when it had to break to adjust its speed, another car was travelling closely from behind which resulted in its rear shunting when the first car slowed down.
Factors - following too close, failed to look properly, failed to judge other person's path or speed.
5.4 Of the 5 accidents which occurred at the Pennine Way South roundabout, 3 were on the A5 off-slip approach and 2 were on the Centurion Way approach. Two accidents were shunts, but occurred on different approaches and two involved a cyclist and again both were on different approaches. There are no common factors in the accident reports and the contributory factors are driver or cyclist error rather than inadequate highway design.
5.5 Of the three accidents at the A5 slips the common factor for the two motorcycle accidents was sun dazzle.
5.6 The number of accidents reported is low and inadequate highway design was not a substantive factor.

M42 Junction 10 Interchange

5.7 In the assessment period 17 accidents were reported at the M42 Jn10 interchange, as summarised in Table 5.2 below. The accident locations are shown at Figure J1 in appendix J.

Table 5.2: M42 Junction 10 Interchange

Reference/ Date	Location	Lighting	Dry/ Wet	Severity	Casualties
$1-400169$	A5 near junction with	Daylight	Dry	Slight	1 casualty
$28 / 05 / 2019$	M42				

A motorcyclist heading northwest had exited the island from the M42, the low sun impaired their visibility causing a loss of control resulting in a collision with a junction maker sign.

$\begin{array}{r} 2-901455 \\ 12 / 10 / 2019 \end{array}$	A5 near junction with Watling Street	Daylight	Wet/Damp	Slight	4 casualties

A car was stationary at traffic lights on the M42 junction heading westbound when a second car collided with its rear.

$4-845291$ $04 / 04 / 2019$	Watling Street(A5) - near junction with Relay Drive.	Daylight	Wet/Damp	Slight	1 casualty

A car heading northeast on the A5 quickly changed lanes causing a second car to brake sharply which subsequently led to a moped braking and colliding with the rear of the second car.

$5-296034$					
$13 / 05 / 2018$	Wilnecote Bypass Island at the Junction with Green Lane.	Daylight	Dry	Serious	2 casualties

A car travelling from Tamworth had been waiting at the junction traffic lights on to the M42 roundabout when a second car travelling behind it failed to stop in time colliding with the rear of the waiting vehicle.

$8-241282$ $17 / 11 / 2017$	A5 at junction with junction 10 M42	Daylight	Dry	Serious	2 casualties

A car heading Northeast on to the M42 had attempted to use the slip road from lane 3 catching the back of a second car which caused the car to lose control resulting in it colliding with a lamppost.

$10-165684$ $05 / 03 / 2017$	Tamworth A5 at junction with slip road on to the M42	Daylight	Dry	Slight	1 casualty

A vehicle heading northeast bound has changed lanes and pulled into the path of a second vehicle causing it to crash into the nearside barrier.

$11-831674$					
$06 / 02 / 2019$	Watling Street near junction with Trinity Road	Dark Streetlights unknown	Dry	Slight	casualty

A cyclist travelling northeast on the A5 heading towards the slip road on the M42 junction has been struck just before the slip road by a heavy goods vehicle.

$13-815904$ $06 / 02 / 2019$	Watling Street junction with Trinity Road	Dark- Streetlights	Wet/Damp	Slight	1 casualty

A cyclist heading west on the circulatory of the roundabout has been struck by a vehicle which has cut across the cyclist.

$16-201279$	Watling Street at junction with M42	Daylight	Dry	Slight	2 casualties
$15 / 07 / 2017$					

Two cars were heading southeast towards Dordon, on the roundabout one car had driven on lane 3 then into the offside of the second car. This caused the other car to move into the other lane. The cars then stopped in layby.

18-863408	A5 Watling Street Dordon Junction with M42 10	Dark - Streetlights	Wet/Damp	Slight	2 casualties

A car had been driving in lane 1 of M42 island towards the southwest slip road when an HGV also going southwest merged into lane 1 without noticing the car causing a collision.

$20-869960$					
$06 / 02 / 2019$	Watling Street junction with M42 jct 10 island	Daylight	Dry	Serious	1 casualty
	10				

A motorcyclist travelling west on the A5 has collided with the rear of a motorbike at the M42 junction as a result of the traffic lights on the roundabout not working (signs displayed this).

$21-900846$	Watling Street at junction with Jct 10 traffic island	Daylight	Wet/Damp	Slight	1 casualty

A Heavy Goods Vehicle travelling west has collided with the rear of a stationary car waiting at the junction.

$24-298660$	Junction 10 off slip at M42 junction with A5	Daylight	Dry	Slight	2 casualties

A car travelling southwest has collided with the rear of a second vehicle waiting at the junction.

$25-323746$					
$01 / 09 / 2018$	Tamworth Island A5 at junction with 10 with the slip road on to the M42	Daylight	Dry	Slight	2 casualties

An ambulance travelling southeast on the roundabout has activated its sirens. One of two cars travelling northwest has not slowed down and has collided with the ambulance.

$27-340418$	Not stated	Daylight	Wet/Damp	Slight	1 casualty
$29 / 10 / 2018$					

A car was stationary in a queue of traffic when a goods vehicle approaching from behind has collided with the rear of the car.

| $30-151799$
 $10 / 01 / 2017$ Junction 10 M42,
 Island 15 at junction
 with the A5 Dark -
 Streetlights Wet/Damp Serious | 1 casualty |
| :---: | :---: | :---: | :---: | :---: | :---: |

A cyclist going southbound had entered the M42 island, a lorry (also going southbound) has moved into the inside lane before cutting back into the middle lane. The lorry collided with the cyclist.

$31-187837$	A5 junction with	Daylight	Dry	Slight	1 casualty
$15 / 05 / 2017$	M42				

A car was travelling southeast on M42 island when it collided with a second cars front drivers' side in the farleft lane.
5.8 Four of the 17 accidents at M42 Jn10 resulted in serious injury with the remaining 13 resulting in slight injury. Four accidents (24\%) occurred during the hours of darkness; the proportion of these accident types is not sufficiently high to be a cause for concern. In seven accidents, a wet/ damp road was recorded, that is 41%, however there were no common locations. Eleven of the seventeen accidents occurred on the circulatory carriageway but occurred at a range of different locations across the interchange, three occurred near to Green Lane and three occurred between the M42 southbound off slip and exit to A5 east. Only one arm of the circulatory had more than one accident occur during the observation period, which was the A5 eastern arm where three accidents were reported.
5.9 Three cycle accidents were reported in the study period, two in he vicinity of the M42 southbound on slip and one near to the A5 east exit.
5.10 The main causes of accidents appear to be driver error: a vehicle pulling into the path of another vehicle and rear end shunts and changing lanes. These occurred at a number of different locations. The number and type of accidents are typical at a large grade separated junction, which carry high volumes of daily traffic.

A5 between M42 Junction 10 and Core 42

5.11 In the assessment period seven accidents were reported on the A5 between the M42 Jn10 and Core 42, as summarised in Table 5.3 below. For ease of reference, accidents have been grouped as involving either eastbound or westbound traffic. From the accident descriptions it can be difficult to geographically locate the incident.

Table 5.3: A5 between M42 Junction 10 and Core 42

Reference/ Date	Location	Lighting	Dry/ Wet	Severity	Casualties
A5 Westbound					
$\begin{gathered} 33-297756 \\ 18 / 05 / 2018 \end{gathered}$	A5 near junction with Junction 10 island for M42.	Dark, with Streetlights	Dry	Slight	2 casualties

Two cars travelling west on the A5 from Atherstone to Tamworth, one of the cars drove into the back of the second car causing minor damage.

$34-203535$ $06 / 06 / 2017$	Watling Street A5 near junction with M42 island	Daylight	Wet/Damp	Slight	1 casualty

A car travelling westbound collided with the rear of another car which was stationary in traffic before the island for the M42 junction.

$36-312805$ $06 / 07 / 2018$	Dordon A5 near junction with 10 M42	Daylight	Dry	Slight	2 casualties

A goods vehicle heading westbound was in the outside lane of a two-lane stretch, a car was in lane 1 which tried to merge across it had not seen the goods vehicle and collided.

A5 Eastbound

32-861055 $23 / 07 / 2019$	A5 near junction with unclassified road	Daylight	Dry	Slight	2 casualties

Two motorcycles travelling East in the same lane and taking the same exit collided resulting in both riders falling on the carriageway.

| $37-171965$
 $08 / 04 / 2017$ | Offside Hall End
 House Dordon A5 | Daylight | Dry | Slight |
| :--- | :---: | :---: | :---: | :---: |$\quad 2$ casualties

A car going east on the A5 had failed to observe a car in front braking and collided from behind.

$38-237864$					
$07 / 11 / 2017$	A5 junction with Birch Coppice	Dark, Streetlights	Wet/Damp	Slight	1 casualty

A motorcycle was travelling east alongside a car, they both entered using the right-hand slip road into Birch Coppice when the car tried to overtake the motorbike, clipping the bike.

A5 Direction Unknown

$41-274607$	A5 at junction with Birch Coppice Business Park	Dark, Streetlights	Frost/ice	Serious	1 casualty
$01 / 03 / 2018$					

A car travelling along the A5 and approached traffic lights on green. A cyclist has crossed road in front of the car causing a collision.
5.12 The number of accidents reported on this 1.3 km section of the A5 including 2 signal controlled junctions is low. There are no particular clusters. The incidents that did occur predominantly
resulted in slight rather than serious injury. The contributory factors appear to be driver error rather than inadequate highway design.

Summary

5.13 Road accidents in the most recent pre-covid three year period, that is 1 January 2017 to 31 December 2019, have been assessed for the A5 between and including its junctions with Pennine Way, M42 Jn10, and Core 42 has shown that there were:

- 10 accidents on the A 5 west of junction 10 , including the two Pennine Way roundabouts. There were no significant clusters and contributory factors appear to be driver error rather than inadequate highway design.
- 17 accidents at M42 Jn10. There were no significant clusters and contributory factors appear to be driver error rather than inadequate highway design.
- 7 accidents on the A5 east of Jn10 up to and including Core 42. There were no significant clusters and contributory factors appear to be driver error rather than inadequate highway design.
5.14 It can be concluded that the road network operates within acceptable levels of road safety and that mitigation measures for safety reasons are not required. That said, the proposals on the highway network discussed at Chapter 6 below (A5 speed limit reduced to 50 mph , new off-line cycle lanes, separation strip between carriageway and foot/ cycleway, plus signal controlled pedestrian/ cycle crossings on the A5 at the site access and the M42 north facing slip roads plus Green Lane) offer a safety betterment to all road users. It is therefore expected that the increase in traffic due to the proposed development will not pose an unacceptable highway safety risk, and there may be some betterment.

6.0 PROPOSED DEVELOPMENT

Development Masterplan

6.1 The application is in outline for up to 100,000 sqm of $B 8$ use, of which up to 10,000 sqmcould be flexible $\mathrm{E}(\mathrm{g})$ (iii)/B2/B8 use, and a 150 space lorry park and associated 400sqm amenity block, with all matters reserved apart from access. A copy of the latest illustrative masterplan is provided at Appendix K.
6.2 The proposed lorry park would satisfy the mandatory requirements of the DfT Circular 01/2022 Annex A for an APTR Truckstop in terms of:

- Open minimum 12 hours per day between 8am and 8pm every day except Christmas Day, Boxing Day and New Year's Day.
- Free parking for up to 2 hours minimum for all vehicles permitted to use the road served by the facility.
- Provision of security monitoring equipment including appropriate lighting and CCTV systems.
- Free toilets/hand washing facilities with no need to make a purchase.
- Shower and washing facilities for HGV drivers, including secure lockers in the shower/washing area.
- Hot drinks and hot food available 8am to 8 pm for consumption on the premises.
- Access to a free-of-charge telephone for emergency use, Wi-Fi and power points available for device charging.

Internal Layout

6.3 The internal layout is illustrative only and will be subject to further reserved matters applications, although the pedestrian and cycle connectivity enhancements are set out in the submitted Design Guide as project commitments ('Design Parameters'). At this stage it can help show how the development site could be arranged and that delivery of the required design elements and parameters is possible.
6.4 As shown within the Illustrative Masterplan, the proposed development would be served by a new access to the A5 and a spine road with a 7.3 m wide carriageway and 3 m wide shared footway/cycleways on either side. Access to development plots will be provided via prioritycontrolled T-junctions. The spine road would have street lighting and a 30 mph speed limit. The spine road and associated infrastructure would be built to adoptable standards.

Parking

6.5 Car Parking Standards SPD included with the North Warwickshire Borough Council Local Plan (2021) confirms the required car and cycling parking standards for new development. For Industrial uses a minimum of 1 space per 100sqm for cars and 1 space per 500 sqm for cycles is required. For Warehousing uses it requires a minimum of 1 car parking space per 150 sqm and 1 cycle space per $1,000 \mathrm{sqm}$. The overall proposals would therefore require a provision of:

- 700 car spaces throughout the site (comprising 100 for B 2 use and 600 for B 8 use),
- along with 110 cycle parking spaces (comprising 20 for B 2 use and 90 for B 8 use).
6.6 All car parking spaces should measure a minimum of $2.4 \times 4.8 \mathrm{~m}$, although it is commonplace for 2.5 $x 5.0 \mathrm{~m}$ to be provided and this would be recommended within any final site masterplan.
6.7 The adopted standards also require "Individual bays for each disabled employee, plus 2 bays or 5\% of total capacity, whichever is greater" for up to 200-bay car parking areas. Beyond this it requires "6 bays plus 2% of total capacity". This approach would be applied to any calculations within the final scheme for development at the site.
6.8 In terms of electronic vehicle (E.V.) charging spaces, these are proposed to be provided for 10% of all car and motorcycle spaces across the site with ducting installed so that a further 15% of spaces are capable of being converted to E.V. charging spaces if required in the future. Full details of the E.V. charging provision would be set out in any final scheme layout, in full compliance with these levels of provision.
6.9 In addition to the above, the adopted parking standards set out minimum requirements of one motorcycle space, plus an additional space for every 10 spaces required by the maximum car parking standard. This would again be a calculated for the final scheme layout. The basic dimensions for setting out motorcycle and scooter parking should typically be based around a footprint of $1.4 \times 2.4 \mathrm{~m}$ per vehicle.
6.10 NWBC has no adopted lorry parking standards for B2 and B8 uses. In lieu of this, reference is made to Northamptonshire County Council's published guidance on this matter, where at Chapter 10 of its 2016 Parking Standards document (September 2016) it requires the following provision for lorry parking. This lorry parking guidance was not carried through to the current 2019 revision, but 2016 advice a useful general guide. Lorry parking will be dependent on the details of the proposal brought forward at subsequent planning stages.
- $\mathrm{B} 1 / \mathrm{B} 2=1$ loading bay per 800sqm plus waiting space at each bay
- B8 over 800 sqm $=1$ loading bay per 800 sqm plus waiting space at each bay
6.11 The Illustrative Site Masterplan at Appendix K shows how a clearance of 50m can be provided at the larger units to accommodate both parking aisles, which would equate to two $\times 17 \mathrm{~m}$ long parking bays plus a 16 m clearance for turning manoeuvres. This should present sufficient space for lorries to arrive and depart without conflict although any final layout should be assessed with Autotrack.
6.12 As shown on the Illustrative Site Masterplan the appropriate level of car and lorry parking could be accommodated at each unit.
6.13 Cycle parking facilities would be provided throughout the scheme above the minimum standards set out above. This will include a range of cycle parking types at various locations to ensure the needs of future users are adequately met and demand for cycling can be further encouraged throughout the life of the development. In addition, showers and changing facilities would be provided to all units and at the ancillary hub office (available to use by members of the public to encourage walking and cycling to work at neighbouring business parks).

Highway Access

6.14 The proposed site access arrangement is shown in drawings 784-B033920-TTE-00-ZZ-PL-H-0002P01 and 784-B033920-TTE-00-ZZ-PL-H-0003-P02 attached in Appendix L. The proposed layout has been prepared in accordance with the requirements of CD123 "Geometric Design of At-Grade Priority and Signal-Controlled Junctions". It comprises a new signalised junction from the A5 and includes widening on the A5 to provide 3 approach lanes on the eastern approach, and 3 on the western approach. Fully-signalised pedestrian and cycle crossing of the site access arm is provided as well as a fully signal controlled pedestrians crossing of the A5. In addition, there are pedestrian and cycle improvements along the A5 which are discussed in more detail below.
6.15 There is a 0.7 m level difference between the A5 eastbound and westbound carriageways. To form the junction, it will be necessary to raise the level of eastbound carriageway to that of the westbound lane. The necessary vertical alignment of the eastbound carriageway has been assessed and confirmed that the carriageway can be reprofiled in accordance with CD109 Highway Link Design based on a 120kph design speed.
6.16 Paragraph 2.27 of CD123 states that where "the 85th percentile speed on the approach roads is greater than or equal to 104 kph (65 mph), a signal-controlled junction shall not be provided". The results of the speed survey reported at paragraph 3.21, above, confirm that the 85th percentile approach speeds were 79.8 kph eastbound and 88.7 kph westbound. Therefore, based on the observed $85^{\text {th }}$ percentile speeds signals are appropriate, although the national speed limit of 70 mph applies. As part of the mitigation measures discussion in Section 6 below, it is proposed to extend the existing 50 mph speed limit (which commences some 220 m east of the site access junction) westwards along the A5 to the Pennine Way overbridge.
6.17 Based on the observed 85th percentile speeds for eastbound traffic, 160 m SSD can be provided to the signal heads for approaching traffic exiting from M42 Jn10, and to the back of the predicted queue (see Appendix C Transyt Modelling report for the queue length). SSD visibility of over 215 m can be proved in accordance with the westbound $85^{\text {th }}$ percentile traffic speed. Each of the A5 approaches to the junction would include both nearside and off-side primary signal heads and a minimum of two signals would be visible from each stop line.
6.18 The proposed layout shows that the required Junction Intervisibility Zone can be achieved throughout the layout, with a minimum 2.5 m setback from each stop line. In accordance with paragraph 7.6 of CD123 the proposed layout has been designed to include 3.5 m lane widths throughout (minimum of 3 m required).
6.19 All tapers within the proposed layout are provided in accordance with the minimum requirement for 1 in 5 m , set out within paragraph 7.8 of CD123. All storage lanes for turning traffic have been designed with consideration of the potential demand for turning traffic. The proposed layout requires the A 5 eastbound offside approach lane to merge with the middle lane as it passes through the junction and the return taper complies with the requirements of CD123.
6.20 As required by paragraph 7.16.2 of CD123 the proposed right turn from the A5 (westbound) arm into the site would be separately controlled within the overall staging sequence.
6.21 The proposed access junction will require the removal of the two laybys on the A5 which are mainly used by HGVs. The development proposals include a designated lorry parking area for up to 150 HGVs within the site and will more than off-set the loss of the existing parking laybys which have a maximum capacity of around 7 to 8 lorries.
6.22 As part of the access design the existing bus layby at the northern edge of the A5 (east of the site frontage) has been relocated and designed in accordance with CD169 'The Design of Lay-Bys, Maintenance Hardstandings, Rest Areas, Service Areas and Observation Platforms',
6.23 The access road has a 7.3 m wide carriageway with 3 m foot/cycleways. At the junction, there are two 3.5 m right-turn lanes and one 4 m left-turn lane. Along the A5, the foot-cycleway is increased to 3 m with a 2 m separation strip in compliance with CD143 "Designing For Walking, Cycling And HorseRiding".
6.24 To address any concerns regarding the suitability of the proposed layout to accommodate all likely turning manoeuvres, TT Drawings 784-B033920-TTE-00-ZZ-PL-H-0004-P01, attached in Appendix L shows how a 16.5 m articulated lorry could satisfactorily manoeuvre between each arm of the junction.

Pedestrian \& Cycle Connectivity

6.25 The key emphasis of the NPPF is on the need for all new developments to be sustainable. Part of this requirement for sustainability means providing good opportunities for travel to and from sites by non-car modes, as set out in Section 9 of the NPPF. This is also reflected in the DfT Circular 01/2022 and throughout the NWBC Local Plan policies presented within Section 3 of this Transport Assessment.
6.26 Throughout the site, 3 m wide shared foot/cycleways will be provided. Fully-signalised pedestrian/cycle crossings are provided across the mouth of the proposed access junction with the A5 and a fully-signalised pedestrian crossing of the A5 carriageway is to be introduced. Dropped kerbs and tactile paving will be provided.
6.27 The existing shared unsegregated pedestrian/ cycle path on the A5 eastbound carriageway is substandard and will be improved to comply with CD143 "Designing for Walking, Cycling and Horse-riding". This entails widening the path to 3.0 m and providing a 2.0 m separation strip. As the cycleway approaches the M42 Jn10 interchange, the improvement requires alterations to the highway embankment, as shown at TT Drawings 784-B033920-TTE-00-ZZ-PL-H-0003-P02, 784-B033920-TTE-00-ZZ-PL-H-0004-P01 and 784-B033920-TTE-00-ZZ-PL-H-0005-P01 attached in Appendix L. The drawings also show the eastbound connectivity enhancement with a 3m shared foot/ cycleway connecting to the existing A5 opposite Core 42, near Dordon.
6.28 To provide continuity and connectively for both pedestrians and cyclists it is also proposed to improve pedestrian and cycle facilities on the northern part of Jn10 to comply with CD 143 where possible. Signalised crossing of the north facing M42 slip roads (northbound on-slip and southbound off-slip) and of the Green Lane arm will be provided to replace the current uncontrolled crossing points. There is no space on the north overbridge to improve pedestrian and cycle facilities, but between Green Lane and the A5/ Pennine Way north roundabout the existing narrow footway/ cycle way is to be widened to 2.0 m with a 1.5 m separation strip where achievable.

There is a short pinch point section (circa 33m) on the A5 westbound approach to Jn10 where, owing to land constraints, a maximum 1.0 m separation strip and 1.8 m foot/ cycleway is achievable, refer to TT Drawing 784-B033920-TTE-00-ZZ-PL-H-0001-P01 attached in Appendix L, which shows the complete set of improvement works.
6.29 In addition to the improvements discussed above there will be upgraded bridleways and a new footpath/ cycleway on the site between Birchmoor and Dordon, significantly enhancing the sustainable routes available to local residents in the area. The upgraded Bridleways and Footpaths are shown at Figure 2 in Appendix G and are listed below;

- Bridleway AE45
- Footpath AE46, part diverted.
- Footpath AE48
6.30 With the above new infrastructure and enhancements to existing routes in place, not only do they benefit potential users of the proposed development, but they also offer an enhancement for existing residents and people travelling to work in the area as discussed below.

Birchmoor to Dordon

6.31 A community integration route plan showing the connectivity between Birchmoor and Dordon is attached at Appendix M. Without the proposed development it would take an 11 minute cycle ride or $271 / 2$ min walk to get from Birchmoor to Dordon and vice versa via Polesworth. With the Bridleway, and Footpath improvements the journey time for cyclists is reduced to 10 minutes and walkers to 25 minutes.

Dordon to Relay Park
6.32 A commuter point to point plan showing the available route choices between Dordon and Relay Park is attached at Appendix M. There are two existing route choices to get to Relay Park, one via Polesworth and Birchmoor and the other via the A5 and M42 Jn10. The latter provides the most direct route, taking a cyclists 15 minutes, although they would have to cross the busy M42 Jn10 at 4 uncontrolled crossings. With the proposed development enhancements, cyclists could use the new cycle path, separated from the A5 carriageway and it would also provide 4 signal controlled crossings at the M42 Jn10. The improvements would also reduce the journey time by 1 minute.

Stoneydelph to Core 42

6.33 A commuter point to point plan showing the available tarmacked route choices between Stoneydelph and Core 42 is attached at Appendix M. There are two existing route choices to get to Core 42, one via Birchmoor, Polesworth and Dordon and the other via the Tamworth Services, M42 Jn10 and the A5. The latter provides the most direct route, taking a cyclists 20 minutes, although they would have to cross the busy M42 Jn10 at 4 uncontrolled crossings. With the proposed development enhancements, cyclists could use the new cycle path, separated from the A5 carriageway and it would also provide 4 signal controlled crossings at the M42 Jn10, or the upgraded Bridleways. Although the improvements wouldn't reduce the journey time for cyclists, they would offer safer and more pleasant routes.

Polesworth to St Modwen Park
6.34 A commuter point to point plan showing the available tarmacked route choices between Polesworth to St Modwen Park is attached at Appendix M. There are two existing route choices to get to Relay Park, one via Birchmoor, Relay Park and M42 Jn10 and the other via Dordon \& the A5. The latter provides the most direct route, taking cyclists $231 / 2$ minutes, although they would have to cross the A5 at two uncontrolled crossing points. With the proposed development enhancements, cyclists could use the new cycle path running through the centre of the development and the signal controlled crossing points on the A5 (dismounted) at the site access junction. The improvements would make a substantial journey time saving for cyclists to $161 / 2$ mins.

Public Transport Connectivity

Bus Travel

6.35 The development proposals include improvements to bus provision. As part of the site access works, the A5 eastbound bus stop has to be relocated approx. 130 m further east to comply with CD169. The layby is lengthened, and facilities are improved, including the provision of a modern shelter and a separated cycle bypass behind the waiting area. The existing pedestrian connection and informal crossing over the A5 that serves the bus layby is extended eastwards to the new location.
6.36 A Public Transport Strategy has been prepared by TT and a copy is included in Appendix F. A summary of that document is provided below. The PTS has been agreed by Warwickshire CC and Stagecoach.
6.37 The Stagecoach 766 and 767 bus services operate along the A5 between Tamworth and Nuneaton, and the Arriva 785/ 786 service operates through Birchmoor to the north of the site between Tamworth and Austrey. The stops for these services are not within an accessible walking distance of the whole of the site and improvements to existing bus service provision are therefore proposed.
6.38 The public transport strategy for the site is to extend the Stagecoach 766/767 services into the proposed development. The 766/ 767 bus service provides connections to a number of residential areas which draw employees by both car and bus to the area in which the application site lies. These areas include Tamworth, Dordon and Atherstone. The 766/767 already serves Birch Coppice as a diversion from the A5 and clearly is considered to provide a suitable level of service to this large employment site.
6.39 A bus turning area is proposed within the proposed development site, which would be located approximately 200 m from the A5/ Site Access junction. The proposed bus turning area would be deliberately located close to the site access junction to reduce the length of the diversion and thereby reduce the impact on existing passengers. The length of the diversion from the site access junction into the site and back out onto the A5 would be approximately 400 m .
6.40 The whole of the application site would be within a 400 m walk of the proposed bus stop at the bus turning area, which accords with local policy requirements for new developments. The bus extension and proposed bus turning area has been agreed in principle with Warwickshire County Council's Transport Operations team and with Stagecoach. The proposals for the site at M42 Jn10 comply with local and national standards and, if approved, would provide attractive sustainable public transport travel options for employees travelling to and from the site.

Rail Travel

6.41 The site can be classified as 'rail-served' owing to its close proximity to the Birmingham Intermodal Freight Terminal (BIFT) at Birch Coppice Business Park, and can access the rail terminal facilities on the same basis as those currently located within Birch Coppice business park.
6.42 Being rail served provides opportunities for intermodal freight, that is, some of the tonnes lifted can be carried by rail to BIFT and then be transferred to the proposed development site for onwards shipping and distribution. Because some of the freight mileage is by rail, the amount of freight mileage by road may be reduced. The potential for intermodal freight has been assessed by MDS Transmodal and their report (Appendix N refers) estimated using the GB Freight model that:

- The likely rail mode share is 10% owing to the proximity of BIFT, that is a 10% mode shift to rail compared to less well connected locations.
- 10.4 million Km reduction in HGV distance travelled per year.
- $5,800 \mathrm{~T}$ reduction in CO_{2} emissions.
6.43 Although the MDS Transmodal report estimates that 10\% of goods lifted could be by rail, this has not been reflected in the transport assessment and the junction modelling of the A5 and M42 Jn10, which means that the assessment can be considered to be robust.
6.44 As noted in Chapter 4, Polesworth Station although the closest station, only has 1 train per day in one direction. Wilnecote and Tamworth Stations have regular and frequent services and are 3.5 km and 7 km respectively from the site. Access for employees is also possible via cycle, taxi or lift shares and will be promoted through the Framework Travel Plan (see below for further details).

Proposed Highway Improvements

6.45 As set out at Section 7 below, the highway capacity assessment has identified the need for highway improvements at M42 Jn10. These are set out more fully in the Transyt Modelling Note in Appendix C, and summarised in Chapter 7 below. Briefly the proposed highway improvements comprise:

- Widening the A5 eastbound approach to M42 Jn10 to provide 3 lanes.
- Widening the M42 Jn10 circulatory carriageway on the approach to the Green Lane signals to 4 lanes.
- Signal controlled pedestrian and cycle crossing of the Green Lane approach.
- Signal controlled pedestrian and cycle crossing of the M42 northbound on-slip.
- Signal controlled pedestrian and cycle crossing of the M42 southbound off slip.
- Signal controlled pedestrian crossing of the A5 at the proposed site access junction.
- Signal controlled pedestrian and cycle crossing of the proposed site access junction.
- Extended 4 lane flared section on the A5 westbound approach to M42 Jn10.
- Improved shared foot/cycleway on the north side of the A5 between the site access and the Pennine Way north roundabout, including the northern part of Jn10.
- A new separate 3.0 m wide shared foot/cycleway between the site access and the A5 near to Browns Lane, Dordon.
- 50 mph speed limit on the A5 from a point 120 m west of the Pennine Way overbridge to the existing 50 mph speed limit west of the site.
6.46 A foot-cycle connection is proposed to Bridleway AE45 and to Footway AE46, both of which lie on the eastern boundary of the site. A new footpath is proposed to connect from AE46 to Barn Close in Dordon. Figure 7, Appendix G, shows the proposed path.
6.47 The development proposals have been subject to a WCHAR assessment in line with GG142 "Walking, cycling and Horse-riding Assessment and Review", and a copy is attached at Appendix E.
6.48 A Stage 1 RSA will be undertaken in accordance with GG119 "Road Safety Audit" on the proposed access arrangement and off-site improvements. The Audit is submitted under separate cover.

Framework Travel Plan

6.49 In accordance with Paragraph 111 of the NPPF, a Framework Travel Plan has been prepared under separate cover to support the proposed development. The Framework Travel Plan sets out:

- The developers' commitment to promoting sustainable travel amongst potential new occupants within each of the units.
- A series of actions and measures that will apply to each end-user.
- Appropriate mode share targets.
- A monitoring regime to assess the success of the travel plan.
6.50 A full Travel Plan, bespoke to each occupier, will be prepared during subsequent planning stages and is normally secured via a suitably worded planning condition.

Construction Traffic

6.51 A Construction Environmental Management Plan (CEMP) can be produced, if required, which will set out the details of how construction traffic will be managed on site to minimise disruption to local residents. The document will include the following elements and can be secured though a suitably worded planning condition.

- Outline anticipated daily construction movements.
- Specify likely routing of vehicles to reduce impacts on local residents.
- Site management to control mud, dust, noise, vehicle emissions and waste removal.
- Constructors compound to provide parking of construction vehicles within the site.

Summary

6.52 The proposed development is for up to $100,000 \mathrm{sqm}$ of $B 8$ use, of which up to 10,000 sqm could be flexible $\mathrm{E}(\mathrm{g})$ (iii)/B2/B8 use and a 150 space lorry park and associated 400sqm amenity block, via an outline planning application with all matters reserved apart from access.
6.53 The application is supported by an illustrative masterplan which shows how the site could be developed. The masterplan shows that appropriate levels of car and lorry parking can be provided and suitable connections to the surrounding area can be made. The internal layout of the site will be subject to further Reserved Matters applications in due course.
6.54 The site will be accessed from a new traffic signal junction to the A5 which meets the relevant design guidance. The junction includes signal controlled pedestrian and cycle crossing of the site arm, as well as a signal control crossing of the A5. A Stage1 RSA will be carried out and submitted under separate cover.
6.55 The proposed access junction results in the loss of two laybys, on the A5 which are mainly used by HGVs. This loss is more than compensated by the proposed 150 space lorry park on site.
6.56 The proposed development enhances pedestrian and cycle connectivity by upgrading existing rights of way between Birchmoor and the A5, and to the A5 near Browns Lane, Dordon, as well as a new public footpath/ cycleway to Polesworth. In addition, improved pedestrian and cycle facilities along the north side of the A5 are proposed between the A5/ Pennine Way north roundabout, around the northside of M42 Jn10 and along the A5 to the Browns Lane public footpath.
6.57 The proposed pedestrian and cycle improvements will also benefit local people traveling between Tamworth, Birchmoor, Polesworth, Dordon, Birch Coppice and Core 42.
6.58 A Public Transport Strategy has been agreed with WCC and Stagecoach which means that the 766/767 Tamworth-Nuneaton service will make a short diversion into the site to provide a good level of bus access.
6.59 The site is located close to the BIFT freight rail terminal at Birch Coppice. MDS Transmodal estimate that 10% of the goods lifted is likely to by rail, resulting in lower HGV mileages and CO_{2}.emssions compared to other less well connected sites.
6.60 The proposed development will also provide highway improvements to reduce levels of queues and delays on the A5 eastbound approach to M42 Jn10, a reduced speed limit, as well as the package of the pedestrian and cycle measures mentioned above.
6.61 The use of sustainable transport measures will be supported by a Travel Plan and a Framework Travel Plan is submitted under separate cover.
6.62 Construction traffic can be controlled through a Construction Environmental Management Plan, which can be secured though a suitably worded planning condition.

7.0 OPERATIONAL ASSESSMENT

Scope of Impact

7.1 The Bancroft TA followed extensive scoping discussions between Bancroft Consulting and NH and WCC. It was agreed that the Atherstone A5 model prepared by Vectos on behalf of Warwickshire CC for the North Warwickshire Local Plan evidence base would be used for trip distribution and the production of No Development and With Development traffic flows. It was also agreed that for the proposed development, detailed assessments of the following junctions would be prepared by Bancroft Consulting.

- M42 Junction 10, 6-arm grade-separated signalised interchange
- A5 / Proposed site access, 3-arm signalised junction
- A5 / Birch Coppice, 4-arm signalised junction
7.2 Following Tetra Tech's (TT) appointment by Hodgetts Estates in January 2022, the transport impacts of the proposed development were discussed with WCC, NH, Bancroft Consulting, Hodgetts Estates and TT on 15 March 2022. From that meeting TT produced a Modelling Strategy Note (dated 18 March 2022, Appendix A refers) in which it was proposed to model the M42 Jn10, the A5/ proposed site access junction, the A5/ Birch Coppice, and the A5/ Core 42 junctions using Transyt16, a network traffic signals model which models the interaction of queuing, lane starvation, and blocking back effects. The Transyt model would be based on 2022 survey data and would be validated. The Modelling Strategy Note was agreed by WCC on 7 April 2022 on the provision that NH are satisfied with the Transyt model, NH subsequently confirmed on 11 April 2022 that the Modelling Strategy Note is acceptable.
7.3 The extent of the assessment agreed with NH and WCC comprised the following junctions:
- M42 Junction 10, 6-arm grade-separated signalised interchange
- A5 / Proposed site access, 3-arm signalised junction
- A5 / Birch Coppice, 4-arm signalised junction
- A5 / Core 42, 3-arm signalised junction

Baseline Transyt16 Model

7.4 Traffic surveys at M42 Jn10, A5/ Birch Coppice and A5/Core 42 took place on Wednesday 23 March between 07:00 to 09:30 and 16:00 to 18:30. The surveys included manual classified turning traffic flows, lane allocations, green times, queue lengths and saturation flows.
7.5 A Transyt16 model was prepared and validated using the surveyed data. The details of the model and its validation are set out in detail in the Transyt 2022 Baseline Validation Report (May 2022) attached at Appendix B.
7.6 The validation report was submitted to NH and WCC for approval. Following some minor changes, the 2022 Baseline Transyt model was agreed by NH and WCC on 1 August 2022.

Transyt16 A5 and M42 Junction 10 Assessment

7.7 Following agreement of the 2022 Baseline Transyt model, it was used to assess the impact of the proposed development on the agreed network.
7.8 The Baseline model was amended to add in the traffic flows from the Vectos model for the following scenarios as agreed:

- Reference Case 2026 AM \& PM; No Development \& With Development
- Reference Case 2031 AM \& PM; No Development \& With Development
- Local Plan Scenario 2031 AM \& PM; No Development \& With Development
7.9 In addition, the Local Plan included the indicative scheme provided by WCC comprising widening the southern overbridge, widening the A5 eastbound approach and providing a left turn slip road from the M42 southbound off-slip to the A5 eastbound exit arm. The Transyt Local Plan No Development scenarios included these changes. In the With Development Local Plan scenario the left turn slip lane was removed owing to the provision of the site access junction. The other aspects of the WCC improvement scheme were retained.
7.10 The amendments to the Transyt model to undertake the Reference Case and Local Plan assessments are set out in detail in the Transyt Future Year Modelling Report at Appendix C. The report also provided a full assessment of the model results.
7.11 As set out in The Strategic Road Network: Planning for the Future (September 2015), an Opening Year and a Future Year assessment is required. Both assessments assume full development of the site and the addition of all committed developments. The 2026 Reference Case provides the Year of Opening Assessment required and the 2031 Reference Case and 2031 Local Plan assessments provide the Future Year Assessments.

2026 Opening Year Assessment

7.12 The results of this assessment are set out in Table 4.1 for the AM peak hour and in Table 4.2 for the PM peak hour of the Modelling report in Appendix C. It shows that the junctions assessed generally have low levels of queues and delays.
7.13 In the AM peak hour, the A5 eastbound approach to M42 Jn10 has a predicted queue of 55 pcu in Lane 1 and in Lane 2 with a delay per vehicle of 3 mins 22 sec (Lane 1) and 2 mins 36 (Lane 3) The Green Lane approach has a queue of 11 pcu and a delay of 2 mins 33 sec in Lane 1 and 15 pcu and 3 mins 22 sec in Lane 2. The effect of development is to increase the queues and delays on the A5 eastbound approach to 107 pcu and 6 mins 30 secs (Lane 1) to 117 pcu and 4 mins 59 secs (Lane 2). The proposed development has no effect on the queues and delays at Green Lane. There are minor to negligible increases elsewhere in the network.
7.14 In the PM peak the junction operates with low levels of queues and delays in the No Development situation, and the effect of the development has minor to negligible increases in queues and delays.
7.15 The proposed site access junction operates well with minor queues and delays in the AM and PM peak hours. In the AM peak the longest queues and delay was 15 pcu and 15 secs on the A5 eastbound approach, and in the PM peak hour 25 pcu and 56 secs are predicted on the A5 westbound approach.
7.16 A mitigation scheme was devised to address the queuing issues on the A5 eastbound approach to M42 Jn10. It comprises widening the A5 eastbound approach to provide 3 lanes, widening the circulatory carriageway at Green Lane to 4 lanes, effectively implementing the western and north western parts of the WCC Local Plan scheme for the junction albeit with improved pedestrian and cycle facilities. The layout of the proposed improvement scheme is shown at TT Drawing B033920-TTE-00-ZZ-PL-H-0001 Rev P01 in the Modelling Note, and also at Appendix L.
7.17 The effect of the improvement scheme is reported in Tables 4.1 and 4.2 of the Modelling report in Appendix C. In the AM peak the effect of the mitigation scheme is to reduce the queues and delays in Lane 1 and Lane 2 to 3 pcu and 10 seconds (Lane 1) and 13 pcu and 29 seconds (Lane 2) - a substantial reduction. The impacts elsewhere are negligible.
7.18 With the mitigation scheme, the Year of Opening assessment shows that the impact is not severe.

2031 Future Year Assessment - Reference Case.

7.19 The results of this assessment are set out in Table 4.1 for the AM peak and in Table 4.2 for the PM peak hour of the Modelling report in Appendix C. It shows that the junctions assessed generally have low levels of queues and delays in this scenario.
7.20 In the AM peak hour, the A5 eastbound approach to M42 Jn10 has a predicted queue of 110 pcu in Lane 1 and 82 pcu Lane 2 with a delay per vehicle of 6 mins 14 secs (Lane 1) and 3 mins 52 secs (Lane 3). The Green Lane approach has a queue of 21 pcu and a delay of 4 mins 49 sec in Lane 1 and 18pcu and 3 mins 54 sec in Lane 2. The effect of development is to increase the queues and delays on the A5 eastbound approach to 157 pcu and 8 mins 53 secs (Lane 1), and to 145 pcu and 6 mins 12 secs (Lane 2). The proposed development has no significant effect on the queues and delays at Green Lane. There are minor to negligible increases elsewhere in the network.
7.21 In the PM peak the junction operates with low levels of queues and delays in the No Development situation, and the effect of the development is minor to negligible increases in queues and delays.
7.22 The proposed site access junction operates well with minor queues and delays in the AM and PM peak hours. In the AM peak the longest queues and delays was 16 pcu and 16 secs on the A5 eastbound approach, and in the PM peak 32pcu and 1 min 15 secs are predicted on the A5 westbound approach.

2031 Future Year Assessment - Local Plan Case.
7.23 The Local Plan scenario includes a number of significant improvements to M42 Jn10, in the main these are widening the A5 eastbound approach to 3 lanes, widening the circulatory carriageway at Green Lane to 4 lanes, providing a left turn slip road from the M42 southbound off-slip to the A5 eastbound exit arm, widening the Trinity Way approach to 3 lanes, and widening the southern M42 overbridge to 4 lanes. In the With Development scenarios the left turn slip road was removed.
7.24 The results of the Local Plan assessment are set out in Table 5.1 for the AM peak hour and the PM peak hour of the Modelling report in Appendix C. It shows that the junctions assessed generally have low levels of queues and delays in this scenario.
7.25 In the AM peak hour, the A5 eastbound approach to M42 Jn10 has a predicted queue of 14 pcu in Lane 2 and 11pcu in Lane 3 with a delay per vehicle of 32 secs (Lane 2) and 27 secs (Lane 3). The

Green Lane approach has a queue of 12 pcu and a delay of 2 mins 35 sec in Lane 1 and 18 pcu and 3 mins 54 sec in Lane 2. The effect of development is to increase the queues and delays on the A5 eastbound approach to 33 pcu and 1 mins 37 secs (Lane 2), and to 24 pcu and 1 min 4 secs (Lane 3). The proposed development has small effect on the queues and delays at Green Lane increasing them to 15 pcu and 3 mins 3 secs (Lane 1), and to 18 pcu (no change) and 4 mins 5 secs (Lane 2). The A5 westbound approach to A5/Core 42 junction is predicted to have a queue of 73 pcu in Lane 1 and 85 pcu in Lane 2, with delays 2 mins 38 sec and 3 mins 8 secs respectively. The effect of development is to increase the queue and delays to 87 pcu and 3 mins 7 secs (Lane 1) and 92 pcu and 3 mins 31 sec (Lane 2). There are minor to negligible increases elsewhere in the network.
7.26 In the PM peak the junction operates with low levels of queues and delays in the No Development situation. The only significant queues are on the A5 eastbound approach to M42 Jn10 which has a predicted queue of 34 pcu in Lane 2 and 41 pcu in Lane 3 with a delay per vehicle of 1 min 37 secs (Lane 2) and 2 mins 27 secs (Lane 3); Green Lane which has a queue of 12 pcu and a delay of 2 mins 35 sec in Lane 1 and 18 pcu and 3 mins 54 sec in Lane 2. The effect of development is to increase the queues and delays on the A5 eastbound approach to 33pcu and 1 mins 37 secs (Lane 2), and to 24 pcu and 1 min 4 secs (Lane3). The A5 westbound approach to A5/Core 42 junction is predicted to have a queue of 37 pcu in Lane 1 and 39 pcu in Lane 2, with delays 1 min 31 sec and 1 min 47 secs respectively. The effect of development is to increase the queue and delays to 44 pcu and 1 min 51 secs (Lane 1) and 46 pcu and 2 mins 5 sec (Lane 2). The effect of the development elsewhere is minor to negligible increases in queues and delays.
7.27 The proposed site access junction operates well with minor queues and delays in the AM and PM peak hours. In the AM peak the longest queues and delays was 23 pcu and 24 secs on the A5 eastbound approach, and in the PM peak 15pcu and 24 secs are predicted on the A5 eastbound approach.
7.28 The Transyt analysis has shown that the removal of the left turn slip road from the M42 southbound off-slip to the A5 eastbound exit arm from the With Development did not result in long queues at the M42 southbound off slip. The With Development queues and delays on this slip road are 4pcu and 41 secs (Lane 1), 6 pcu and 57 secs (Lane 2), 4 pcu and 35 sec (Lane 3) in the AM Peak. The PM peak queues and delays are all less than the corresponding AM values.
7.29 The impact of the proposed development in the Local Plan scenario is not severe and no additional mitigation to that identified for the Local Plan scheme is required.
7.30 The proposed development can be delivered without compromising the Local Plan proposals and will deliver some of the required highway improvements needed to mitigate the local plan allocations.

A5/ Pennine Way Assessment

7.31 Further scoping discussions were held with SCC on 21 July 2022. Although SCC had agreed the Vectos model for the NWBC Local Plan, the highway officers requested a separate Census based distribution of the generated traffic on the A5 on west side of M42 Jn10. The Census based assignment of generated traffic was issued on 14 October 2022 and was agreed by SCC on 16

November 2022. SCC also confirmed that only the two A5/ Pennine Way roundabouts required assessment.
7.32 Vectos also confirmed that the southern Pennine Way roundabout had not been calibrated in their model and therefore their results for that junction were not reliable.
7.33 Manual classified turning counts and queue observations per lane were carried out at the two Pennie Way roundabouts on Wednesday 5 October 2022. The performance of the two roundabouts was assessed using TRL's Junctions 10 program. A South Pennine Way Modelling Report was submitted to SCC, NH and WCC on 23 November 2022, and is attached at Appendix D.
7.34 In brief, the model was validated using the 2022 survey information and their performance was assessed using the 2031 Reference Case flows as well as the 2031 Local Plan flows, both with and without development. The results of the assessment shows that the junctions operated with minimal queues and delays and that no mitigation was needed.

Road Safety Implications

7.35 Chapter 5 above provides a detailed review of the road traffic accidents that have taken place within the study area over the pre-covid three year period ending 31 December 2019. Whilst there have been 34 recorded incidents, 17 were at M42 Jn10 were at the Pennine Way roundabouts / slips with the A5, and 7 were between M42 Jn10 and including A5/ Core 42 junction. There was no evidence of any specific ongoing highway safety problem along the A5 or north of Dordon Island at Long Street.
7.36 The proposed improvement schemes at M42 Jn10 and along the A5 are expected to deliver tangible highway safety benefits for both existing and proposed users of the highway network. These can be summarised as follows:

- Widened foot/cycleways between Pennine Way north roundabout and the proposed site access which include a separation strip between vulnerable users and moving traffic mostly in accordance with CD143.
- Signal controlled pedestrian and cycle crossing of the M42 north facing slip roads in accordance with CD143, at the Green Lane arm of M42 Jn10, and at the proposed site access junction.
- Signal controlled pedestrian crossing of the A5 near to the AE55 public footpath south of the A5 and public bridleway AE45 north of the A5, replacing the existing uncontrolled crossing.
- Improved bus stop facilities at the northern edge of the A5, with a layout that segregates cyclists from pedestrians and includes standard merge and diverge tapers and a wider bus stop area.
- Provision of an internal link connecting the A5 to Birchmoor, thus offering a higher quality route for pedestrians and cyclists travelling between the A5 and areas to the north and west including Tamworth.
- Provision of separate (offline) pedestrian/ cycle way between site access and Browns Lane away from the A5 avoiding the 1.0 m wide foot/ cycleway at A5/ Birch Coppice.
- Reduction in speed limit to 50 mph on the A5 between Pennine Way overbridge and the existing 50 mph speed limit east of the proposed site access.
- Removal of existing parking laybys that do not meet current design requirements, in favour of a high-quality lorry parking facility for up to 150 vehicles, to include supporting facilities for drivers.
7.37 The proposals are expected to have a beneficial effect on road safety and therefore provide safe means of access for all users in accordance with NPPF paragraph 110 and will not have, in relation to NPPF paragraph 111, an unacceptable impact on road safety

Summary

7.38 Following TT's appointment, the transport implications were discussed with NH, WCC, Hodgetts Estates and Bancroft Consulting. A Modelling Strategy note was produced which proposed using Transyt16 and new 2022 survey data, and to assess the effect of the development with the Vectos 2026 and 2031 Reference Case and 2031 Local Plan flows. This strategy was agreed by NH and WCC.
7.39 A validated 2022 Transyt16 model was developed, and a validation report was submitted to and agreed by NH and WCC.
7.40 The Transyt assessment showed that in both the 2026 and 2031 Reference Case scenarios, the effect of development was to increase queues and delays on the A5 eastbound approach. A mitigation scheme was developed, which involved widening the A5 eastbound approach to provide 3 lanes, widening the circulatory carriageway at Green Lane to 4 lanes, effectively implementing parts of the WCC Local Plan scheme for the junction, albeit with improved pedestrian and cycle facilities. The mitigation scheme substantially reduced the queues and delays on the A5 eastbound approach, the impacts elsewhere were negligible.
7.41 The 2031 Local Plan scheme included a scheme to improve M42 Jn10. In the With Development scenario the scheme was modified to remove the left turn slip from the M42 southbound off slip to allow the proposed access junction. The Transyt assessment show that the proposed development resulted in minor queue and delay increase on the A5 eastbound approach to M42 Jn10, Green Lane and the westbound approach to A 5 / Core 42 junction. Overall, the impacts were not severe, and no additional mitigation was required.
7.42 The proposed site access junction operates well with minor queues and delays in the AM and PM peak hours. In the 2031 Reference Case, the longest queues occur on the A5 westbound approach in the PM peak hour where queues of 32pcu and delays on 1 min 15 sec are predicted. In the Local Plan Case, the longest queues occur on the A5 eastbound approach in the 2031 Local Plan AM peak hour where queues of 20 pcu and delays of 26 secs are predicted.
7.43 It was agreed with SCC that the two Pennine Way roundabouts required assessments. A validated Junctions 10 model was prepared using 2022 survey data, and assessed with the Vectos 2031 Reference Case and 2031 Local Plan flows. The development flows were those taken from the Census distribution agreed with SCC. The Junctions 10 model showed that the Pennine Way Roundabouts operated with minimal queues and delays in both with and without development situations.
7.44 The proposed improvement scheme proposals are expected to have a beneficial effect on road safety and therefore provide safe means on access for all users in accordance with NPPF paragraph 110 and will not have, in relation to NPPF paragraph 111, an unacceptable impact on road safety.
7.45 The impact of the proposed development in the Local Plan scenario is not severe and no additional mitigation to that identified for the Local Plan scheme is required.
7.46 The proposed development can be delivered without compromising the Local Plan proposals and will deliver some of the require highways improvements needed to mitigate the local plan allocations.

8.0 SUMMARY AND CONCLUSIONS

8.1 An outline planning application (ref: PAP/2021/0663) for development on land to the north-east of the M42 Jn10 interchange, in Warwickshire for 100,000sqm of employment uses and a 150-space lorry park with 400sqm amenity block was submitted to North Warwickshire Borough Council and was validated on 2 December 2021. The application was supported by a TA produced by Bancroft Consulting. Tetra Tech (TT) was engaged by Hodgetts Estates to prepare a Revised Transport Assessment in January 2022.
8.2 The Bancroft TA (dated November 2021) followed extensive scoping discussions with National Highways (NH) and Warwickshire County Council (WCC). As agreed with highway officers at WCC and NH, the Atherstone A5 model prepared by Vectos on behalf of Warwickshire CC for the North Warwickshire Local Plan evidence base was used for trip distribution and the production of No Development and With Development traffic flows. The trip rates to be used in the assessment were agreed by Bancroft Consulting with NH and WCC.
8.3 The Vectos model includes the areas of Atherstone, Polesworth, Dordon and eastern parts of Tamworth. It includes a Reference Case which comprises committed developments and highway schemes in 2026 and in 2031, and a Local Plan case which includes committed developments, local plan allocations, committed highway schemes and additional highway proposals to mitigate the impact of the local plan allocations, including an improvement scheme at M42 Jn10, in 2031.
8.4 Following TT's appointment, the transport impacts of the proposed development were discussed with WCC, NH, Bancroft Consulting, Hodgetts Estates and TT in March 2022. From that meeting TT produced a Modelling Strategy Note which set out an alternative junction modelling approach which was agreed by NH and WCC in April 2022.
8.5 Traffic surveys at M42 Jn10, A5/ Birch Coppice and A5/Core 42 took place on Wednesday 23rd March between 07:00 to 09:30 and 16:00 to 18:30. The surveys included manual classified turning traffic flows, lane allocations, green times, queue lengths and saturation flows. A validated Transyt16 model was prepared. A Baseline Validation Report dated May 2022 was produced and submitted to NH and WCC in May 2022 which was approved in August 2022. Following agreement of the 2022 Transyt model it was used to assess the impact of the proposed development
8.6 In preparing this TA the local and national policy framework has been reviewed, as has the operation of the highways network and an extensive suite of new surveys were undertaken to support this Revised TA.
8.7 NH have recently consulted on a scheme to upgrade the A5 between Dordon and Atherstone, and NH are exploring the potential for improvements for future implementation in RIS 32025 to 2030, but no firm proposals have been made as yet.
8.7.1 The proposed development has good levels of accessibility on foot and by cycling to a range of useful local destinations. With the proposed Stagecoach 766/767 Nuneaton-Tamworth bus service diversion, the majority of the site will be within an accessible walk distance to bus services that provide regular journey opportunities to a number of useful destinations. The nearby BIFT rail terminal provides an excellent opportunity for rail-road intermodal freight. MDS Transmodal estimate that 10% of the goods lifted is likely to be by rail, resulting in lower HGV mileages and CO_{2}
emissions compared to other less well-connected sites. Overall, the accessibility of the site, taking into account the proposed connectivity improvements outlined elsewhere in this report is considered to be very good.
8.8 Road accidents in the most recent pre-covid three year period, that is 1 January 2017 to 31 December 2019, have been assessed for the A5 between and including its junctions with Pennine Way, M42 Jn10, Birch Coppice, and Core 42. It was concluded that the road network operates within acceptable levels of road safety and that mitigation measures for safety reasons are not required. It is not expected that the increase in traffic due to the proposed development will pose an unacceptable highway safety risk.
8.9 The illustrative masterplan shows how the site could be developed and that appropriate levels of car and lorry parking can be provided, as well as suitable connections to the surrounding area. The site will be accessed from a new traffic signal junction to the A5 which meets the relevant design guidance. The junction includes signal controlled pedestrian and cycle crossing of the site arm, as well as a signal control crossing of the A5. A Stage 1 RSA will be carried out and submitted under separate cover.
8.10 The proposed access junction results in the loss of two laybys on the A5 which are mainly used by HGVs. This loss is more than compensated by the proposed 150 space lorry park on the site.
8.11 The proposed development enhances pedestrian and cycle connectivity by upgrading existing rights of way between Birchmoor and the A5, and to the A5 near Browns Lane, as well as a new public footpath/ cycleway to Barn Close, Dordon. In addition, improved pedestrian and cycle facilities along the north side of the A5 are proposed between the A5/ Pennine Way north roundabout, around the northside of M42 Jn10 and along the A5 to the Browns Lane public footpath. The proposed pedestrian and cycle improvements will also benefit local people traveling between Tamworth, Birchmoor, Polesworth, Dordon, Birch Coppice, St Modwen Park and Core 42.
8.12 The Transyt assessment showed that in both the 2026 and 2031 Reference Case scenarios, the effect of development was to increase queues and delays on the A5 eastbound approach. A mitigation scheme was developed, which involved widening the A5 eastbound approach to provide 3 lanes, widening the circulatory carriageway at Green Lane to 4 lanes, effectively implementing parts of the WCC Local Plan scheme for the junction, albeit with improved pedestrian and cycle facilities. The proposed improvements had a beneficial effect in the AM peak, significantly reducing delays on the A5 eastbound approach to M42 Jn10, in the PM peak there was a small increase in queues and delays on the A5 westbound approach to M42 Jn10. Taking the two peak hours together the overall effect was positive with lower levels of delay.
8.13 The 2031 Local Plan scheme included a scheme to improve M42 Jn10. In the With Development scenario the scheme was modified to remove the left turn slip from the M42 southbound off slip to allow the proposed access junction. The Transyt assessment show that the proposed development resulted in minor queue and delay increases on the A5 eastbound approach to M42 Jn10, Green Lane and the westbound approach to A5/ Core 42 junction. Overall, the impacts were not severe, and no additional mitigation was required.
8.14 The proposed site access junction operates well with minor queues and delays in the AM and PM peak hours. In the 2031 Reference Case, the longest queues occur on the A5 westbound approach in
the PM peak hour where queues of 32pcu and delays on 1 min 15 sec are predicted. In the Local Plan Case, the longest queues occur on the A5 eastbound approach in the 2031 Local Plan AM peak hour where queues of 20 pcu and delays of 26 secs are predicted.
8.15 It was agreed with SCC that the two Pennine Way roundabouts required assessments. A validated Junctions 10 model was prepared using 2022 survey data, and assessed with the Vectos 2031 Reference Case and 2031 Local Plan flows. The development flows were those taken from the Census distribution agreed with SCC. The Junctions 10 model showed that the Pennine Way Roundabouts operated with minimal queues and delays in both with and without development situations.
8.16 The improvement scheme proposals are expected to have a beneficial effect on road safety and therefore provide safe means on access for all users in accordance with paragraph 110 and will not have, in relation to NPPF paragraph 111, an unacceptable impact on road safety.
8.17 The impact of the proposed development in the Local Plan scenario is not severe and no additional mitigation to that identified for the Local Plan scheme is required. The proposed development can be delivered without compromising the Local Plan proposals and will deliver some of the require highways improvements needed to mitigate the local plan allocations.
8.18 The use of sustainable transport measures will be supported by a Travel Plan and a Framework Travel Plan is submitted under separate cover.
8.19 Construction traffic can be controlled through a Construction Environmental Management Plan, which can be secured though a suitably worded planning condition
8.20 In conclusion, having regard to Paragraphs 110 and 111 of the NPPF, it has been shown that the opportunities to travel by sustainable modes for both workers and the movements of goods have been comprehensively provided for and will be promoted through a Travel Plan, a safe and suitable access for all users can be provided, and that the impacts of the development can be adequately mitigated. Overall, the cumulative residual impact of the development is not severe and there are no unacceptable road safety consequences. As a result, there are no substantive highway reasons to refuse the proposed development.

1
 INTRODUCTION

1.1 Tetra Tech (TT) have been appointed by Hodgetts Estates to support of their outline planning application for a proposed development of upto 100,000sqm of employment uses and 150 space overnight lorry park (including an associated 400sqm amenity block) on land to the northeast of M42 Junction 10. The application was supported by a Transport Assessment (TA) prepared by Bancroft Consulting, Version C dated November 2021.
1.2 This modelling strategy note follows the meeting held between Warwickshire County Council (WCC), National Highways (NH), Bancroft Consulting, Hodgetts Estates and Tetra Tech (TT) on $15^{\text {th }}$ March 2022. Minutes of the meeting are attached at Appendix A.

AGREED SCOPE OF NETWORK

2.1 At the $15^{\text {th }}$ March meeting, it was agreed that further detailed modelling work to test the impacts of the proposed development are required for the following four junctions;

1. M42 Junction 10 Interchange (6 arm grade separated signalised roundabout)
2. A5 Watling Street/ Site Access junction (proposed 3 arm signalised junction)
3. A5 Watling Street/ Danny Morson Way (4 arm signalised junction, known as Birch Coppice)
4. A5 Watling Street/ Meridian Drive (3 arm signalised junction, known as Core 42)
2.2 Junctions 1 to 3 above are the same as those previously agreed during scoping with Bancroft Consulting and are included in the Bancroft TA. Junction 4 has been included within the scope owing to its proximity to Junction 3.

3
 CURRENT MODELS

3.1 As previously agreed with NH and WCC, the WCC Atherstone A5 WCC PARAMICS model operated by Vectos will be used to take account of the various network and development
changes in the local area. This model was used for the NWBC Local Plan Transport Assessment which has a future assessment year of 2031. The WCC Atherstone A5 PARAMICS model includes the junctions listed in section 2 above. NH and WCC advised that the strategic model should be used to export the traffic flow data for further assessments using detailed traffic signals modelling software such as LINSIG or TRANSYT.
3.2 The Bancroft TA has assessed junctions 1 to 3 in the list at section 2 using LINSIG software, however the junctions have been tested in isolation which therefore does not model queuing interactions between junctions, platooning of traffic flows, nor does it model blocking back and lane starvation effects effectively. Of particular note is the level of queuing shown in the current LINSIG models on the A5 and M42 northbound off-slip approaches which contradict the queuing reported from the Paramics model.

4 VALIDATED 2022 BASELINE MODEL

4.1 TT will model the network of 4 junctions using the TRANSYT 16 software program which models the interaction of queuing, lane starvation, and blocking back effects. The software can also model the effects of uncoordinated traffic signals and intermittent stages. In addition, a simulation mode is also available where individual vehicles are simulated so the queuing effects and lane starvation can be readily identified.
4.2 A 2022 validated baseline model of the existing operational performance of junctions 1,3 and 4 will be prepared and will provide a sound basis for assessing the performance of the network in future years both with and without the proposed development.
4.3 Full manual classified counts of the three junctions are taking place on Wednesday $2^{\text {rd }}$ March 2022 between the hours 07:00 to 09:30 and 16:00 to 18:30.
4.4 The signal green timings at each stop line will be recorded so that the average green splits, cycle times and offsets can be obtained and then used in the TRANSYT model.
4.5 In addition, cameras will be placed to record vehicles passing over the stop lines and record the saturated queues to enable accurate calculation of the saturation flows in accordance with TRL's Road Note 34. On each approach at least two lanes will be measured where applicable,
to establish the nearside and non-nearside lane saturation flow. The observed saturation flows will then be used for the adjacent lanes that were not measured. If the lanes are not fully saturated, TRL's RR67 prediction of saturation flow using geometrical parameters will be used.
4.6 Maximum queue lengths on each approach will also be recorded in 5 -minute intervals. The observed queues will provide a useful tool to check the queuing results in the TRANSYT model.
4.7 A model validation note will be issued to WCC and NH for approval prior to running the opening and future year assessments discussed in more details in Chapters 5 and 6.

5 OPENING \& FUTURE YEAR ASSESSMENTS - REFERENCE CASE

5.1 As discussed in the meeting an opening assessment year and future design year assessment is required for the reference case, i.e. without the Local Plan generated traffic and associated highway infrastructure. An opening assessment year of 2026 and future assessment year of 2031 has previously been agreed and will be the years used in the forthcoming TRANSYT modelling.
5.2 As agreed, the traffic flows used within the TRANSYT model will be taken from the WCC Atherstone A5 PARAMICS model, the information for this model has been separately circulated to NH and WCC.
5.3 The following scenarios will be modelled in the AM peak (08:00 to 09:00) and PM peak (17:00 to 18:00) periods;
a) 2026 Reference Case - No Development
b) 2031 Reference Case - No Development
5.4 The traffic flows were extracted from the demand flows from the WCC Atherstone A5 PARAMICS model and for ease of reference Bancroft Consulting Figure 10 shows the AM peak flows for scenario a) and Figure 11 shows the PM peak flows also for scenario a) - both attached in Appendix C. Bancroft Consulting Figure 14 shows the AM peak flows for scenario b) and Figure 15 shows the PM peak flows also for scenario b) - both attached in Appendix C. It should be noted that the traffic flows for the Core 42 junction will be obtained from Vectos.
5.5 Each figure shows the total vehicles and HGV vehicles for each turning movement. To convert the flows into Passenger Car Units (PCU) a factor of 2.0 will be applied to the HGV flow value.
5.6 The proposed site access junction as shown at Bancroft Consulting Drawing F19123/07 Rev A attached at Appendix B will be coded into the TRANSYT model to assess the following scenarios;
c) 2026 Reference Case - With Development
d) 2031 Reference Case - With Development
5.7 Bancroft Consulting Figure 12 shows the AM peak flows for scenario c) and Figure 13 shows the PM peak flows also for scenario c) - both attached in Appendix C. Bancroft Consulting Figure 14 shows the AM peak flows for scenario d) and Figure 15 shows the PM peak flows also for scenario d) - both attached in Appendix C. It should be noted that the traffic flows for the Core 42 junction will be obtained from Vectos.
5.8 Following the modelling work, if mitigation is required a scheme will be developed and the model adjusted to incorporate the necessary improvements.

6 FUTURE YEAR ASSESSMENT - LOCAL PLAN CASE

6.1 As discussed in the meeting, and as previously agreed during scooping discussions, a future design year assessment is required for the Local Plan case, which includes all the local plan allocations and associated highway infrastructure. A future assessment year of 2031 has previously been agreed with NH and WCC and will be the year used in the forthcoming TRANSYT modelling.
6.2 The Local Plan highways schemes and PARAMICS model includes a mitigation scheme at Junction 10 shown at Appendix D. It was agreed at the March 2022 meeting with NH and WCC that when assessing the network including the traffic associated with the Local Plan allocations, the scheme at Junction 10 must be included. TT require a CAD drawing of the proposed scheme to take accurate measurements to ensure the TRANSYT model will be updated to accurately reflect the potential highway works.
6.3 The following scenario will be modelled in the AM peak (08:00 to 09:00) and PM peak (17:00 to 18:00) periods;
e) 2031 Local Plan Case - No Development
6.4 The traffic flows were extracted from the demand flows from the strategic PARAMICS model and for ease of reference Bancroft Consulting Figure 18 shows the AM peak flows for scenario e) and Figure 19 shows the PM peak flows also for scenario e) - both attached in Appendix C. It should be noted that the traffic flows for the Core 42 junction will be obtained from Vectos.
6.5 The Local Plan Junction 10 improvement scheme has a segregated left turn slip road arrangement on the A42 southbound off-slip. This arrangement may not be suitable if the proposed site access junction is implemented, therefore an amended Local Plan proposal will be drawn up to remove the segregated left turn slip arrangement to incorporate the site access junction. This will then be coded into the TRANSYT model.
6.6 The following scenario will be modelled in the AM peak (08:00 to 09:00) and PM peak (17:00 to 18:00) periods;
f) 2031 Local Plan Case - With Development
6.7 The traffic flows were extracted from the demand flows from the strategic PARAMICS model and for ease of reference Bancroft Consulting Figure 20 shows the AM peak flows for scenario f) and Figure 21 shows the PM peak flows also for scenario f) - both attached in Appendix C. It should be noted that the traffic flows for the Core 42 junction will be obtained from Vectos.

7 TECHNICAL NOTE

7.1 A Technical Note will be produced detailing the modelling results for all scenarios discussed above. The note will be issued to WCC and NH for review.

APPENDIX A

Minutes Of Meeting

TETRA TECH

Job Number:	784-B033920
Title:	Land North East of M42 Jn 10
Name of Meeting:	J10 M42
Meeting Held At:	Microsoft Teams
Date and Time:	15 ${ }^{\text {th }}$ March 2022 - 11:00 to 12:30
Minutes Taken By:	James Warrington and Gareth Wakenshaw
Attendees:	- Ben Simm - National Highways Development Management Lead - Moises Muguerza - WCC Highways - Alan Law - WCC Highways - Tony Burrows - WCC Highways - David Hodgetts - Hodgetts Estates - Nick Bunn - Tetra Tech - Graham Wakenshaw - Tetra Tech - Chris Bancroft - Bancroft Consulting - Doug Hann - WSP - James Warrington - WSP
Apologies:	
Distribution:	All Attendees
Date of Next Meeting:	TBC
Date of Issue:	$16^{\text {th }}$ March 2022
File Reference:	\IIds-dc-vm-101\Data\Projects\784-B033920 Land NE of M42 Jn10\40 Communications\42 Meetings

Action	1. Transport Modelling
1.1. \quadNB noted that the scoping response had requested that the WCC Paramics modelling be used and that the submitted TA had used LINSIG, that the model results min terms of queues/ delays for in the TA were markedly different to those from Paramics, that the WCC Paramics model had been agreed as part of the local plan process with NH. NB sought clarification on whether the TA could be based on the Paramics assessment.	

TE TETRA TECH

1.2. BS advised that Paramics should be used to assess the strategic view/ impacts and then export traffic data from those models (modelled and demand flows) to be used in the detailed capacity modelling software (LINSIG/ TRANSYT) as NH signals team would need to check the proposed signal timings.
1.3. AL concurred - this would follow WCC modelling protocol (available online) and is the approach that all assessments take in Warwickshire. AL added that the traffic signals/design services team prefer LINSIG modelling.
1.4. NB noted LINSIG has inadequacies which does not model queuing interactions between junctions (particularly on the A5 and M42 (S)), blocking back and lane starvation effects, and that TRANSYT is a much more sophisticated model which can model all of the above and produce signal timings. BS would accept TRANSYT models as part of the scheme process.
1.5. AL advised that because WCC involvement was limited to the Trinity Way approach to Jn10 and that the rest of the network was SRN they would also be OK with TRANSYT.
1.6. BS said that NH are not clear where the LINSIG model reference case data in the TA comes from and, at this point, the LINSIG modelling should be "taken with a pinch of salt" as NH need to see the Paramics modelling outputs in the first instance.
1.7. NB advised that the flows in the LINSIG had come from the WCC Paramics model operated by Vectos.
1.8. BS added that all parties need to develop and agree the modelling strategy/methodology after the meeting. ACTION - TT to produce Modelling Strategy / Methodology Note
1.9. BS stated that the Modelling/ Strategy Methodology will be shared with Staffordshire County Council (SCC) as their roads (A5(W) in Tamworth) may be affected and BS is keen for them to be party to discussions. BS advised that Patrick Thomas who is the lead contact at NH for schemes west of J10 is part of BS's team. ACTION - BS to pick up with SCC at upcoming meetings.
1.10. BS advised that the future year is either 10 years from date of application or the end of Local Plan period (whichever is greater), and that an Opening Year assessment would also be needed.
1.11. NB confirmed that as previously agreed the future year was 2031 as per the original TA given the application was submitted in 2021 and also 2031 was the assessment year used in the transport modelling for the Local Plan. Paramics modelling for 2031

TE TETRA TECH

TE TETRA TECH

	the Jn10 scheme) both cases to be assessed with/ without the proposed development. 2.7. NB identified that the Vectos Paramics model currently has all these scenarios and the flows from the model can be presented and shared in the proposed methodology report. ACTION TT to develop and circulate proposed methodology on this basis. 2.8. NB further noted that the proposed $A 5 /$ Site access junction may have an effect on the segregated left turn slip in the Local Plan Jn10 scheme and TT would assess suitable alternative arrangements. ACTION TT
3	3. Site Access Junction
	3.1. \quad BS advised that modelling and mitigation requirements needs resolving in the first instance as he considers that will have implications on proposed access junction. Therefore, BS has held off requesting WCHAR assessments and RSA's up to this point. 3.2. BS added that NH are concerned by introducing a new signalised junction along the A5 as it is an important an exceptionally busy route. 3.3. NB sought clarification whether the BS's view on the proposed access was of the principle of the access or the management of the implications. 3.4. BS advised that having regard to the Circular (that trunk roads are not to be treated like motorways) that the issue was not of principle, but of managing the impacts. Modelling remains the key next step to ultimately understanding access requirements. 3.5. AL added that a key concern for WCC would be that this development / access requirements does not prejudice potential future improvements for J10 and that a signalised junction near to J 10 could present an issue. WCC have an indication of junction improvements from the IDP that would mitigate the Local Plan flows. 3.6. AL advised that when HS2 proposals were being considered, some of the land HE/TT are looking at was included as part of potential improvements works (however not preferred options). 3.7. NB Noted that Local Plan Jn10 scheme may need amendment to accommodate the access junction. He also noted that there were no firm proposals for the upgrade to Jn10 and that development shouldn't be prevented for "potential" future schemes. 3.8. DWH pointed out that HE owns the whole frontage north of the A5 between Jn10 and the edge of Dordon (as well as land south of the A5 in this location) and so there is

	plenty of land available that could be utilised as part of future potential mitigation package of works. 3.9. BS concluded that NH would much rather we reached an agreement on highways and mitigation requirements to avoid an appeal scenario. 3.10. NB identified that TRANSYT modelling will model the queuing back effects from the site access junction to J 10 and so the impact of the new junction can be assessed to a high level of certainty.
4	4. Other Points 4.1. NB mentioned there is currently a 50 mph zone in the vicinity of Birch Coppice and Core 42 accessed and queried whether there is potential to extend the speed limit to Jn10? BS not aware of any such discussion but will check with colleagues. ACTION BS 4.2. BS advised that if a further meeting is required to give him as much notice as possible.
5	5. Key Actions - TT/ WSP to circulate meeting notes - BS to raise the application / proposals with Staffordshire County Council at upcoming meeting. - TT to submit a modelling Methodology Strategy Note. - BS to check with colleagues the possibility of speed reduction on A5.

APPENDIX B

APPENDIX C

FIGURE 10
2026 REFERENCE - AM PEAK (0800 TO 0900) - DEMAND FLOWS
LAND NORTH OF THE A5, DORDON
JOB NUMBER: F19123
DRAWN BY: CAB

FIGURE 11
2026 REFERENCE - PM PEAK (1700 TO 1800) - DEMAND FLOWS
LAND NORTH OF THE A5, DORDON

FIGURE 12 2026 REFERENCE + DEVELOPMENT - AM PEAK (0800 TO 0900) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 13 2026 REFERENCE + DEVELOPMENT - PM PEAK (1700 TO 1800) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 14
2031 REFERENCE - AM PEAK (0800 TO 0900) - DEMAND FLOWS
LAND NORTH OF THE A5, DORDON
JOB NUMBER: F19123

FIGURE 15
2031 REFERENCE - PM PEAK (1700 TO 1800) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 16 2031 REFERENCE + DEVELOPMENT - AM PEAK (0800 TO 0900) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 17
2031 REFERENCE + DEVELOPMENT - PM PEAK (1700 TO 1800) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 18 2031 LOCAL PLAN - AM PEAK (0800 TO 0900) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 19

FIGURE 20 2031 LOCAL PLAN + DEVELOPMENT - AM PEAK (0800 TO 0900) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 21
2031 LOCAL PLAN + DEVELOPMENT - PM PEAK (1700 TO 1800) - DEMAND FLOWS
LAND NORTH OF THE A5, DORDON

APPENDIX D

Image 1 - M42 Junction 10, Local Plan Improvement Scheme

TETRA TECH

1

2.1 It has been agreed that in order to test the traffic impacts of the proposed development, the following four junctions are required to be included in the TRANSYT model.

1. M42 Junction 10 Interchange (6 arm grade separated signalised roundabout)
2. A5 Watling Street/ Site Access junction (proposed 3 arm signalised junction)
3. A5 Watling Street/ Danny Morson Way (4 arm signalised junction, known as Birch Coppice)
4. A5 Watling Street/ Meridian Drive (3 arm signalised junction, known as Core 42)
2.2 The first stage is to set up a validated 2022 baseline model of the existing operational performance for junctions 1, 3 and 4. This provides a reliable basis for assessing the performance of the network in future years both with and without the proposed development.

3022 SURVEY DATA

Traffic Flows

3.1 Full manual classified traffic counts of the three junctions took place on Wednesday $23^{\text {rd }}$ March 2022 between the hours 07:00 to 09:30 and 16:00 to 18:30. The numbers of surveyed vehicles were converted to passenger car units (pcu's) and the peak hour periods were determined. The AM peak hour was 07:30 to 08:30 and Figure 1 attached in Appendix A shows the turning flows. The PM peak hour was 16:00 to 17:00 and Figure 2 attached in Appendix A shows the turning flows.

The surveys also captured the lane allocation of traffic on each of the approaches, for example where there is a choice of lanes to a particular destination, the vehicles were counted per lane. This lane-specific allocation of vehicles has been used in the model set up to ensure the correct proportion of traffic is assigned to the approach lanes. The excel data can be provided on request.
3.3 Although the overwhelming majority of drivers used the correct lane allocations, this was not the case on the A5 eastbound approach to Junction 10 and some late lane changes were observed. On the eastbound A5 approach the nearside lane (prior to the short flared lane) is indicated for Green Lane, M42 North and the A5 east, and the offiside lane indicated for Trinity Road and the M42 South. In the AM peak hour 1526pcu (76\%) are indicated for the nearside lane and 486pcu (24\%) are indicated for the offside lane. The imbalance in traffic flows and the Pennine Way on-slip means that drivers use the offside lane and undertake a lane change to the nearside lane between the Pennine Way on-slip and the stop line. The model has been set up to facilitate these lane change manoeuvres. A small proportion of drivers changed lanes after the stopline on the circulatory carriageway to get into the correct lane for exit. In the AM peak 8% switched lanes post stop line and in the PM peak this was 5%. The model has been set up to facilitate this proportion of traffic using the approach lane not as allocated on the ground and switching downstream.

Queues

3.5 The green signal timings up to each stop were recorded.

- M42 Junction 10
3.6 The junction operates under MOVA control and so each pair of approach/ circulating stop lines has varying cycle times. Some of the approaches are coordinated, so that as one approach's cycle time alters for traffic demands then the downstream signals do so accordingly. For example, the A5 eastbound approach is coordinated with the downstream Green Lane circulatory stop line, where the A5 receives a green signal typically 5 secs after the Green Lane circulatory receives a green which helps clear the queue before the A5 eastbound traffic arrives there. Both nodes typically operated under a 74 secs cycle time in the AM peak and 78 secs in the PM peak.
3.7 Likewise the A5 westbound and the downstream Trinity Way circulatory stop line are coordinated so that the Trinity Way stop line receives a green before the A5 westbound approach. Both nodes typically operated under a 74 secs cycle time in both the AM peak and PM peaks.
3.8 The northbound and southbound slip roads, and their associated circulatory stop lines, are not coordinated with other nodes. In the AM peak hour the northbound slip operates on a typical 64 secs cycle and the southbound slip road on a 55 secs cycle time. In the PM peak hour the northbound slip operates on a typical 73 secs cycle and the southbound slip road on a 56 secs cycle time.
3.9 The model has been set up with the average cycle times and coordination where applicable. In addition, the typical average green splits have been used for each stop line.

TETRA TECH

Client: Hodgetts Estates Limited
Date: 13 ${ }^{\text {th }}$ May 2022
3.10 The simulation mode feature in TRANSYT 16 facilitates the use of different cycle times at each set of traffic signals as the model simulates a full hour run and reports the average queues and delays over the full hour.

- A5/ Birch Coppice
3.11 During the AM and PM peak hours the A5/ Birch Coppice junction operated on 3 stages as shown below on Image 3.1. The junction is under MOVA control and so reacts to traffic demands resulting in varying cycle times and green splits for each phase. The access adjacent to Birch Coppice was never called during either peak hour, whilst the Birch Coppice access was called every cycle.

Image 3.1: A5/ Birch Coppice - Observed Staging Sequence

3.12 The typical cycle time in the AM peak hour was 93 secs and in the PM peak it was 99 secs.

- A5/ Core 42
3.13 During the AM and PM peak hours the A5/ Core 42 junction operated on 3 stages as shown below on Image 3.2. The junction is under MOVA control and so reacts to traffic demands resulting in varying cycle times and green splits for each phase. Core 42 is partly occupied and as such the traffic flows turning right out of Core 42 are low (7pcu in the AM peak and 18pcu in the PM peak), the demand for stage 3 (Phase E) is infrequent across the peak hours. In the AM peak stage 3 was called once every 10 cycles on average and in the PM peak once every 3 cycles. As stage 3 is rarely called the A5 eastbound movement receives a green signal for long periods in excess of 10 minutes. The simulation mode in TRANSYT 16 facilitates intermittent occurrences of stages, therefore this feature has been used to reflect the observed operation.

Image 3.2: A5/ Core 42 - Observed Staging Sequence

3.14 In the AM peak phase B in stage 1 typically operated with a green time of 56 secs and 53 secs in the PM peak, whilst the left turn (phase D) in stage 2 typically received a green for 10 secs in the AM peak and 13 secs in the PM peak. Given the intermittent stage 3 it is difficult to determine an average cycle time, therefore a 90 sec cycle time for the AM and PM peaks has been used.
3.15 The intergreen and minimum phase green timings have been extracted from the signals controller specifications. The specifications are attached in Appendix B.

Saturation Flows

Cameras were located to give a view of vehicles passing over the stop lines and enable calculation of the saturation flows in accordance with TRL's Road Note 34. On each approach, and where applicable, two lanes were measured to establish separate nearside and nonnearside lane saturation flows.
3.17 Upon review of the camera footage it was apparent that for some approaches it was not appropriate to calculate saturation flows for a number of reasons;

- The lane in question was lightly trafficked and thus there was not a saturated queue for a meaningful sample to be collected in accordance with Road Note 34.
- On approaches with a short flare, drivers approaching in the single upstream lane then chose one of the flared lanes, as a result neither lane was fully saturated, for example the nearside lane at the A5 westbound approach to Junction 10.

TETRA TECH

Client: Hodgetts Estates Limited
Date: 13 ${ }^{\text {th }}$ May 2022

- The green time was short, thus a sufficient sample could not be obtained.

42022 BASELINE TRANSYT MODELS

4.1

The TRANSYT model has been developed using satellite imagery as a base, and the traffic streams (representing the lanes) have been created by copying the road network structure. The base map has been scaled so that all of the traffic streams have the correct lengths to represent the existing network. Image 4.1 below shows the TRANSYT model network and Figure 4a in Appendix A shows the M42 Junction 10 in more detail whilst Figure 4b shows the Birch Coppice and Core 42 junctions in more detail.

4.2 TRANSYT reports the Mean Maximum Queue (MMQ) which is the "average" maximum back of queue position across taken across each time segment throughout the hour. The delay is also reported which is the average delay experienced per vehicle each time segment. In simulation mode, the Degrees of Saturation (DoSs) are not calculated, as there is no specific value that can be calculated for these, for example the capacity of a traffic stream depends not only on saturation flow but also on the lane configuration for turning movements. A low DoS could mean that the flow is low compared to the capacity (i.e. the usual interpretation), but could also mean that the flow is low because it is restricted due to the lane configuration/movements. As a result of this the performance of the junctions is judged on the MMQ and average delay per vehicle.
4.3 Table 4.1 attached in Appendix D summarises the 2022 AM and PM peak hour results per lane.

2022 AM Peak Summary Results

4.4 The most notable queues and delays are experienced on the A5 eastbound approach to the M42 Junction 10. It was clear from watching the camera footage that the approach is congested during the peak hour with queues predominantly in the nearside lane and extending west beyond the Pennine Way overbridge. The majority of traffic is in the nearside lane in
order to be in the correct lane at the stop line for circulating the roundabout. As discussed in Chapter 3 above, a proportion of drivers use the offside lane to skip the nearside queue and then merge back to the nearside lane when nearer to the stop line, with a small proportion changing lanes after the stop line. The modelled queues in the nearside lane are longer than those observed (56 pcu vs 37 pcu) whilst the offside lane modelled queue is slightly less than the observed queue (21 pcu vs 33cpu). The modelled queues are considered a fair representation of the existing conditions.
4.5 All other approaches and circulatory lanes on Junction 10 operate reasonably well across the hour and the modelled queues are considered a good match to the observed. There are instances in the model when the queuing does extend back momentarily from one stop line to the previous, slightly affecting the performance of the junction and this is considered accurate upon observation of the surveyed videos. The simulation model runs can be demonstrated on a Teams call if necessary.
4.6 The A5/ Birch Coppice junction works well and the modelled queues are considered a good match to the observed queues.
4.7 Likewise the A5/ Core 42 junction works very well and the modelled queues are considered a good match to the observed queues.
4.8 The 2022 AM peak model is considered a good base to use and amend for the future 2026/ 2031 Reference Case and 2026/ 2031 Local Plan scenarios.

2022 PM Peak Summary Results

4.9 The PM peak operates in a very similar manner to the AM peak with the most notable queues and delays experienced on the A5 eastbound approach to the M42 Junction 10, although not quite as extensive. Again, it was clear from watching the camera footage that the approach is congested during the peak hour with queues predominantly in the nearside lane and extending west beyond the Pennine Way overbridge. The modelled queues are similar to those observed and it is considered a fair representation of the existing conditions.
4.10 Similarly, all other approaches and circulatory lanes on Junction 10 operate reasonably well when averaged over the hour and the modelled queues are considered a good match to the observed. There are instances in the model when the queuing does extend back momentarily

Client: Hodgetts Estates Limited
Date: $13^{\text {th }}$ May 2022
from one stop line to the previous, slightly affecting the performance of the junction and this is considered accurate upon observation of the surveyed videos. The simulation model runs can be demonstrated on a Teams call if necessary.
4.11 The A5/ Birch Coppice junction works well and the modelled queues are considered a good match to the observed queues. As expected there is slightly more queuing on the Birch Coppice exit approach as a result of the workforce finishing for the day.

Likewise the A5/ Core 42 junction works very well and the modelled queues are considered a good match to the observed queues.

The 2022 PM peak model is considered a good base to use and amend for the future 2026/ 2031 Reference Case and 2031 Local Plan scenarios.

APPENDIX A

FIGURE 1

FIGURE 2

M42 Junction 10 interchange

PM Peak Hour (16:00 to 17:00) Average Queue
(Average of the maximum Queue in 5 minute periods)

M42 Junction 10 interchange

As Watinin street/ Danny Morson Way (Birch Coppice)

A5 Wating Street/ Meridian Drive (Core 42)

A5 Watings street/ Meridian Drive (Core 42)

Land North East of M42 Junction 10

APPENDIX B

Customer: AMEY AREA 9 MAC
Intersection description: M42 JUNCTION 10 A5 DORDON ISLAND TAMWORTH WEST SIDE - SCN 210

Telent tender no.:
Telent works order no.:
Customers order no.: 157078
Dated:
Customers engineer: JULIAN SMITH / PAULO MALARA / ROGER HACKER
Customers telephone no.: 07718511436 Ext:
Equipment installation by: TELENT
Slot cutting by:
Civil works by:
Configuration no.: CFGM0187 Issue:
Configuration engineer: SIMON WINTER

General Data

Power supply data	
Mains voltage	48 Volts
Mains frequency	50 Hz
Peak current	0.0 Amps
Dimming voltage	160

Solar switch data				
Detector timing set data	Set 1	Set 2	Set 3	Set 4
Call delay period (Seconds)	10.0	10.0	10.0	10.0
Cancel delay period (Seconds)	10.0	10.0	10.0	10.0
DFM active times (Hours or minutes)	24 H	24 H	24 H	24 H
DFM inactive times (Hours or minutes)	24 H	24 H	24 H	24 H

British summertime change data			
BST start week	13	BST end week	43

Options	
Is manual disable via handset option required?	No
Inhibit pedestrian demand delay in FVP mode?	No
Inhibit pedestrian demand delay in PTM mode?	No
Limit handset warnings to UTC enabled warnings?	No

\square
ELV OPTIMA
===========
SEE SEPERATE SHEET FOR CONFIGURATION DETAILS

Configuration history

Issue	Date	Description
1.00	23/10/12	INITIAL CONFIGURATION
1.01	23/10/12	INTERMEDIATE EDIT
1.02	23/10/2012	Intermediate edit
1.03	25/10/2012	Intermediate edit
1.04	05/11/2012	Intermediate edit
1.05	10/11/2012	Intermediate edit
1.06	19/11/2012	Intermediate edit
2.00	03/09/2014	Changes as per updated spec 30-5-13 Additional Phases Added
2.01	19/09/2014	Intermediate edit
2.02	07/02/2015	Intermediate edit

Phase data 1

$\begin{gathered} \text { Phase } \\ \text { Id } \end{gathered}$	Road Name(s)	Phs. type	Appearance assoc'ted		Termination assoc'ted		Restart allowed	App. in man
			type	phase(s)	type	phase(s)		
A	M42 NORTHBOUND OFF SLIP	T	0		0		No	0
B	SOUTH BRIDGE WESTBOUND GYRATORY	T	0		0		No	0
C	A5 EASTBOUND	T	0		0		No	0
D	WESTSIDE A5 GYRATORY	T	0		0		No	0
E	GREEN LANE	T	0		0		No	0
F	WEST SIDE GREEN LANE GYRATORY	T	0		0		No	0
DA	ALL RED STREAM 1	G	0		0		No	0
DB	ALL RED STREAM 2	G	0		0		No	0

Phase data 2

Phase ld	Min green Time	Min green limit	Window time	Speed measurement facilities		Assoc to ped. phases	Cond demand type	Conditioning phases
				Exist	Ped. phases			
A	7.0	7.0	-	No		No	NONE	
B	7.0	7.0	-	No		No	NONE	
C	7.0	7.0	-	No		No	NONE	
D	7.0	7.0	-	No		No	NONE	
E	7	7		No		No	None	
F	7	7		No		No	None	
DA	3.0	3.0	-	No		No	NONE	
DB	3.0	3.0	-	No		No	NONE	

Phase data 21

PhaseId	Maximum greens (VA)								Maximum greens (PTM)								Maximum greens (FVP)							
	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 7	Set 8	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 7	Set 8	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 7	Set 8
A	30	20	30	20	30	30	40	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B	40	30	40	30	40	30	40	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C	20	20	20	20	30	30	40	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$-$
D	40	30	40	30	40	30	40	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	15	20	20	20	20	30	40	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F	45	30	45	30	40	30	40	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Phase data 2_2

$\begin{aligned} & \text { Phs } \\ & \text { la } \\ & \text { ld } \end{aligned}$	Fixed seq.	Pedtype	Demand extn.	Dithering		Pedestrian intergreen sequence times						PV info		PV associated to			$\begin{gathered} \text { PV } \\ \text { delay } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { Window } \end{gathered}$	Local override
				Quiescent	Normal	Gap	Frc	Min	Max	Cl	Xtr	UTC	Local	Phase	Str/Stg	Input			
A	-		-	-	-	-	-	-		-	-	-	-	-				-	-
B	-	-	-	-	-	-	-	-	-	-	.	-	-	-	-	-	-	-	
c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
D	-	-	-	-	-	-	-	-	.	-	-	-	-	-	.	-	-	-	-
E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F	.	.	-	-	-	-	-	-	-	-	.	-	-	.	.	-	.	-	-
DA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Phase data 2_3

Phase compensation				
	Compensation sets			
Phase Id	Set 1	Set 2	Set 3	Set 4
A	0.0	0.0	0.0	0.0
B	0.0	0.0	0.0	0.0
C	0.0	0.0	0.0	0.0
D	0.0	0.0	0.0	0.0
E	0	0	0	0
F	0	0	0	0
DA	0.0	0.0	0.0	0.0
DB	0.0	0.0	0.0	0.0

Phase data 24

Pedestrain supplementary signals									
Phase Id	Illuminate wait lamps on phase	Tactile	Confirmation input	State	Audible	Confirmation input	Active state	Drive phase	Duration
A		False	False	OC	False	False	OC	A	
B		False	False	OC	False	False	OC	B	
C		False	False	OC	False	False	OC	C	
D		False	False	OC	False	False	OC	D	
E		False	False	OC	False	False	OC	E	
F		False	False	OC	False	False	OC	F	
DA		False	False	OC	False	False	OC	DA	
DB		False	False	OC	False	False	OC	DB	

Phase data 4

Phase Id	Conflicting greens	Opposed by phase demands	Opposed by stage demands	Revertive phase demands
A	B	B, DA		A
B	A	A, DA		B
C	D	D,E,F,DB		C
D	C	C,E,F,DB		D
E	F	C, D, F, DB		E
F	E	C, D, E, DB		F
DA		A,B		
DB		C, D, E, F		

Lamp sequence data

Phs. type	Sequence description	Start-up starting			Start-up stoping			Normal starting			Normal stopping			Running		Stopped		Shutdown	
		State 1	State 2	Duration	State 1	State 2	State 1	State 2	State 1	State 2									
FP	FAR/SIDE PEDESTRIAN	G	G	0	R	R	0	G	G	0	B	B	3	G	G	R	R	B	B
G	IND/FILTER	G	G	0	B	B	0	G	G	0	B	B	0	G	G	B	B	B	B
L	LRT	G	G	0	A	A	5	G	G	0	A	A	5	G	G	R	R	B	B
NP	NEAR/SIDE PEDESTRIAN	G	G	0	R	R	0	G	G	0	R	R	3	G	G	R	R	B	B
P	PEDESTRIAN	G	G	0	R	R	0	G	G	0	B	B	PBT	G	G	R	R	B	B
PP	PELICAN PEDESTRIAN	R	R	0	B	G	3	G	G	0	B	G	0.1	G	G	R	R	B	B
PT	PELICAN TRAFFIC	B	A	5	A	A	3	B	A	6	A	A	3	G	G	R	R	B	B
T	TRAFFIC	G	G	0	A	A	3	R,A	R,A	2	A	A	3	G	G	R	R	B	B
W	WIG-WAG	A	A	5	B	B	0	A	A	5	B	B	0	R	G	B	B	B	B

Stage data				
Stream 1			Start-up stage no.	2
Stage	Active phases			
0	DA			
1	A			
2	B			
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
		Stream 2	Start-up stage no.	2
Stage	Active phases			
0	DB			
1	C, F			
2	D,F			
3	D,E			
4	C, E			
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Mode data			
Stream 1		Starting intergreen duration	9.0
Mode	Priority no.	All red extension auto to max	
C.L.F.	6	No	
PSV emerge			
Hurry Call 1	4	No	
Hurry Call 2	5	No	
Hurry Call 3			
Hurry Call 4			
LRT			
Manual	1	No	
Manual FT	2	Yes	
MOVA			
Normal - VA	7	No	
PSV priority			
Part time			
UTC	3	No	
Phase demands to be inserteted on start-up and when leaving manual or fixed time modes			
A,B			
Stream 2		Starting intergreen duration	9.0
Mode	Priority no.	All red extension auto to max	
C.L.F.	6	No	
PSV emergency			
Hurry Call 1	4	No	
Hurry Call 2	5	No	
Hurry Call 3			
Hurry Call 4			
LRT			
Manual	1	No	
Manual FT	2	Yes	
MOVA			
Normal - VA	7	No	
PSV priority			
Part time			
UTC	3	No	
Phase demands to be inserteted on start-up and when leaving manual or fixed time modes			
C,D,E,F			

Part time and hurry call mode data

Manual mode data

			ge	be		trea			
Manual button no.	1	2	3	4	5	6	7	8	Street name(s)
All red	0	0							ALL RED
1	2	2							GYRATORIES
2	1	2							M42 OFF / GYRATORIES
3	2	1							M42 GYRATORY / A5 EASTBOUND / GREEN LANE GYRATORY
4	2	3							M42 GYRATORY / A5 EASTBOUND / GREEN LANE
5	0	4							STREAM 1 ALL RED / A5 EASTBOUND / GREEN LANE
6	0	2							STREAM 1 ALL RED / STREAM 2 GYRATORY
7									
8									
9									
10									
Button no. for inital manual stage set								1	Streams that must be in manual mode together

UTC general data, confirm bit data \& SF/LO qualification periods

UTC General data													
UTC option	1 (MCE 0105/0106)	Stream linking options								Sync confirm times		Time sync data	
TF Reset time	00:00:00	1	2	3	4	5	6	7	8	RT reply bit	3	Day type	ANY
Use serial interface for UTC	False	U	U	U	U	U	U	U	U	SR reply bit	3	Reference time	12:00:00
UTC active state	Short circuit											Repeat rate	24 H
												Window time	24H

SF/LO qualification periods															
L01	10.0	L02	10.0	L03	10.0	L04	10.0	L05	10.0	L06	10.0	L07	10.0	L08	10.0
SF01	7.0	SF02	7.0	SF03	7.0	SF04	7.0	SF05	7.0	SF06	7.0	SF07	7.0	SF08	7.0
SF09	7.0	SF10	7.0	SF11	7.0	SF12	7.0	SF13	7.0	SF14	7.0	SF15	7.0	SF16	7.0

UTC force bits										
Force bit	Phase demands to be considered for demand depended stages	Required phase extensions	Stage to force in each stream							
			1	2	3	4	5	6	7	8
F01			1							
F02			2							
F03			2							
F04				1						
F05				2						
F06				3						
F07				4	-			-		
F08				2						

UTC (stream/stage) confirm data

Stage no.	Stream							
	1	2	3	4	5	6	7	8
00	G1	G4						
01	G2							
02	G2	G5						
03		G6						
04		G7						
05								
06								
07								
08								
09								
10								
11								
12								
13								
14								
15								

$\begin{aligned} & \text { Control/ } \\ & \text { reply bit } \end{aligned}$	Associated biti id per stream										
	1	2			4		5	6	7		
FC											
FGR											
FM											
GO											
HC											
LL											
LO											
LRTI											
LRTR											
TOR											

UTC demand bits (DX Bits)					
DX Bit	Latched stage demands	Unlatched stage demands	Latched phase demands	Unlatched phase demands	Phase extension demands
DX1					
DX2					
DX3					
DX4					
DX5					
DX6					
DX7					
DX8					

UTC demand bits (D Bits)

D Bit	Latched stage demands	Unlatched stage demands	Latched phase demands	Unlatched phase demands	Phase extensiob demands
D1					
D2					
D3					
D4					
D5					
D6					
D7					
D8					
D9					
D10					
D11					
D12		,			
D13					
D14					
D15					
D16					
D17					
D18					
D19					
D20					
D21					
D22					
D23					
D24					
D25					
D26					
D27					
D28					
D29					
D30					
D31					
D32					

		UTC demand reply bits (SD Bits)
SD Bit name	Stage demands to reply	Phase demands to reply
SD1		
SD2		
SD3		
SD4		
SD5		
SD6		
SD7		
SD8		
SD9		
SD10		
SD11		
SD12		
SD13		
SD14		
SD15		
SD16		
SD17		
SD18		
SD19		
SD20		
SD21		
SD22		
SD23		
SD24		
SD25		
SD26		
SD27		
SD28		
SD29		
SD30		
SD31		
SD32		

UTC timeout data and local link inhibit data

UTC Timeout data										
	UTC bits									
	F	D	DX	SF	FM	LO	GO	LL	LRTI	PV
Timeout duration	300	0	0	0	0	0	0	0	0	500
No timeouts allowed	False	True								

UTC local link inhibit data	
LL Bits	
LL01	
LL02	
LL03	
LL04	
LL05	
LL06	
LL07	
LL08	

FT and VA mode

Stream 1																
FT mode data													Normal FT or VA to max			VA
From stage	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Stage time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
To stage	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Demad dependant phases during VA to max DA																
VA mode data																
Arterial reversion to stage/phase				2	VA stage selection option required					Near						

CLF mode data

Plan 1 D ${ }^{\text {a }}$ Delay time																			0	Cycle time		90		
$\begin{gathered} \text { Group } \\ \text { no. } \\ \hline \end{gathered}$	Stream 1			Stream 2			Stream 3			Stream 4			Stream 5			Stream 6			Stream 7			Stream 8		
	Offset time		0	Offset time		0	Offset time		0.0															
	Start time	Inf	Stage																					
1	0	IM	1	0	PX	2	0.0			0.0			0.0			0.0			0.0			0.0		
2	20	PX	2	6	IM	2	0.0			0.0			0.0			0.0			0.0			0.0		
3	25	IM	2	22	IM	1	0.0			0.0			0.0			0.0			0.0			0.0		
4	80	PX	1	70	PX	3	0.0			0.0			0.0			0.0			0.0			0.0		
4				73	DM	3																		
0				76	HS																			
0				84	PX	2																		

Plan 2 Delay time																			0	Cycle time				
$\begin{gathered} \text { Group } \\ \text { no. } \\ \hline \end{gathered}$	Stream 1			Stream 2			Stream 3			Stream 4			Stream 5			Stream 6	Delay time		Stream 7			90 Stream 8		
	Offset time		0	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		0	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \end{array}$	Offset time		0	Offset time		0	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		0
	Start time	Inf	Stage	Start time	Inf		Start time	Inf		Start time	Inf		Start time	Inf	Stage	Start time	Inf	Stage	Start time	Inf		Start time	Inf	Stage
1	0	IM	2	0	IM	1																		
2	34	PX	1	24	PX	3																		
3	44	IM	1	28	DM	3																		
4	65	PX	2	35	PX	2																		
5	73	IM	2	55	IM	2																		
5				72	PX	1																		
0				75	IM	1																		

Plan 3 D Delay time																			0	Cycle time			80	
Group no.	Stream 1			Stream 2			Stream 3			Stream 4			Stream 5			Stream 6			Stream 7			Stream 8		
	Offset time		0	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		0												
	Start time	lnf	Stage	Start time	Inf		Start time	Inf		Start time	Inf	Stage												
1	0	PX	2	0	PX	1																		
2	4	IM	2	7	IM	1																		
3	45	PX	1	35	PX	3																		
4	57	DM	1	40	DM	3																		
5	68	HS		50	HS																			
6	70	PX	2	59	PX	2																		
6				63	IM	2																		

CLF mode data

Group no.	Plan 4															Delay time			$0 \quad$ Cycle time			- 60		
	Stream 1			Stream 2			Stream 3			Stream 4			Stream 5			Stream 6			Stream 7			Stream 8		
	Offset time		0																					
	Start time	Inf	Stage																					
1	0	PX	2	0	IM	2																		
2	4	IM	2	5	DM	1																		
3	40	PX	1	20	HS																			
4	47	DM	1	33	PX	3																		
5	50	HS		39	DM	3																		
5				40	PX	2																		
0				53	IM	2																		

																			0	Cycle time		80		
Group no.	Stream 1			Stream 2			Stream 3			Stream 4			Stream 5			Stream 6			Stream 7			Stream 8		
	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		0																		
	Start time	Inf		Start time	Inf	Stage																		
1	0	IM	1	0	PX	2																		
2	18	PX	2	4	IM	2																		
3	22	IM	2	15	PX	1																		
4	75	PX	1	21	IM	1																		
4				70	DM	3																		
0				72	PX	2																		

Plan 6																			0	Cycle time		80		
Group no.	Stream 1			Stream 2			Stream 3			Stream 4			Stream 5			Stream 6			Stream 7			Stream 8		
	Offset time		0	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		$\begin{array}{c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		0									
	Start time	Inf	Stage	Start time	Inf		Start time	Inf		Start time	Inf		Start time	Inf	Stage									
1	0	IM	2	0	IM	1																		
2	30	PX	1	25	DM	3																		
3	37	IM	1	27	PX	2																		
4	52	PX	2	42	IM	2																		
5	63	IM	2	58	IM	1																		

From phs.											To phase							
	A	B	C	D	E	F	DA	DB										
A		7					3											
B	6						3											
C				7				3										
D			6					3										
E						7		3										
F					6			3										
DA	2	2																
DB			2	2	2	2												

To phase									
From phs. A B C D E F DA DB A 5 3 B 5 3 C 5 3 D 5 3 E 5 3 F 5 3 DA 2 2 DB 2 2 2 2									

Delay No.	Losing stage	Gaining stage	Delay phase	Delay period
1	1	3	F	6

Detector data 1

Det. name	Det. type	Dummy	Vis. unit no.	Active state	Count det.	Self reset	Detector set			Latched phase demand(s)	Unlatched phase demand(s)	Green extension(s)		Varimax phases
							Gap period	Gap count	Self confirm			Phase	Taper \%	
TO1	NM	No		SC	No	No	0.5	15	No				100	
TO2	NM	No		SC	No	No	0.5	15	No				100	
AIN1	NM	No		SC	No	No	0.5	15	No				100	
AIN2	NM	No		SC	No	No	0.5	15	No				100	
AIN3	NM	No		SC	No	No	0.5	15	No				100	
AIN4	NM	No		SC	No	No	0.5	15	No				100	
AX5	NM	No		SC	No	No	0.5	15	No	A		A(4.0)	100	
AX6	NM	No		SC	No	No	0.5	15	No	A		A(4.0)	100	
AX7	NM	No		SC	No	No	0.5	15	No	A		A(4.0)	100	
AX8	NM	No		SC	No	No	0.5	15	No	A		$\mathrm{A}(4.0)$	100	
ASL10A	NM	No		SC	No	No	0.5	15	No	A		A(0.6)	100	
ASL10B	NM	No		SC	No	No	0.5	15	No	A		A(0.6)	100	
ASL10C	NM	No		SC	No	No	0.5	15	No	A		A(0.6)	100	
ASL10D	NM	No		SC	No	No	0.5	15	No	A		A(0.6)	100	
BIN11	NM	No		SC	No	No	0.5	15	No				100	
BIN12	NM	No		SC	No	No	0.5	15	No				100	
BX13	NM	No		SC	No	No	0.5	15	No	B		B(3.0)	100	
BX14	NM	No		SC	No	No	0.5	15	No	B		B(3.0)	100	
CIN15	NM	No		SC	No	No	0.5	15	No				100	
CIN16	NM	No		SC	No	No	0.5	15	No				100	
CX17	NM	No		SC	No	No	0.5	15	No	C		C(4.0)	100	
CX18	NM	No		SC	No	No	0.5	15	No	C		C(4.0)	100	
CX19	NM	No		SC	No	No	0.5	15	No	C		C(4.0)	100	
CSL20	NM	No		SC	No	No	0.5	15	No	C		$\mathrm{C}(0.6)$	100	
CSL21	NM	No		SC	No	No	0.5	15	No	C		C(0.6)	100	
CSL22	NM	No		SC	No	No	0.5	15	No	C		C(0.6)	100	
DIN23	NM	No		SC	No	No	0.5	15	No				100	
DIN24	NM	No		SC	No	No	0.5	15	No				100	
DX27	NM	No		SC	No	No	0.5	15	No	D		D(3.0)	100	
DX28	NM	No		SC	No	No	0.5	15	No	D		D(3.0)	100	
DX29	NM	No		SC	No	No	0.5	15	No	D		D(3.0)	100	
SISPWR	NM	No		SC	No	No	0.5	15	No				100	
SISFLT	NM	No		SC	No	No	0.5	15	No				100	
E10MIN	NM	No		SC	No	No	0.5	15	No				100	
ERST	NM	No		SC	No	No	0.5	15	No				100	
MOVEST	NM	No		SC	No	No	0.5	15	No				100	
AX9	NM	No		SC	No	No	0.5	15	No	A		A(4.0)	100	

Detector data 1

Det. name	Det. type	Dummy	Vis. unit no.	Active state	Count det.	$\begin{aligned} & \text { Self } \\ & \text { reset } \end{aligned}$	Detector set			Latched phase demand(s)	Unlatched phase demand(s)	Green extension(s)		Varimax phases
							Gap period	$\begin{aligned} & \text { Gap } \\ & \text { count } \end{aligned}$	Self confirm			Phase	Taper \%	
ASL10E	NM	No		SC	No	No	0.5	15	No	A		A(0.6)	100	
DIN25	NM	No		SC	No	No	0.5	15	No				100	
DIN26	NM	No		SC	No	No	0.5	15	No				100	
DX30	NM	No		SC	No	No	0.5	15	No	D		D(3.0)	100	
EIN31	NM	No		SC	No	No	0.5	15	No				100	
EIN32	NM	No		SC	No	No	0.5	15	No				100	
EX33	NM	No		SC	No	No	0.5	15	No	E		E(4.0)	100	
EX34	NM	No		SC	No	No	0.5	15	No	E		E(4.0)	100	
ESL35	NM	No		SC	No	No	0.5	15	No	E		E(1.0)	100	
ESL36	NM	No		SC	No	No	0.5	15	No	E		E(1.0)	100	
FIN37	NM	No		SC	No	No	0.5	15	No				100	
FIN38	NM	No		SC	No	No	0.5	15	No				100	
FIN39	NM	No		SC	No	No	0.5	15	No				100	
FX40	NM	No		SC	No	No	0.5	15	No	F		F(4.0)	100	
FX41	NM	No		SC	No	No	0.5	15	No	F		$F(4.0)$	100	
FX42	NM	No		SC	No	No	0.5	15	No	F		F(4.0)	100	
AINHC	NM	Yes		SC	No	No	0.5	15	No				100	
DINHC	NM	Yes		SC	No	No	0.5	15	No				100	
BINHC	NM	Yes		SC	No	No	0.5	15	No				100	
FINHC	NM	Yes		SC	No	No	0.5	15	No				100	
CINHC	NM	Yes		SC	No	No	0.5	15	No				100	
EINHC	NM	Yes		SC	No	No	0.5	15	No				100	

Detector data 2

Det. name	DFM Timings								DFM foce states		Call/cancel timings								Associated to ped.		
	DFA				DFI				Active	Inactive	DCL				DCN				Phase	Extn.	Push Buttons
	Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4			Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4			
T01									N	N									-	-	-
TO2									N	N									-	-	-
AIN1	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
AIN2	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
AIN3	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
AIN4	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
AX5	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
AX6	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
AX7	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
AX8	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
ASL10A	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
ASL10B	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
ASL10C	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
ASL10D	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
BIN11	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
BIN12	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
BX13	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
BX14	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CIN15	30M	30 M	30M	30M	18H	18H	18H	18H	N	N	15.0	15.0	15.0	15.0					-	-	-
CIN16	30M	30M	30M	30M	18H	18H	18H	18H	N	N	15.0	15.0	15.0	15.0					-	-	$-$
CX17	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CX18	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CX19	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CSL20	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CSL21	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CSL22	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	$-$
DIN23	5M	5M	5M	5M					1	N	30.0	30.0	30.0	30.0					-	-	-
DIN24	5M	5M	5M	5M					1	N	30.0	30.0	30.0	30.0					-	-	-
DX27	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
DX28	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
DX29	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
SISPWR									N	N	0	0	0	0	0	0	0	0	-	-	-
SISFLT									N	N	0	0	0	0	0	0	0	0	-	-	-
E10MIN									N	N									-	-	-
ERST									N	N									-	-	-
MOVEST									N	N									-	-	-
AX9	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-

Ref No. M0187

Detector data 2

Det. name	DFM Timings								DFM foce states		Call/cancel timings								Associated to ped.		
	DFA				DFI				Active	Inactive	DCL				DCN				Phase	Extn.	Push Buttons
	Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4			Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4			
ASL10E	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
DIN25	5M	5M	5M	5M					1	1	15	15	15	15	0	0	0	0	-	-	-
DIN26	5M	5M	5M	5M					1	1	15	15	15	15	0	0	0	0	-	-	-
DX30	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
EIN31	30M	30M	30M	30M	18 H	18 H	18 H	18H	A	A	15	15	15	15	0	0	0	0	-	-	-
EIN32	30M	30M	30M	30M	18H	18H	18H	18H	A	A	15	15	15	15	0	0	0	0	-	-	-
EX33	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
EX34	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
ESL35	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
ESL36	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
FIN37	5M	5M	5M	5M					1	1	15	15	15	15	0	0	0	0	-	-	-
FIN38	5M	5M	5M	5M					1	1	15	15	15	15	0	0	0	0	-	-	-
FIN39	5M	5M	5M	5M					1	1	15	15	15	15	0	0	0	0	-	-	-
FX40	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
FX41	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
FX42	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
AINHC									N	N									-	-	-
DINHC									N	N									-	-	-
BINHC									N	N									-	-	-
FINHC									N	N	0	0	0	0	0	0	0	0	-	-	-
CINHC									N	N	0	0	0	0	0	0	0	0	-	-	-
EINHC									N	N	0	0	0	0	0	0	0	0	-	-	-

No.	Day type	Time	Event list	Priorities
1	WKD	$07: 00: 00$	11	1
2	WKD	$09: 30: 00$	12	1
3	WKD	$16: 00: 00$	13	1
4	WKD	$18: 30: 00$	14	1
5	SAT	$09: 00: 00$	12	1
6	SAT	$17: 00: 00$	14	1
7	SUN	$10: 00: 00$	12	1
8	SUN	$19: 00: 00$	14	1
9	XSU	$07: 00: 00$	1	1
10	XSU	$09: 30: 00$	3	1
11	XSU	$15: 30: 00$	2	1
12	XSU	$18: 30: 00$	3	1

Timetable event list data

List no.	Event Action 1		Event Action 2		Event Action 3		Event Action 4		Event Action 5		Event Action 6		Event Action 7		Event Action 8	
	Type	Params														
1	TCF	1														
2	TCF	2														
3	TCF	3														
4	TCF	4														
5	TCF	5														
6	TCF	6														
7	TCF	7														
8	TCF	8														
9	TCF	9														
10	TCF	OFF														
11	TTS	1														
12	TTS	2														
13	TTS	3														
14	TTS	4														
15	TTS	5														
16	TTS	6														
17	TTS	7														
18	TTS	8														

Timetable priorities data

Priority level 1. All year round					
Start			End		
Month	Day	Hour	Month	Day	Hour
Jan	1	0	Dec	31	24

Special conditioning timer data

Timer no.	Timer name	Duration	Fixed	Comment
1	CR1TOG	2.0	No	CRB1 TOGGLE TIME
2	CR1DLY	180.0	No	CRB1 TOGGLE DELAY TIME
3	CR1DUR	600.0	No	CRB1 TOGGLE DURATION TIME
4	CR2TOG	2.0	No	CRB2 TOGGLE TIME
5	CR2DLY	180.0	No	CRB2 TOGGLE DELAY TIME
6	CR2DUR	600.0	No	CRB2 TOGGLE DURATION TIME
7	WRST	2.0	No	WEST SIDE RESET PULSE
8	ADLYC	5.0	No	DELAY AFTER PHASE A HAS ROW BEFORE CALL PULSE TO STREAM 2
9	APULC	2.0	No	PULSE TIMER FOLLWOING ADLYC TIMER
10	ADLYH	7.0	No	DELAY AFTER PHASE A HAS ROW BEFORE HOLD TO STREAM 2
11	AHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING ADLYH TIMER
12	ATRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
13	AOVRH	60.0	No	HOLD OUTPUT OVERIDE
14	BDLYC	5.0	No	DELAY AFTER PHASE B HAS ROW BEFORE CALL PULSE TO STREAM 2
15	BPULC	2.0	No	PULSE TIMER FOLLOWING BDLYC TIMER
16	BDLYH	7.0	No	DELAY AFTER PHASE B HAS ROW BEFORE HOLD TO STREAM 2
17	BHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING BDLYH TIMER
18	BTRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
19	BOVRH	60.0	No	HOLD OUTPUT OVERIDE
20	CDLYC	5.0	No	DELAY AFTER PHASE C HAS ROW BEFORE CALL PULSE TO STREAM 1
21	CPULC	2.0	No	PULSE TIMER FOLLOWING CDLYC TIMER
22	CDLYH	7.0	No	DELAY AFTER PHASE C HAS ROW BEFORE HOLD TO STREAM 1
23	CHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING CDLYH TIMER
24	CTRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
25	COVRH	60.0	No	HOLD OUTPUT OVERIDE
26	DDLYC	5.0	No	DELAY AFTER PHASE D HAS ROW BEFORE CALL PULSE TO STREAM 1
27	DPULC	2.0	No	PULSE TIMER FOLLOWING DDLYC TIMER
28	DDLYH	7.0	No	DELAY AFTER PHASE D HAS ROW BEFORE HOLD TO STREAM 1
29	DHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING DDLYH TIMER
30	DTRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
31	DOVRH	60.0	No	HOLD OUTPUT OVERIDE
32	WFDLYC	5.0	No	DELAY AFTER PHASE F HAS ROW BEFORE CALL PULSE TO EAST CONTR.
33	WFPULC	2.0	No	PULSE TIMER FOLLOWING WCDLYC TIMER
34	WFDLYH	7.0	No	DELAY AFTER PHASE F HAS ROW BEFORE HOLD TO EAST CONTR.
35	WFHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING WCDLYH TIMER
36	WFTRMH	12.0	No	DELAY FOLLOWING TERMINATION OF HOLD
37	WFOVRH	60.0	No	HOLD OUTPUT OVERIDE
38	WEDLYC	5.0	No	DELAY AFTER PHASE E HAS ROW BEFORE CALL PULSE TO EAST CONTR.
39	WEPULC	2.0	No	PULSE TIMER FOLLOWING WEDLYC TIMER

Special conditioning timer data

Timer no.	Timer name	Duration	Fixed	Comment
40	WEDLYH	7.0	No	DELAY AFTER PHASE E HAS ROW BEFORE HOLD TO EAST CONTR.
41	WEHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING WDDLYH TIMER
42	WETRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
43	WEOVRH	60.0	No	HOLD OUTPUT OVERIDE
44	SPARE	0.0	No	SPARE
45	WSTSHT	15.0	No	QIN HURRYCALL SHORT
46	WSTLNG	20.0	No	QIN HURRYCALL LONG
47	SW3PUL	1.0	No	AUX SWITCH 3 PULSE TIMER - USED BY CONDITIONING
48	F2OVR	180.0	No	UTC F2 OVERIDE TIMER
49	F5OVR	180.0	No	UTC F5 OVERIDE TIMER
50	F2PUL	0.5	No	UTC F2 INHIBIT PULSE TIMER
51	F5PUL	0.5	No	UTC F5 INHIBIT PULSE TIMER
52	AHCPUL	2.0	No	AIN MOVA HURRY CALL PULSE TIMER
53	BHCPUL	2.0	No	BIN MOVA HURRY CALL PULSE TIMER
54	CHCPUL	2.0	No	CIN MOVA HURRY CALL PULSE TIMER
55	DHCPUL	2.0	No	DIN MOVA HURRY CALL PULSE TIMER
56	EHCPUL	2.0	No	EIN MOVA HURRY CALL PULSE TIMER
57	FHCPUL	2.0	No	FIN MOVA HURRY CALL PULSE TIMER
58	AHCINHB	180.0	No	AIN HURRYCALL INHIBIT
59	BHCINHB	180.0	No	BIN HURRYCALL INHIBIT
60	CHCINHB	180.0	No	CIN HURRYCALL INHIBIT
61	DHCINHB	180.0	No	DIN HURRYCALL INHIBIT
62	EHCINHB	180.0	No	EIN HURRYCALL INHIBIT
63	FHCINHB	180.0	No	FIN HURRYCALL INHIBIT

Special conditioning statements

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004
iOptima configuration form 34C			

Special conditioning statements

Comments	CR1DLY timer expired and UTC mode still inactive starts CR1TOG and CR1DLY timers.					
If	SCTEXPRD-CR1DLY And not	UTCMODE-1				

Statement 7

Then STSTART-CR1TOG SCTSTART-CR1DLY

Statement 8

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

Statement 13

And not SCTRUNNG-SW3PUL And not FDET-ERST
Then SCTSTART-CR2DUR
Else SCTSTOP-CR2DUR

Statement 16	
Comments	FLAG 10 ACTIVE LIGHTS AUX 3 LED AND SETS W10MIN OUTPUT
If	SCFLAG-10

| Ref No. M0187 | Issue 2.02 | Date 07/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

Special conditioning statements

	Statement 24
Comments WRST TIMER ACTIVE SETS WRST OUTPUT ACTIVE	
If SCTRUNNG-WRST	
Then OUTPUTA-WRST	
Else OUTPUTN-WRST	

| Ref No. M0187 | Issue 2.02 | Date 07/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- | iOptima configuration form 34C

| Ref No. M0187 | Issue 2.02 | Date 07/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004
iOptima configuration form 34C			

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004
iOptima configuration form 34C			

| Ref No. M0187 | Issue 2.02 | Date 07/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

Special conditioning statements

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

| Ref No. M0187 | Issue 2.02 | Date 07/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

Comments	TIMER WFTRMH OR WFOVRH EXPIRED	CLEAR WSBHLDF OUTPUT AND FLAG	
If	SCTEXPRD-WFTRMH	Or	SCTEXPRD-WFOVRH
Then	OUTPUTN-WSBHLDF	SCFLGOFF-5	

Comments WEPULC TIMER RUNNING SETS WSBCAEL OUTPUT

Statement 73

Comments WEPULC TIMER RUNNING SETS WSBCAEL OUTPUT
If SCTRUNNG-WEPULC
Then OUTPUTA-WSBCALE
Else OUTPUTN-WSBCALE

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

| Ref No. M0187 | Issue 2.02 | Date 07/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- | iOptima configuration form 34C

Special conditioning statements

Statement 82							
Comments NOT USED							
If							
Statement 83							
Comments TIMER BHCPUL RUNNING SETS OUTPUT BHCAL56 AND DETECTOR BINHC ACTIVE							
If SCTRUNNG-BHCPUL Then OUTPUTA-BHCAL56 DETA-BINHC SCTSTART-BHCINHB Else OUTPUTN-BHCAL56 DETN-BINHC							
Statement 84							
Comments TIMER DHCPUL RUNNING SETS OUTPUT DHCAL57 AND DETECTOR DINHC ACTIVE							
If SCTRUNNG-DHCPUL Then OUTPUTA-DHCAL57 DETA-DINHC SCTSTART-DHCINHB Else OUTPUTN-DHCAL57 DETN-DINHC							
Statement 85							
Comments TIMER AHCPUL RUNNING SETS OUTPUT AHCAL55 AND DETECTOR AINHC ACTIVE							
If SCTRUNNG-AHCPUL Then OUTPUTA-AHCAL55 DETA-AINHC SCTSTART-AHCINHB Else OUTPUTN-AHCAL55 DETN-AINHC							
Statement 86							
Comments NOT USED							
If							
Statement 87							
Comments ${ }^{\text {DETS }}$ CIN15 OR CIN16, TIMER HCINHB NOT RUNNING AND SCBIT 8 NOT SET STARTS CHCPUL TIMER							
Then SCTSTART-CHCPUL							
Statement 88							
Comments DETS EIN31 OR EIN32, TIMER HCINHB NOT RUNNING AND SCBIT 10 NOT SET STARTS EHCPUL TIMER							
If Then	FDET-EIN31 SCTSTART-EHCPUL	Or	FDET-EIN32	And not	SCTRUNNG-EHCINHB	And not	SCBITS-10

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004
iOptima configuration form 34C			

Special conditioning statements

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

Special conditioning statements

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

Statement 103

Comments \quad PREVENT FORCE BITS OVERIDES:F2PUL TIMER ACTIVE SET UTC-F5 INACTIVE AND UTC-F6 ACTIVE

If

 SCTRUNNG-F5PUL| Then | UTCBITA-F8 | UTCBITI-F5 |
| :--- | :--- | :--- |
| Else | UTCBITN-F8 | UTCBITN-F5 |

Statement 104									
Comments DETECTOR ASL10 A,B,C,D OR E ACTIVE SETS ASL10 OUTPUT									
If	RDET-ASL10A	Or	RDET-ASL10B	Or	RDET-ASL10C	Or	RDET-ASL10D	Or	RDET-ASL10E
Then	OUTPUTA-ASL10								
Else	OUTPUTN-ASL10								

Ref No. M0187	Issue 2.02	Date 07/02/2015	Configurator Version 3.0.0\#1004
iOptima configuration form 34C			

Red lamp monitoring data 1

Red lamp monitoring data 2

Stream based data						
Stream no.	Shutdown required	Red flt. extension	Single red lamp fault input name	Multiple red lamp fault input name	Inhibit stages	
1	Yes	2.0				
2	Yes	2.0				

Red lamp monitoring data 3

Second red failure phase data	
Phase Id	Inhibited phases
A	
B	
C	
D	
E	
F	
DA	
DB	

ILM data

Fault indications	
Auto clear red lamp warnings	Yes
Flash DFM for lamp conflict	No
Flash DFM for lamp failure	No
Unstable toroid indication (as lamp failure)	No

Phase	Lamp Types			Single fault	Multi faults	Failure indication output	Conflict indication output(s)
	Green	Amber	Red				
A	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
B	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
C	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
D	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
E	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
F	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	

Input No.	Input name	Source	Comment
0	F03	Virtual	NOT USED
1	F08	Virtual	NOT USED
0	F01	Parallel	MOVA STREAM 1 STAGE 1 FORCE
1	F02	Parallel	MOVA STREAM 1 STAGE 2 FORCE
2	F04	Parallel	MOVA STREAM 2 STAGE 1 FORCE
3	F05	Parallel	MOVA STREAM 2 STAGE 2 FORCE
4	F06	Parallel	MOVA STREAM 2 STAGE 3 FORCE
5	F07	Parallel	MOVA STREAM 2 STAGE 4 FORCE
6	*TO1	Parallel	MOVA TO BIT STREAM 1
7	*TO2	Parallel	MOVA TO BIT STREAM 2
8	*AIN1	Parallel	
9	*AIN2	Parallel	
10	*AIN3	Parallel	
11	*AIN4	Parallel	
12	*AX5	Parallel	
13	*AX6	Parallel	
14	*AX7	Parallel	
15	*AX8	Parallel	
16	*ASL10A	Parallel	
17	*ASL10B	Parallel	
18	*ASL10C	Parallel	
19	*ASL10D	Parallel	
20	*BIN11	Parallel	
21	*BIN12	Parallel	
22	*BX13	Parallel	
23	*BX14	Parallel	
24	*CIN15	Parallel	
25	*CIN16	Parallel	
26	*CX17	Parallel	
27	*CX18	Parallel	
28	*CX19	Parallel	
29	*CSL20	Parallel	
30	*CSL21	Parallel	
31	*CSL22	Parallel	
32	*DIN23	Parallel	
33	*DIN24	Parallel	
34	*DX27	Parallel	
35	*DX28	Parallel	
36	*DX29	Parallel	

Ref No. M0187
Issue 2.02
Date 07/02/2015 Configurator Version 3.0.0\#1004
iOptima configuration form 52

Input data

Input No.	Input name	Source	Comment
37	*SISPWR	Parallel	SIS POWER
38	*SISFLT	Parallel	SIS FAULT
39	*E10MIN	Parallel	LINKING FROM EAST CONTROLLER CRB TIMER EXPIRED
40	*ERST	Parallel	LINKING FROM EAST CONTROLLER CRB TIMER RESET
41	*MOVEST	Parallel	LINKKING FROM EAST CONTROLLER MOVA RUNNING
42	*AX9	Parallel	
43	*ASL10E	Parallel	NEW
44	*DIN25	Parallel	NEW
45	*DIN26	Parallel	NEW
46	*DX30	Parallel	NEW
47	IP47	Parallel	
48	*EIN31	Parallel	NEW
49	*EIN32	Parallel	NEW
50	*EX33	Parallel	NEW
51	*EX34	Parallel	NEW
52	*ESL35	Parallel	NEW
53	*ESL36	Parallel	NEW
54	*FIN37	Parallel	NEW
55	*FIN38	Parallel	NEW
56	*FIN39	Parallel	NEW
57	*FX40	Parallel	NEW
58	*FX41	Parallel	NEW
59	*FX42	Parallel	NEW

Output data

Output Number	Destination	Output name	Invert state	Comment
0	Parallel	G1	Yes	MOVA STREAM 1 STAGE 1 CONFIRM
1	Parallel	G2	Yes	MOVA STREAM 1 STAGE 2 CONFIRM
2	Parallel	G4	Yes	MOVA STREAM 2 STAGE 1 CONFIRM
3	Parallel	G5	Yes	MOVA STREAM 2 STAGE 2 CONFIRM
4	Parallel	G6	Yes	MOVA STREAM 2 STAGE 3 CONFIRM
5	Parallel	G7	Yes	MOVA STREAM 2 STAGE 4 CONFIRM
6	Parallel	GC	Yes	MOVA PHASE C CONFIRM
7	Parallel	GD	Yes	MOVA PHASE D CONFIRM
8	Parallel	GE	Yes	MOVA PHASE E CONFIRM
9	Parallel	GF	Yes	MOVA PHASE F CONFIRM
10	Parallel	CRB1	Yes	MOVA CRB BIT STREAM 1
11	Parallel	CRB2	Yes	MOVA CRB BIT STREAM 2
12	Parallel	MOVA1	No	MOVA MODE ACTIVE STREAM 1
13	Parallel	MOVA2	No	MOVA MODE ACTIVE STREAM 2
14	Parallel	OP14	No	
15	Parallel	OP15	No	
16	Parallel	ASL10	No	BUFFERED COMBINED ASL10 LOOPS - MOVA DET 10
17	Parallel	OP17	No	
18	Parallel	ST2D43C	No	STREAM 1 TO 2 LINKING - MOVA DET 43
19	Parallel	ST2D44H	No	STREAM 1 TO 2 LINKING - MOVA DET 44
20	Parallel	ST2D45C	No	STREAM 1 TO 2 LINKING - MOVA DET 45
21	Parallel	ST2D46H	No	STREAM 1 TO 2 LINKING - MOVA DET 46
22	Parallel	ST1A47C	No	STREAM 2 TO 1 LINKING - MOVA DET 47
23	Parallel	ST1A48H	No	STREAM 2 TO 1 LINKING - MOVA DET 48
24	Parallel	ST1B49C	No	STREAM 2 TO 1 LINKING - MOVA DET 49
25	Parallel	ST1B50H	No	STREAM 2 TO 1 LINKING - MOVA DET 50
26	Parallel	WSBHLDF	No	LINKING TO EAST CONTROLLER
27	Parallel	WSBCALF	No	LINKING TO EAST CONTROLLER
28	Parallel	WSBHLDE	No	LINKING TO EAST CONTROLLER
29	Parallel	WSBCALE	No	LINKING TO EAST CONTROLLER
30	Parallel	TSYNC	No	LINKING TO EAST CONTROLLER - TIME SYNC FOR EAST CONTROLLER
31	Parallel	W10MIN	No	LINKING TO EAST CONTROLLER - WEST CONTROLLER CRB TIMER EXPIRED
32	Parallel	WRST	No	LINKING TO EAST CONTROLLER - WEST CONTROLLER CRB RESET
33	Parallel	MOVWST	No	LINKING TO EAST CONTROLLER - MOVA CONTROL ACTIVE BOTH STREAMS WEST
34	Parallel	LE	Yes	LAMPS EXTINGUISHED TO OMU
35	Parallel	LF	Yes	LAMP FAULT TO OMU
36	Parallel	SISPWR	No	SIS POWER TO OMU
37	Parallel	SISFLT	No	SIS FAULT TO OMU
38	Parallel	AHCAL55	No	AIN MOVA HURRY CALL - MOVA DET 55

Ref No. M0187

Output data

Output Number	Destination	Output name	Invert state	Comment
39	Parallel	BHCAL56	No	BIN MOVA HURRY CALL - MOVA DET 56
40	Parallel	DHCAL57	No	DIN MOVA HURRY CALL - MOVA DET 57
41	Parallel	FHCAL58	No	FIN MOVA HURRY CALL - MOVA DET 58
42	Parallel	CHCAL59	No	CIN MOVA HURRY CALL - MOVA DET 59
43	Parallel	EHCAL60	No	EIN MOVA HURRY CALL - MOVA DET 60

Loop Detector Cards		
Number	Fitted	Detectors
2	Yes	16
3	No	-
4	No	-

Safety card 1	
Phase Drive cards	
Number	Fitted
1	Yes
2	Yes
3	Yes
4	No
5	No
6	No
7	No
8	No
9	No
10	No
11	No
12	No
13	No
14	No
15	No
16	No

IO Cards	
Number	Card Type
1	Handset
2	IO 16/16
3	IO 16/16
4	IO 16/16
5	IO 16/16
6	Not Fitted
7	Not Fitted
8	Not Fitted

Loop Detector Cards		
Number	Fitted	Detectors
1	Yes	16

Virtual IO data

Bit No.	Bit name	Invert	Active	Comment
0	FO3	False	False	
1	F08	False	False	

```
Customer: AMEY AREA9 MAC
Intersection description: M42 JUNCTION 10 A5 DORDON ISLAND TAMWORTH EAST SIDE - SCN 211
Telent tender no.:
Telent works order no.:
Customers order no.: Dated:
Customers engineer: JULIAN SMITH / PAOLO MALARA / ROGER HACKER
Customers telephone no.: 01905750255 Ext:
Equipment installation by: TELENT
Slot cutting by:
Civil works by:
Configuration no.: CFGM0188 Issue: Configuration engineer: SIMON WINTER
```


General Data

Power supply data	
Mains voltage	48 Volts
Mains frequency	50 Hz
Peak current	0.0 Amps
Dimming voltage	160

Solar switch data				
Detector timing set data	Set 1	Set 2	Set 3	Set 4
Call delay period (Seconds)	10.0	10.0	10.0	10.0
Cancel delay period (Seconds)	10.0	10.0	10.0	10.0
DFM active times (Hours or minutes)	24 H	24 H	24 H	24 H
DFM inactive times (Hours or minutes)	24 H	24 H	24 H	24 H

British summertime change data			
BST start week	13	BST end week	43

Options	
Is manual disable via handset option required?	No
Inhibit pedestrian demand delay in FVP mode?	No
Inhibit pedestrian demand delay in PTM mode?	No
Limit handset warnings to UTC enabled warnings?	No

ELV OPTIMA
SEE CONFIGURATION NOTES

Issue	Date	Description
1.00	23/10/12	INITIAL CONFIGURATION
1.01	23/10/12	INTERMEDIATE EDIT
1.02	23/10/2012	Intermediate edit
1.03	23/10/2012	Intermediate edit
1.04	23/10/2012	Intermediate edit
1.05	10/11/2012	Intermediate edit
1.06	21/11/2012	Intermediate edit
1.07	04/12/2012	Intermediate edit
1.08	04/12/2012	Intermediate edit
2.00	11/09/2014	PHASES ADDED AND MOVA AMMENDED
2.01	19/09/2014	Intermediate edit
2.02	30/09/2014	Intermediate edit
2.03	07/02/2015	Intermediate edit
2.04	09/02/2015	Intermediate edit

Phase data 1

$\begin{gathered} \text { Phase } \\ \text { Id } \end{gathered}$	Road Name(s)	Phs. type	Appearance assoc'ted		Termination assoc'ted		Restart allowed	App. in man
			type	phase(s)	type	phase(s)		
A	M42 SOUTHBOUND OFF SLIP	T	0		0		No	0
B	NORTH BRIDGE EASTBOUND GYRATORY	T	0		0		No	0
C	A5 WESTBOUND	T	0		0		No	0
D	EASTSIDE A5 GYRATORY	T	0		0		No	0
E	TRINITY ROAD	T	0		0		No	0
F	EAST SIDE TRINITY GYRATORY	T	0		0		No	0
DA	ALL RED STREAM 1	G	0		0		No	0
DB	ALL RED STREAM 2	G	0		0		No	0

Phase data 2

Phase ld	Min green Time	Min green limit	Window time	Speed measurement facilities		Assoc to ped. phases	Cond demand type	Conditioning phases
				Exist	Ped. phases			
A	7.0	7.0	-	No		No	NONE	
B	7.0	7.0	-	No		No	NONE	
C	7.0	7.0	-	No		No	NONE	
D	7.0	7.0	-	No		No	NONE	
E	7	7		No		No	None	
F	7	7		No		No	None	
DA	3.0	3.0	-	No		No	NONE	
DB	3.0	3.0	-	No		No	NONE	

Phase data 21

Phase Id	Maximum greens (VA)								Maximum greens (PTM)								Maximum greens (FVP)							
	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 7	Set 8	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 7	Set 8	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6	Set 7	Set 8
A	30.0	20.0	30.0	20.0	30.0	30.0	40.0	60.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B	40.0	30.0	40.0	30.0	40.0	30.0	40.0	60.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C	20.0	20.0	20.0	20.0	30.0	30.0	40.0	60.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
D	40.0	30.0	40.0	30.0	40.0	30.0	40.0	60.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	20	20	20	20	30	30	40	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F	40	30	40	30	40	30	40	60	-	-	-	-	-	-	-	-	-	-	-	-	-	$-$	-	-
DA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DB	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Phase data 2_2

$\begin{aligned} & \text { Phs } \\ & \text { la } \\ & \text { ld } \end{aligned}$	Fixed seq.	Pedtype	Demand extn.	Dithering		Pedestrian intergreen sequence times						PV info		PV associated to			$\begin{gathered} \text { PV } \\ \text { delay } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { Window } \end{gathered}$	Local override
				Quiescent	Normal	Gap	Frc	Min	Max	Cl	Xtr	UTC	Local	Phase	Str/Stg	Input			
A	-		-	-	-	-	-	-		-	-	-	-	-				-	-
B	-	-	-	-	-	-	-	-	-	-	.	-	-	-	-	-	-	-	
c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
D	-	-	-	-	-	-	-	-	.	-	-	-	-	-	.	-	-	-	-
E	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F	.	.	-	-	-	-	-	-	-	-	.	-	-	.	.	-	.	-	-
DA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Phase data 2_3

Phase compensation				
	Compensation sets			
Phase Id	Set 1	Set 2	Set 3	Set 4
A	0.0	0.0	0.0	0.0
B	0.0	0.0	0.0	0.0
C	0.0	0.0	0.0	0.0
D	0.0	0.0	0.0	0.0
E	0	0	0	0
F	0	0	0	0
DA	0.0	0.0	0.0	0.0
DB	0.0	0.0	0.0	0.0

Phase data 24

Pedestrain supplementary signals									
Phase Id	Illuminate wait lamps on phase	Tactile	Confirmation input	State	Audible	Confirmation input	Active state	Drive phase	Duration
A		False	False	OC	False	False	OC	A	
B		False	False	OC	False	False	OC	B	
C		False	False	OC	False	False	OC	C	
D		False	False	OC	False	False	OC	D	
E		False	False	OC	False	False	OC	E	
F		False	False	OC	False	False	OC	F	
DA		False	False	OC	False	False	OC	DA	
DB		False	False	OC	False	False	OC	DB	

Phase data 4

Phase Id	Conflicting greens	Opposed by phase demands	Opposed by stage demands	Revertive phase demands
A	B	B, DA		A
B	A	A, DA		B
C	D	D, DB		C
D	C	C, DB		D
E	F	C,D,F		E
F	E	C, D, E		F
DA		A, B		
DB		C, D		

Lamp sequence data

Phs. type	Sequence description	Start-up starting			Start-up stoping			Normal starting			Normal stopping			Running		Stopped		Shutdown	
		State 1	State 2	Duration	State 1	State 2	State 1	State 2	State 1	State 2									
FP	FAR/SIDE PEDESTRIAN	G	G	0	R	R	0	G	G	0	B	B	3	G	G	R	R	B	B
G	IND/FILTER	G	G	0	B	B	0	G	G	0	B	B	0	G	G	B	B	B	B
L	LRT	G	G	0	A	A	5	G	G	0	A	A	5	G	G	R	R	B	B
NP	NEAR/SIDE PEDESTRIAN	G	G	0	R	R	0	G	G	0	R	R	3	G	G	R	R	B	B
P	PEDESTRIAN	G	G	0	R	R	0	G	G	0	B	B	PBT	G	G	R	R	B	B
PP	PELICAN PEDESTRIAN	R	R	0	B	G	3	G	G	0	B	G	0.1	G	G	R	R	B	B
PT	PELICAN TRAFFIC	B	A	5	A	A	3	B	A	6	A	A	3	G	G	R	R	B	B
T	TRAFFIC	G	G	0	A	A	3	R,A	R,A	2	A	A	3	G	G	R	R	B	B
W	WIG-WAG	A	A	5	B	B	0	A	A	5	B	B	0	R	G	B	B	B	B

Stage data				
Stream 1			Start-up stage no.	2
Stage	Active phases			
0	DA			
1	A			
2	B			
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
		Stream 2	Start-up stage no.	2
Stage	Active phases			
0	DB			
1	D, E			
2	D, F			
3	C, F			
4	C, E			
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Mode data			
Stream 1		Starting intergreen duration	9.0
Mode	Priority no.	All red extension auto to max	
C.L.F.	6	No	
PSV emerge			
Hurry Call 1	4	No	
Hurry Call 2	5	No	
Hurry Call 3			
Hurry Call 4			
LRT			
Manual	1	No	
Manual FT	2	Yes	
MOVA			
Normal - VA	7	No	
PSV priority			
Part time			
UTC	3	No	
Phase demands to be inserteted on start-up and when leaving manual or fixed time modes			
A,B			
Stream 2		Starting intergreen duration	9.0
Mode	Priority no.	All red extension auto to max	
C.L.F.	6	No	
PSV emergency			
Hurry Call 1	4	No	
Hurry Call 2	5	No	
Hurry Call 3			
Hurry Call 4			
LRT			
Manual	1	No	
Manual FT	2	Yes	
MOVA			
Normal - VA	7	No	
PSV priority			
Part time			
UTC	3	No	
Phase demands to be inserteted on start-up and when leaving manual or fixed time modes			
C,D,E,F			

Part time and hurry call mode data

Stream 2										
Part time mode data										
Switch-off s		Part-time hold duration	OH	Part-time prevent duration	OH	Part-time queue detector(s)				
Hurry call mode data										
Hurry call no.	Call stage	Request detector(s)		Cancel detector(s)			Output name	Delay period	Hold period	Prevent period
1	2	DINHC					N/A	0.0	10.0	0.0
2	2	FINHC					N/A	0.0	10.0	0.0
3							N/A	0.0	0.0	0.0
4				N/A	0.0	0.0	0.0			

Manual mode data

			ge			str			
Manual button no.	1	2	3	4	5	6	7	8	Street name(s)
All red	0	0							ALL RED
1	2	2							GYRATORIES
2	1	2							M42 OFF / GYRATORY
3	2	3							M42 OFF GYRATORY / A5 WB / TRINITY RD GYRATORY
4	1	1							M42 OFF / A5 GYRATORY / TRINITY ROAD
5	0	4							STREAM 1 ALL RED / A5 WB / TRINITY ROAD
6	0	2							STREAM 1 ALL RED / STREAM 2 GYRATORIES
7									
8									
9									
10									
Button no. for inital manual stage set								1	Streams that must be in manual mode together

UTC general data, confirm bit data \& SF/LO qualification periods

UTC General data													
UTC option	1 (MCE 0105/0106)	Stream linking options								Sync confirm times		Time sync data	
TF Reset time	00:00:00	1	2	3	4	5	6	7	8	RT reply bit	3	Day type	ANY
Use serial interface for UTC	False	U	U	U	U	U	U	U	U	SR reply bit	3	Reference time	12:00:00
UTC active state	Short circuit											Repeat rate	24 H
												Window time	24H

SF/LO qualification periods															
L01	10.0	L02	10.0	L03	10.0	L04	10.0	L05	10.0	L06	10.0	L07	10.0	L08	10.0
SF01	7.0	SF02	7.0	SF03	7.0	SF04	7.0	SF05	7.0	SF06	7.0	SF07	7.0	SF08	7.0
SF09	7.0	SF10	7.0	SF11	7.0	SF12	7.0	SF13	7.0	SF14	7.0	SF15	7.0	SF16	7.0

UTC force bits										
Force bit	Phase demands to be considered for demand depended stages	Required phase extensions	Stage to force in each stream							
			1	2	3	4	5	6	7	8
F01			1							
F02			2							
F03			2							
F04				1						
F05				2						
F06				3						
F07				4	-			-		
F08				2						

UTC (stream/stage) confirm data

Stage no.	Stream								
	1	2	3	4	5	6	7	8	
	G1	G4							
	G2	G5							
		G6							
		G7							
06									
07									
08									
09									
10									
11									
12									
13									
14									
15									

$\begin{aligned} & \text { Control/ } \\ & \text { reply bit } \end{aligned}$	Associated biti id per stream										
	1	2			4		5	6	7		
FC											
FGR											
FM											
GO											
HC											
LL											
LO											
LRTI											
LRTR											
TOR											

UTC demand bits (DX Bits)					
DX Bit	Latched stage demands	Unlatched stage demands	Latched phase demands	Unlatched phase demands	Phase extension demands
DX1					
DX2					
DX3					
DX4					
DX5					
DX6					
DX7					
DX8					

UTC demand bits (D Bits)

D Bit	Latched stage demands	Unlatched stage demands	Latched phase demands	Unlatched phase demands	Phase extensiob demands
D1					
D2					
D3					
D4					
D5					
D6					
D7					
D8					
D9					
D10					
D11					
D12		,			
D13					
D14					
D15					
D16					
D17					
D18					
D19					
D20					
D21					
D22					
D23					
D24					
D25					
D26					
D27					
D28					
D29					
D30					
D31					
D32					

		UTC demand reply bits (SD Bits)
SD Bit name	Stage demands to reply	Phase demands to reply
SD1		
SD2		
SD3		
SD4		
SD5		
SD6		
SD7		
SD8		
SD9		
SD10		
SD11		
SD12		
SD13		
SD14		
SD15		
SD16		
SD17		
SD18		
SD19		
SD20		
SD21		
SD22		
SD23		
SD24		
SD25		
SD26		
SD27		
SD28		
SD29		
SD30		
SD31		
SD32		

UTC timeout data and local link inhibit data

UTC Timeout data										
	UTC bits									
	F	D	DX	SF	FM	LO	GO	LL	LRTI	PV
Timeout duration	300	0	0	0	0	0	0	0	0	500
No timeouts allowed	False	True								

UTC local link inhibit data	
LL Bits	
LL01	
LLO2	
LL03	
LL04	
LL05	
LL06	
LL07	
LL08	

FT and VA mode

Stream 1																
FT mode data													Normal FT or VA to max			VA
From stage	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Stage time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
To stage	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Demad dependant phases during VA to max DA																
VA mode data																
Arterial reversion to stage/phase				2	VA stage selection option required					Near						

CLF mode data

Group no.	Plan 1															Delay time			0 Cycle time			90		
	Stream 1			Stream 2			Stream 3			Stream 4			Stream 5			Stream 6			Stream 7			Stream 8		
	Offset time		0	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		$\begin{gathered} 0 \\ \hline \text { Stage } \\ \hline \end{gathered}$	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$												
	Start time	Inf	Stage	Start time	Inf		Start time	Inf		Start time	Inf													
1	0	IM	2	0	IM	3																		
2	6	PX	1	4	PX	2																		
3	12	IM	1	15	IM	2																		
4	30	PX	2	48	PX	1																		
5	35	IM	2	57	DM	1																		
5				58	HS																			
0				71	PX	3																		
0				76	IM	3																		

CLF mode data

																			0	Cycle time			80	
Group no.	Stream 1			Stream 2			Stream 3			Stream 4			Stream 5			Stream 6			Stream 7			Stream 8		
	Offset time		0	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		0															
	Start time	Inf	Stage	Start time	Inf		Start time	Inf	Stage															
1	0	IM	1	0	IM	3																		
2	4	PX	2	20	PX	2																		
3	8	IM	2	29	IM	2																		
4	60	PX	1	52	PX	1																		
5	67	IM	1	56	DM	1																		
5				60	HS																			
0				65	PX	3																		
0				74	IM	3																		

																			0 Cycle tim			- 80		
$\begin{gathered} \text { Group } \\ \text { no. } \\ \hline \end{gathered}$	Stream 1			Stream 2			Stream 3			Stream 4			Stream 5			Stream 6			Stream 7			Stream 8		
	Offset time		0	Offset time		$\begin{array}{\|c\|} \hline 0 \\ \hline \text { Stage } \\ \hline \end{array}$	Offset time		0															
	Start time	Inf	Stage	Start time	lnf	Stage	Start time	Inf		Start time	Inf	Stage												
1	0	IM	2	0	IM	3																		
2	8	PX	1	18	PX	2																		
3	15	IM	1	27	IM	2																		
4	32	PX	2	50	PX	1																		
5	36	IM	2	54	DM	1																		
5				58	HS																			
0				63	PX	3																		
0				71	IM	3																		

From phs.											To phase							
	A	B	C	D	E	F	DA	DB										
A		7					3											
B	6						3											
C				7				3										
D			6					3										
E						7		3										
F					6			3										
DA	2	2																
DB			2	2	2	2												

To phase									
From phs. A B C D E F DA DB A 5 3 B 5 3 C 5 3 D 5 3 E 5 3 F 5 3 DA 2 2 DB 2 2 2 2									

Delay No.	Losing stage	Gaining stage	Delay phase	Delay period
1	3	1	F	5

Detector data 1

Det. name	Det. type	Dummy	Vis. unit no.	Active state	Count det.	Self reset	Detector set			Latched phase demand(s)	Unlatched phase demand(s)	Green extension(s)		Varimax phases
							Gap period	Gap count	Self confirm			Phase	Taper \%	
TO1	NM	No		SC	No	No	0.5	15	No				100	
TO2	NM	No		SC	No	No	0.5	15	No				100	
LSL1	NM	No		SC	No	No	0.5	15	No	DB		DB(1.6)	100	
AQ2	NM	No		SC	No	No	0.5	15	No				100	
AIN3	NM	No		SC	No	No	0.5	15	No				100	
AIN4	NM	No		SC	No	No	0.5	15	No				100	
AX5	NM	No		SC	No	No	0.5	15	No	A		A(4.0)	100	
AX6	NM	No		SC	No	No	0.5	15	No	A		A(4.0)	100	
AX7	NM	No		SC	No	No	0.5	15	No	A		A(4.0)	100	
ASL8A	NM	No		SC	No	No	0.5	15	No	A		$\mathrm{A}(0.6)$	100	
ASL8B	NM	No		SC	No	No	0.5	15	No	A		$\mathrm{A}(0.6)$	100	
ASL8C	NM	No		SC	No	No	0.5	15	No	A		$\mathrm{A}(0.6)$	100	
BIN10	NM	No		SC	No	No	0.5	15	No				100	
BIN11	NM	No		SC	No	No	0.5	15	No				100	
BIN12	NM	No		SC	No	No	0.5	15	No				100	
BX13	NM	No		SC	No	No	0.5	15	No	B		$\mathrm{B}(4.0)$	100	
BX14	NM	No		SC	No	No	0.5	15	No	B		B(4.0)	100	
BX15	NM	No		SC	No	No	0.5	15	No	B		$\mathrm{B}(4.0)$	100	
BX16	NM	No		SC	No	No	0.5	15	No	B		B(4.0)	100	
CIN17	NM	No		SC	No	No	0.5	15	No				100	
CIN18	NM	No		SC	No	No	0.5	15	No				100	
CIN19	NM	No		SC	No	No	0.5	15	No				100	
CX20	NM	No		SC	No	No	0.5	15	No	C		C(3.5)	100	
CX21	NM	No		SC	No	No	0.5	15	No	C		C(3.5)	100	
CX22	NM	No		SC	No	No	0.5	15	No	C		C(3.5)	100	
CX23	NM	No		SC	No	No	0.5	15	No	C		C(3.5)	100	
CSL24A	NM	No		SC	No	No	0.5	15	No	C		$\mathrm{C}(0.6)$	100	
CSL24B	NM	No		SC	No	No	0.5	15	No	C		C(0.6)	100	
CSL24C	NM	No		SC	No	No	0.5	15	No	C		$\mathrm{C}(0.6)$	100	
CSL24D	NM	No		SC	No	No	0.5	15	No	C		C(0.6)	100	
DIN26	NM	No		SC	No	No	0.5	15	No				100	
DIN27	NM	No		SC	No	No	0.5	15	No				100	
DX28	NM	No		SC	No	No	0.5	15	No	D		D(3.5)	100	
DX29	NM	No		SC	No	No	0.5	15	No	D		$\mathrm{D}(3.5)$	100	
DX30	NM	No		SC	No	No	0.5	15	No	D		$\mathrm{D}(3.5)$	100	
DX31	NM	No		SC	No	No	0.5	15	No	D		D(3.5)	100	
SISPWR	NM	No		SC	No	No	0.5	15	No				100	

Ref No. M0188
Issue 2.04
Date 09/02/2015
Configurator Version 3.0.0\#1004
iOptima configuration form 28

Detector data 1

Det. name	Det. type	Dummy	Vis. unit no.	Active state	Count det.	$\begin{aligned} & \text { Self } \\ & \text { reset } \end{aligned}$	Detector set			Latched phase demand(s)	Unlatched phase demand(s)	Green extension(s)		Varimax phases
							Gap period	Gap count	Self confirm			Phase	Taper \%	
SISFLT	NM	No		SC	No	No	0.5	15	No				100	
W10MIN	NM	No		SC	No	No	0.5	15	No				100	
WRST	NM	No		SC	No	No	0.5	15	No				100	
MOVWST	NM	No		SC	No	No	0.5	15	No				100	
EIN32	NM	No		SC	No	No	0.5	15	No				100	
EX33	NM	No		SC	No	No	0.5	15	No	E		E(4.0)	100	
EX34	NM	No		SC	No	No	0.5	15	No	E		E(4.0)	100	
ESL35	NM	No		SC	No	No	0.5	15	No	E		$\mathrm{E}(0.6)$	100	
ESL36	NM	No		SC	No	No	0.5	15	No	E		E(0.6)	100	
FIN37	NM	No		SC	No	No	0.5	15	No				100	
FIN38	NM	No		SC	No	No	0.5	15	No				100	
FIN39	NM	No		SC	No	No	0.5	15	No				100	
FX40	NM	No		SC	No	No	0.5	15	No	F		$F(3.5)$	100	
FX41	NM	No		SC	No	No	0.5	15	No	F		$F(3.5)$	100	
FX42	NM	No		SC	No	No	0.5	15	No	F		$F(3.5)$	100	
FX43	NM	No		SC	No	No	0.5	15	No	F		$F(3.5)$	100	
CINHC	NM	Yes		SC	No	No	0.5	15	No				100	
AQHC	NM	Yes		SC	No	No	0.5	15	No				100	
DINHC	NM	Yes		SC	No	No	0.5	15	No				100	
BINHC	NM	Yes		SC	No	No	0.5	15	No				100	
FINHC	NM	Yes		SC	No	No	0.5	15	No				100	

Detector data 2

Det. name	DFM Timings								DFM foce states		Call/cancel timings								Associated to ped.		
	DFA				DFI				Active	Inactive	DCL				DCN				Phase	Extn.	Push Buttons
	Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4			Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4			
TO1									N	N									-	-	-
TO2	5M	5M	5M	5M					N	N									-	-	-
LSL1	5M	5M	5M	5M					1	N									-	-	-
AQ2	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
AIN3	30M	30M	30M	30M	18H	18H	18 H	18H	N	N									-	-	-
AIN4	30M	30M	30M	30M	18H	18H	18H	18H	N	N									-	-	-
AX5	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
AX6	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
AX7	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
ASL8A	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
ASL8B	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
ASL8C	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
BIN10	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
BIN11	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
BIN12	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
BX13	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
BX14	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
BX15	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
BX16	30M	30M	30M	30M	18H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
CIN17	30M	30M	30M	30M	18H	18H	18 H	18 H	N	N	15.0	15.0	15.0	15.0					-	-	-
CIN18	30M	30M	30M	30M	18H	18H	18H	18H	N	N	15.0	15.0	15.0	15.0					-	-	-
CIN19	30M	30M	30M	30M	18H	18H	18H	18H	N	N	15.0	15.0	15.0	15.0					-	-	-
CX20	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CX21	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CX22	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CX23	30M	30M	30M	30M	18H	18H	18H	18H	N	N									-	-	-
CSL24A	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CSL24B	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
CSL24C	30M	30M	30M	30M	18H	18 H	18H	18H	A	A									-	-	-
CSL24D	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
DIN26	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
DIN27	5M	5M	5M	5M					1	N	15.0	15.0	15.0	15.0					-	-	-
DX28	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
DX29	30M	30M	30M	30M	18H	18H	18H	18 H	A	A									-	-	-
DX30	30M	30M	30M	30M	18H	18H	18 H	18 H	A	A									-	-	-
DX31	30M	30M	30M	30M	18H	18H	18H	18H	A	A									-	-	-
SISPWR									N	N	0	0	0	0	0	0	0	0	-	-	-

Detector data 2

Det. name	DFM Timings								DFM foce states		Call/cancel timings								Associated to ped.		
	DFA				DFI				Active	Inactive	DCL				DCN				Phase	Extn.	Push Buttons
	Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4			Set 1	Set 2	Set 3	Set 4	Set 1	Set 2	Set 3	Set 4			
SISFLT									N	N	0	0	0	0	0	0	0	0	-	-	-
W10MIN									N	N									-	-	-
WRST									N	N									-	-	-
MOVWST									A	A									-	-	-
EIN32	30M	30M	30M	30M	18 H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
EX33	30M	30M	30M	30M	18 H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
EX34	30M	30M	30M	30M	18 H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
ESL35	30M	30M	30M	30M	18 H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
ESL36	30M	30M	30M	30M	18 H	18H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
FIN37	5M	5M	5M	5M					1	N	15	15	15	15	0	0	0	0	-	-	-
FIN38	5M	5M	5M	5M					1	N	15	15	15	15	0	0	0	0	-	-	-
FIN39	5M	5M	5M	5M					1	N	15	15	15	15	0	0	0	0	-	-	-
FX40	30M	30M	30M	30M	18 H	18 H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
FX41	30M	30M	30M	30M	18 H	18 H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
FX42	30M	30M	30M	30M	18 H	18 H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
FX43	30M	30M	30M	30M	18 H	18 H	18H	18H	A	A	0	0	0	0	0	0	0	0	-	-	-
CINHC									N	N	0	0	0	0	0	0	0	0	-	-	-
AQHC									N	N									-	-	-
DINHC									N	N									-	-	-
BINHC									N	N									-	-	-
FINHC									N	N	0	0	0	0	0	0	0	0	-	-	-

No.	Day type	Time	Event list	Priorities
1	WKD	$07: 00: 00$	11	1
2	WKD	$09: 30: 00$	12	1
3	WKD	$16: 00: 00$	13	1
4	WKD	$18: 30: 00$	14	1
5	SAT	$09: 00: 00$	12	1
6	SAT	$17: 00: 00$	14	1
7	SUN	$10: 00: 00$	12	1
8	SUN	$19: 00: 00$	14	1
9	XSU	$07: 00: 00$	1	1
10	XSU	$09: 30: 00$	3	1
11	XSU	$15: 30: 00$	2	1
12	XSU	$18: 30: 00$	3	1

Timetable event list data

List no.	Event Action 1		Event Action 2		Event Action 3		Event Action 4		Event Action 5		Event Action 6		Event Action 7		Event Action 8	
	Type	Params														
1	TCF	1														
2	TCF	2														
3	TCF	3														
4	TCF	4														
5	TCF	5														
6	TCF	6														
7	TCF	7														
8	TCF	8														
9	TCF	9														
10	TCF	OFF														
11	TTS	1														
12	TTS	2														
13	TTS	3														
14	TTS	4														
15	TTS	5														
16	TTS	6														
17	TTS	7														
18	TTS	8														

Timetable priorities data

Priority level 1. All year round					
Start			End		
Month	Day	Hour	Month	Day	Hour
Jan	1	0	Dec	31	24

Special conditioning timer data

Timer no.	Timer name	Duration	Fixed	Comment
1	CR1TOG	2.0	No	CRB1 TOGGLE TIME
2	CR1DLY	180.0	No	CRB1 TOGGLE DELAY TIME
3	CR1DUR	600.0	No	CRB1 TOGGLE DURATION TIME
4	CR2TOG	2.0	No	CRB2 TOGGLE TIME
5	CR2DLY	180.0	No	CRB2 TOGGLE DELAY TIME
6	CR2DUR	600.0	No	CRB2 TOGGLE DURATION TIME
7	ERST	2.0	No	EAST SIDE RESET PULSE
8	ADLYC	5.0	No	DELAY AFTER PHASE A HAS ROW BEFORE CALL PULSE TO STREAM 2
9	APULC	2.0	No	PULSE TIMER FOLLWOING ADLYC TIMER
10	ADLYH	7.0	No	DELAY AFTER PHASE A HAS ROW BEFORE HOLD TO STREAM 2
11	AHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING ADLYH TIMER
12	ATRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
13	AOVRH	60.0	No	HOLD OUTPUT OVERIDE
14	BDLYC	5.0	No	DELAY AFTER PHASE B HAS ROW BEFORE CALL PULSE TO STREAM 2
15	BPULC	2.0	No	PULSE TIMER FOLLOWING BDLYC TIMER
16	BDLYH	7.0	No	DELAY AFTER PHASE B HAS ROW BEFORE HOLD TO STREAM 2
17	BHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING BDLYH TIMER
18	BTRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
19	BOVRH	60.0	No	HOLD OUTPUT OVERIDE
20	CDLYC	5.0	No	DELAY AFTER PHASE C HAS ROW BEFORE CALL PULSE TO STREAM 1
21	CPULC	2.0	No	PULSE TIMER FOLLOWING CDLYC TIMER
22	CDLYH	7.0	No	DELAY AFTER PHASE C HAS ROW BEFORE HOLD TO STREAM 1
23	CHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING CDLYH TIMER
24	CTRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
25	COVRH	60.0	No	HOLD OUTPUT OVERIDE
26	DDLYC	5.0	No	DELAY AFTER PHASE D HAS ROW BEFORE CALL PULSE TO STREAM 1
27	DPULC	2.0	No	PULSE TIMER FOLLOWING DDLYC TIMER
28	DDLYH	7.0	No	DELAY AFTER PHASE D HAS ROW BEFORE HOLD TO STREAM 1
29	DHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING DDLYH TIMER
30	DTRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
31	DOVRH	60.0	No	HOLD OUTPUT OVERIDE
32	EFDLYC	5.0	No	DELAY AFTER PHASE F HAS ROW BEFORE CALL PULSE TO EAST CONTR.
33	EFPULC	2.0	No	PULSE TIMER FOLLOWING EFDLYC TIMER
34	EFDLYH	7.0	No	DELAY AFTER PHASE F HAS ROW BEFORE HOLD TO EAST CONTR.
35	EFHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING EFDLYH TIMER
36	EFTRMH	12.0	No	DELAY FOLLOWING TERMINATION OF HOLD
37	EFOVRH	60.0	No	HOLD OUTPUT OVERIDE
38	EEDLYC	5.0	No	DELAY AFTER PHASE E HAS ROW BEFORE CALL PULSE TOWEST CONTR.
39	EEPULC	2.0	No	PULSE TIMER FOLLOWING EEDLYC TIMER

Special conditioning timer data

Timer no.	Timer name	Duration	Fixed	Comment
40	EEDLYH	7.0	No	DELAY AFTER PHASE E HAS ROW BEFORE HOLD TO WEST CONTR.
41	EEHLDH	5.0	No	MINIMUM HOLD TIMER FOLLOWING EDDLYH TIMER
42	EETRMH	8.0	No	DELAY FOLLOWING TERMINATION OF HOLD
43	EEOVRH	60.0	No	HOLD OUTPUT OVERIDE
44	SPARE	0.0	No	NOT USED
45	SW3PUL	1.0	No	AUX 3 SWITCH PULSE TIMER - USED BY CONDITIONING
46	F2OVR	280.0	No	UTC F2 OVERIDE TIMER
47	F5OVR	280.0	No	UTC F5 OVERIDE TIMER
48	F2PUL	0.5	No	UTC F2 INHIBIT PULSE TIMER
49	F5PUL	0.5	No	UTC F2 INHIBIT PULSE TIMER
50	AHCPUL	2.0	No	AIN MOVA HURRY CALL PULSE TIMER
51	BHCPUL	2.0	No	BIN MOVA HURRY CALL PULSE TIMER
52	CHCPUL	2.0	No	CIN MOVA HURRY CALL PULSE TIMER
53	DHCPUL	2.0	No	DIN MOVA HURRY CALL PULSE TIMER
54	FHCPUL	2.0	No	FIN MOVA HURRY CALL PULSE TIMER
55	AHCINHB	180	No	AIN HURRYCALL INHIBIT TIMER
56	BHCINHB	180	No	BIN HURRYCALL INHIBIT TIMER
57	CHCINHB	180	No	CIN HURRYCALL INHIBIT TIMER
58	DHCINHB	180	No	DIN HURRYCALL INHIBIT TIMER
59	FHCINHB	180	No	FIN HURRYCALL INHIBIT TIMER

Ref No. M0188	Issue 2.04	Date 09/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

Special conditioning statements

Statement 7									
Comments CR1DLY timer expired and UTC mode still inactive starts CR1TOG and CR1DLY timers.									
If SCTEXPRD-CR1DLY And not UTCMODE-1									
Then	SCTSTART-CR1TOG	SCTSTART-CR1DLY							
Statement 8									
Comments MOVA INHIBIT/CLF INHIBIT SWITCH: VA BUTTON (SW4) SEE LATER STATEMENT FOR MOVA INHIBIT									
If MANIP-SW4									
Then	CLFINHIB-1	CLFINHIB-2							
Else	CLFALLOW-1	CLFALLOW-2							
Statement 9									
Comments CRB1 OUTPUT									
If	MSDMODE-1	Or	SHDMODE-1	Or	MFTMODE-1	Or	MANMODE-1	Or	STUMODE-1
Or	SCTRUNNG-CR1TOG	Or	MANIP-SW4	Or	SCFLAG-10	Or	FDET-W10MIN	Or	MANIP-SW5
Then	OUTPUTA-CRB1								
Else	OUTPUTN-CRB1								

Ref No. M0188	Issue 2.04	Date 09/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

Statement 13

And not SCTRUNNG-SW3PUL And not FDET-WRST
Then SCTSTART-CR2DUR
Else SCTSTOP-CR2DUR

		Statement 16
Comments	FLAG 10 ACTIVE LIGHTS AUX3 LED	

Then MPLEDON-AUX3 OUTPUTA-E10MIN

| Ref No. M0188 | Issue 2.04 | Date 09/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- | iOptima configuration form 34C

Special conditioning statements

If

| Ref No. M0188 | Issue 2.04 | Date 09/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

| Ref No. M0188 | Issue 2.04 | Date 09/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

Special conditioning statements

Ref No. M0188	Issue 2.04	Date 09/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

$\begin{array}{lcc}\text { If } & \text { PHASE-C } & \\ \text { Then } & \text { SCTSTART-CDLYC }\end{array}$

| Ref No. M0188 | Issue 2.04 | Date 09/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

| Ref No. M0188 | Issue 2.04 | Date 09/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

| Ref No. M0188 | Issue 2.04 | Date 09/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

Special conditioning statements

Ref No. M0188	Issue 2.04	Date 09/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

									Statement 69
Comments	EFTRMH TIMER RUNNING AND NOT PHASE F GREEN AND FLAG 5 SET								
If Not	SCTRUNNG-EFTRMH	And not	PHASE-F	And	SCFLAG-5				
Then	SCTSTART-EFTRMH								

		Statement 71
Comments	PHASE E GREEN STARTS EEDLYC TIMER AND EEDLYH TIMER	

$\begin{array}{lcl}\text { If } & \text { PHASE-E } & \\ \text { Then } & \text { SCTSTART-EEDLYC } & \text { SCTSTART-EEDLYH }\end{array}$

		Statement 73
Comments	EEPULC TIMER RUNNING SETS ESBCALE OUTPUT	

If SCTRUNNG-EEPULC
Then OUTPUTA-ESBCALE
Else OUTPUTN-ESBCALE

Ref No. M0188	Issue 2.04	Date 09/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

Special conditioning statements

Ref No. M0188	Issue 2.04	Date 09/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

Special conditioning statements

Ref No. M0188	Issue 2.04	Date 09/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

Special conditioning statements

| Ref No. M0188 | Issue 2.04 | Date 09/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

	Comments					
	If					
	Then					

Statement 99	
Comments PREVENT FORCE BITS OVERIDES: UTC-F5 ACTIVE START TIMER F5OVR.	
If	UTCBIT-F5
Then SC	SCTSTART-F5OVR
Else SC	SCTSTOP-F5OVR

Statement 102			
Comments PREVENT FORCE BITS OVERIDES:F2PUL TIMER ACTIVE SET UTC-F2 INACTIVE AND UTC-F3 ACTIVE If			
Then	UTCBITA-F3	UTCBITI-F2	
Else	UTCBITN-F3	UTCBITN-F2	
Statement 103			
Comments ${ }^{\text {PREVENT FORCE BITS OVERIDES:F2PUL TIMER ACTIVE SET UTC-F5 INACTIVE AND UTC-F8 ACTIVE }}$			
If SCTRUNNG-F5PUL			
Then	UTCBITA-F8	UTCBITI-F5	
Else	UTCBITN-F8	UTCBITN-F5	

Ref No. M0188	Issue 2.04	Date 09/02/2015	Configurator Version 3.0.0\#1004	iOptima configuration form 34C

Special conditioning statements

| Ref No. M0188 | Issue 2.04 | Date 09/02/2015 | Configurator Version 3.0.0\#1004 |
| :--- | :--- | :--- | :--- |\quad iOptima configuration form 34C

Red lamp monitoring data 1

Red lamp monitoring data 2

Stream based data						
Stream no.	Shutdown required	Red flt. extension	Single red lamp fault input name	Multiple red lamp fault input name	Inhibit stages	
1	Yes	0				
2	Yes	0				

Red lamp monitoring data 3

Second red failure phase data	
Phase Id	Inhibited phases
A	
B	
C	
D	
E	
F	
DA	
DB	

ILM data

Fault indications	
Auto clear red lamp warnings	Yes
Flash DFM for lamp conflict	No
Flash DFM for lamp failure	No
Unstable toroid indication (as lamp failure)	No

Phase	Lamp Types			Single fault	Multi faults	Failure indication output	Conflict indication output(s)
	Green	Amber	Red				
A	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
B	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
C	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
D	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
E	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	
F	ELV LED (3R)	ELV LED (3R)	ELV LED (3R)	1	3	LF	

Input No.	Input name	Source	Comment
0	F03	Virtual	NOT USED
1	F08	Virtual	NOT USED
0	F01	Parallel	MOVA STREAM 1 STAGE 1 FORCE
1	F02	Parallel	MOVA STREAM 1 STAGE 2 FORCE
2	F04	Parallel	MOVA STREAM 2 STAGE 1 FORCE
3	F05	Parallel	MOVA STREAM 2 STAGE 2 FORCE
4	F06	Parallel	MOVA STREAM 2 STAGE 3 FORCE
5	F07	Parallel	MOVA STREAM 2 STAGE 4 FORCE
6	*TO1	Parallel	MOVA TO BIT STREAM 1
7	*TO2	Parallel	MOVA TO BIT STREAM 2
8	*LSL1	Parallel	
9	*AQ2	Parallel	
10	*AIN3	Parallel	
11	*AIN4	Parallel	
12	*AX5	Parallel	
13	*AX6	Parallel	
14	*AX7	Parallel	
15	*ASL8A	Parallel	
16	*ASL8B	Parallel	
17	*ASL8C	Parallel	
18	*BIN10	Parallel	
19	*BIN11	Parallel	
20	*BIN12	Parallel	
21	*BX13	Parallel	
22	*BX14	Parallel	
23	*BX15	Parallel	
24	*BX16	Parallel	
25	*CIN17	Parallel	
26	*CIN18	Parallel	
27	*CIN19	Parallel	
28	*CX20	Parallel	
29	*CX21	Parallel	
30	* CX22	Parallel	
31	*CX23	Parallel	
32	*CSL24A	Parallel	
33	*CSL24B	Parallel	
34	*CSL24C	Parallel	
35	*CSL24D	Parallel	
36	*DIN26	Parallel	

Ref No. M0188
Issue 2.04
Date 09/02/2015 Configurator Version 3.0.0\#1004
iOptima configuration form 52

Input data

Input No.	Input name	Source	Comment
37	*DIN27	Parallel	
38	*DX28	Parallel	
39	*DX29	Parallel	
40	*DX30	Parallel	
41	*DX31	Parallel	
42	*SISPWR	Parallel	SIS POWER INPUT
43	*SISFLT	Parallel	SIS FAULT INPUT
44	*W10MIN	Parallel	LINKING FROM WEST CONTROLLER - WEST CONTROLLER CRB TIMED OUT
45	*WRST	Parallel	LINKING FROM WEST CONTROLLER - CRB RESET OPERATED AT WEST CONTROLLER
46	*MOVWST	Parallel	LINKING FROM WEST CONTROLLER - MOVA OPERATING ON BOTH STREAMS AT WEST CONTROLLER
47	TS	Parallel	TIME SYNCH INPUT FROM WEST SIDE CONTROLLER
48	*EIN32	Parallel	NEW
49	*EX33	Parallel	NEW
50	*EX34	Parallel	NEW
51	*ESL35	Parallel	NEW
52	*ESL36	Parallel	NEW
53	*FIN37	Parallel	NEW
54	*FIN38	Parallel	NEW
55	*FIN39	Parallel	NEW
56	*FX40	Parallel	NEW
57	*FX41	Parallel	NEW
58	*FX42	Parallel	NEW
59	*FX43	Parallel	NEW

Output data

Output Number	Destination	Output name	Invert state	Comment
0	Parallel	G1	Yes	MOVA STREAM 1 STAGE 1 CONFIRM
1	Parallel	G2	Yes	MOVA STREAM 1 STAGE 2 CONFIRM
2	Parallel	G4	Yes	MOVA STREAM 2 STAGE 1 CONFIRM
3	Parallel	G5	Yes	MOVA STREAM 2 STAGE 2 CONFIRM
4	Parallel	G6	Yes	MOVA STREAM 2 STAGE 3 CONFIRM
5	Parallel	G7	Yes	MOVA STREAM 2 STAGE 4 CONFIRM
6	Parallel	GC	Yes	
7	Parallel	GD	Yes	
8	Parallel	GE	Yes	
9	Parallel	GF	Yes	
10	Parallel	CRB1	Yes	MOVA CRB BIT STREAM 1
11	Parallel	CRB2	Yes	MOVA CRB BIT STREAM 2
12	Parallel	MOVA1	No	MOVA MODE ACTIVE STREAM 1
13	Parallel	MOVA2	No	MOVA MODE ACTIVE STREAM 2
16	Parallel	ASL8	No	BUFFERED COMBINED ASL8 LOOPS OUTPUT- CONNECT TO STREAM 1 MOVA DET 8
17	Parallel	CSL24	No	BUFFERED COMBINED CSL24 LOOPS OUTPUT - CONNECT TO STREAM 2 MOVA DET 24
18	Parallel	ST2D44C	No	STREAM 1 TO 2 LINKING
19	Parallel	ST2D45H	No	STREAM 1 TO 2 LINKING
20	Parallel	ST2D46C	No	STREAM 1 TO 2 LINKING
21	Parallel	ST2D47H	No	STREAM 1 TO 2 LINKING
22	Parallel	ST1A48C	No	STREAM 2 TO 1 LINKING
23	Parallel	ST1A49H	No	STREAM 2 TO 1 LINKING
24	Parallel	ST1B50C	No	STREAM 2 TO 1 LINKING
25	Parallel	ST1B51H	No	STREAM 2 TO 1 LINKING
26	Parallel	OP26	No	
27	Parallel	ESBHLDF	No	LINKING - TO WEST CONTROLLER
28	Parallel	ESBCALF	No	LINKING - TO WEST CONTROLLER
29	Parallel	ESBHLDE	No	LINKING - TO WEST CONTROLLER
30	Parallel	ESBCALE	No	LINKING - TO WEST CONTROLLER
31	Parallel	E10MIN	No	LINKING - TO WEST CONTROLLER CRB TIMER EXPIRED
32	Parallel	ERST	No	LINKING - TO WEST CONTROLLER CRB RESET
33	Parallel	MOVEST	No	LINKING - TO WEST CONTROLLER MOVA CONTROL ACTIVE BOTH STREAMS EAST
34	Parallel	LE	Yes	LAMPS EXTINGUISHED TO OMU
35	Parallel	LF	Yes	LAMP FAULT TO OMU
36	Parallel	SISPWR	No	SIS POWER TO OMU
37	Parallel	SISFLT	No	SIS FAULT TO OMU
38	Parallel	AHCAL56	No	AIN MOVA HURRYCALL MOVA DET 56
39	Parallel	BHCAL57	No	BIN MOVA HURRYCALL MOVA DET 57
40	Parallel	CHCAL58	No	CIN MOVA HURRYCALL MOVA DET 58

Ref No. M0188

Output data

Output Number	Destination	Output name	Invert state	Comment
41	Parallel	DHCAL59	No	DIN MOVA HURRYCALL MOVA DET 59
42	Parallel	FHCAL60	No	FIN MOVA HURRYCALL MOVA DET 60

Safety card 1	
Phase Drive cards	
Number	Fitted
1	Yes
2	Yes
3	Yes
4	No
5	No
6	No
7	No
8	No
9	No
10	No
11	No
12	No
13	No
14	No
15	No
16	No

IO Cards	
Number	Card Type
1	Handset
2	IO 16/16
3	IO 16/16
4	IO 16/16
5	IO 16/16
6	Not Fitted
7	Not Fitted
8	Not Fitted

Loop Detector Cards		
Number	Fitted	Detectors
1	No	-

Virtual IO data

Bit No.	Bit name	Invert	Active	
0	F03	False	False	
1	F08	False	False	

Administration

neral Specifications			
Customer Name Intersection/ General Description	URS CORPORATION (IM PROP)	Customer Order No.	
	$\begin{aligned} & \text { A5 / BIRCH COPPICE } \\ & \text { DEVELOPMENT } \\ & \text { TAMWORTH } \end{aligned}$	Controller/ Serial Number	E63476 Issue 6
		S.T.S. /EM Number	
Controller	© New \bigcirc Modification	Equipment	SIEMENS TRAFFIC CONTROLS
Area Specifications/ Customer Drawings	47439-003/5002/T/RO/0109	Slot Cutting by	
Specification Section		Civil Works by	
Contract/Tender Ref:		Customer's Engineer	Mark Stapley
Quotation No.		Telephone Number	01234373641
Works Order No.	199069		

$\left[\begin{array}{ll}\text { ST900/ST750 Series Cabinet Options } & \text { Kit Type Options } \\ \text { Cabinet/Rack } & \text { Cuckoo Options }\end{array}\right.$

Streams, Stages, Phases Control

-Select Object to Add/Delete/Insert

Facilities/Modes Enabled and Mode Priority Levels

$\left[\begin{array}{llll}\text { Facilities } & & \\ \checkmark \text { Manual Control } & \square \text { Part Time } & \square \text { London IMU } & \square \text { Pelican/Puffin/Toucan Facilities } \\ \square \text { Manual Step On Mode } & \square \text { Master Time Clock } & & \square \text { Standalone Manual } \\ \square \text { CLF (Base Time) } & \square \text { RED Lamp Monitoring } & \square \text { Extend All Red } & \square \text { Holiday Clock } \\ \square \text { CLF (non-Base Time) } & \square \text { Lamp Monitoring } & \square \text { Fail To Hardware Flashing } & \square \text { Fail to Part Time } \\ \square \text { UTC Facility } & \square \text { Linked Fixed Time } & \square \text { Ripple Change } & \square \text { Serial MOVA } \\ \square \text { Hurry Call Mode } & \square \text { FT To Current MAX } & \square \text { Non-UK } & \square \\ \square \text { Priority } & \square \text { Speed Measurement } & \square \text { Download To Level 3 } & \square \text { Free-Standing OTU } \\ \square \text { Emergency Vehicles } & & \square \text { Integral OTU } \\ \hline 15 & \text { Starting Intergreen } & & \\ \hline\end{array}\right.$

Mode Priority	
PRIORITY	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$
Part Time	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Emergency Vehicle	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Hurry Call	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Selected Man Cntrl	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
UTC	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Manual Step On	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Selected FT or VA or CLF	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Cableless Link (CLF)	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Priority Vehicle	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Vehicle Actuated	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Fixed Time	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Configuration Complexity ○ Low Lo Medium\quad O High\bigcirc Maximum		
standard.8DF		
Defaut PROM data file		

Phases in Stages

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Stages in Streams

$\left.\begin{array}{lclllllll}\text { Stream Data- } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \text { Phase or Stage to revert to in } \\ \text { absence of demands/extensions } & 1 & & & & & & & \\ \text { Startup Stage } & 1 & & & & & & & \\ \text { Part-Time switch off stage } & & & & & & & & \\ \text { Standalone Pedestrian } & \square & \square\end{array}\right]$

NB : For a Stand-Alone Stream, the reversion must be to All Red stage or
Traffic stage/phase to meet the relevant standard or specification.

Stages

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH
Phase Type and Conditions

Phase Type and Conditions					
	\bigcirc Phases Ato P	\bigcirc			
Phase	Title	Type	$\begin{aligned} & \text { App. } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Term. } \\ & \text { Type } \end{aligned}$	Assoc.
A	A5 NORTHWEST	O-UK Trafic	0		
B	A5 SOUTHEAST	O-UK Trafic	0	0	
C	45 RIGHT TURN	O-UK Tratic	0	0 -	
D	BIRCH COPPICE LEFT TURN	O-UK Trafic	0	0	
E	BIRCH COPPICE RIGHTURN	O-UK Trafic	0	0	
F	TOUCAN CROSSING SOUTHEAST BOUND	3-UK Near Side Pedestrian	0	0	
G	TOUCAN CROSSIING NORTHWEST BOUND	3 - UK Near Side Pedestrian	0	0	
H	FARMERS ACCESS	O-UK Trafic	0	$0 \cdot 1$	
-	A5 SOUTHEAST TOUCAN APPROACH	O-UK Trafic	0	0	
J	DEPOT ACCESS	O-UK Trafic	0	$0 \cdot 1$	
K	DUMMY ALL RED	2-UK GreenAriow	0		

[^0]2) Term Types: $0=$ Term's at end of stage, $1=$ Term's when Assoc phase gains R.O.W, $2=$ Term's when Assoc phase loses R.O.W.
3) The H/W Fail Flash fields are for information only on all but ST900ELV Controllers. For other controllers, physical switches or links (etc.) select which aspects flash and these need to be set up manually.

Opposing and Conflicting Phases

To Phase

A	A	B	C	D	E	F	G	H	I	J	K
		0	0	0	Co	0	0	Co	0	Co	0
B	0		Co	Co	Co	0	Co	Co	0	Co	0
C	0	Co		0	Co	0	0	Co	0	Co	0
D	0	Co	0		0	0	0	Co	0	Co	0
E	Co	Co	Co	0		0	0	Co	0	Co	0
F	0	0	0	0	0		0	0	Co	0	0
G	0	Co	0	0	0	0		0	0	0	0
H	Co	Co	Co	Co	Co	0	0		0	Co	0
1	0	0	0	0	0	Co	0	0		0	0
J	Co	Co	Co	Co	Co	0	0	Co	0		0
K	0	0	0	0	0	0	0	0	0	0	

Phase Minimums, Maximums, Extensions, Ped. Leaving periods

Phase Intergreen Times

NB: On a Stand Alone Pelican/Toucan/Puffin Stream the Intergreens between Pedestrian and Traffic Phases are controlled by the timings (PBT, PIT, CMX, CDY, CRD and PAR), therefore 0 should be entered for the appropriate intergreen times in grid below

	A	B	C	D	E	F	G	H	1	J	K
A					7			7		8	3
B			7	11	9		7	13		11	3
C		8			7			7		7	3
D		6						8		6	3
E	6	6	6					6		6	3
F									0		3
G		0									3
H	7	5	6	5	7					9	3
1						5					3
J	5	5	6	5	5			7			3
K	2	2	2	2	2	2	2	2	2	2	

Handset Intergreen Limits

HIGH 17

	A	B	C	D	E	F	G	H	I	J	K
A					5			5		5	3
B			5	7	5		5	7		7	3
C		5			5			5		5	3
D		5						5		5	3
E	5	5	5					5		5	3
F											3
G											3
H	5	5	5	5	5					7	3
1						5					3
J	5	5	5	5	5			5			3
K	2	2	2	2	2	2	2	2	2	2	

Phase Timing Handset Ranges

Phase - VA Demand and Extend Definitions

Phase Internal/Revertive Demands

Phase - OnCrossing and Kerbside Detector Definitions

Stream - Pelican/Puffin/Toucan Times

Phase - Pelican Puffin and Toucan Times

IO and Link - Pelican/Puffin/Toucan Times

Streams	0	1	2	3	4	5	6	7
-Computer Control								
PV								
Window Time UIE								
Local Link								
PV1								
Link Delay Time LKD								
Link Window Time LKW								
Link Override Time LKO								

Kerbside Mat Test
Output \square

Stage Internal Demands / Ped. Window Times

Phase delays

-Phase delays									
(-) Ph	Delays	\bigcirc Phase Delays 30-59			\bigcirc Phase Delays 60-89			O Phase Delays 90-119	
No.	Delay Phase	On Change from Stage	To Stage	$\begin{aligned} & \text { By (X) } \\ & \text { Seconds } \end{aligned}$	No.	Delay Phase	On Change from Stage	To Stage	$\begin{aligned} & \text { By (X) } \\ & \text { Seconds } \end{aligned}$
0	1	1	7	6	15				0
1				0	16				0
2				0	17				0
3				0	18				0
4				0	19				0
5				0	20				0
6				0	21				0
7				0	22				0
8				0	23				0
9				0	24				0
10				0	25				0
11				0	26				0
12				0	27				0
13				0	28				0
14				0	29				0

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH
Fixed Time

	A	B	C	D	E	F	G	H	।	J	K	L	M	N	0	P
Demand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\square					\square	\square	\square	\square
Extend	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\square	\square								,
Demand		R	S	T	$\stackrel{\cup}{\square}$		W		Y	7					E2	$\begin{aligned} & \text { F2 } \\ & \square \end{aligned}$
Extend	\square	\square	\square													\square

CLF - Base Time

CLF - Demand Dependent Moves

Notes:

If no data is entered for a stage then a demand for any phases in that stage will be considered.
The data specified on this screen will also change the screen CLF - Demands to Consider with Demand Dependent Stage Moves.

UTC General Data

Integral OTU Address
2 Number of Control Words
2 Number of Reply WordsController to respond to TC bit.Introduction of UTC to be disabled by Priority Mode

UTC Control and Reply Data Format

UTC Stage and Modes Data Definitions

Stage	Force Bit	Green Confirm Bit	Demand Confirm Bit	Stage	Force Bit	Green Confirm Bit	Demand Confirm Bit	$\left[\begin{array}{l}\text { Mode Data Definitions } \\ \text { Manual Mode Operative: }\end{array}\right.$
0	F8	G8		16				G1/G2 \square RR
1	F1	G1		17				Manual Mode Selected:
2	F2	G2		18				$\square \mathrm{G} 1 / \mathrm{G} 2 \quad \square \mathrm{RR} \quad \square$
3	F3	G3		19				No Lamp Power, or Lamps Off due to RLM
4	F4	G4		20				$\square \mathrm{G1} / \mathrm{G} 2 \quad \square \quad \square$
5	F5	G5		21				
6	F6	G6		22				Detector Fault:
7	F7	G7		23				$\square \quad \square$
8				24				Normal NOT selected on the
9				25				Manual Panel: G1/G2 RR \square
10				26				
11				27				RR Button Selected:
12				28				$\square \mathrm{G} 1 / \mathrm{G} 2 \quad \square \mathrm{RR} \quad \square$
13				29				If UTC Reply Confirms are required
14				30				for a Controller Fault (CF) OR for separate MC and RR replies,
15				31				Conditioning must be used.

UTC Demand Dependent Forces

Notes:

If no data is entered for a stage then a demand for any phases in that stage will be considered. The data specified on this screen will also change the screen CLF - Demands to Consider with Demand Dependent Stage Moves.

Serial MOVA

MTC - Time Switch Parameters

MTC - Time Switch Parameters Array

Master Time Clock - Day Type

LMU - General

LMU - Sensors

LMU - Sensors											
-On-Board Sensors \longrightarrow On-Board Sensors								-External Sensors			
Sensorl Phase	Sensor Type	Bulb Watts	$\begin{gathered} \text { NLM } \\ \text { CIS } \end{gathered}$	Sensorl Phase	Sensor Type	Bulb Watts	NLM	Sensorl Pin	Drive	Sensor Type	Bulb Watts
$1 \backslash \mathrm{~A}$	As Seq.	40	\square	$17 \backslash Q$			\square	$33 \backslash$ b14		Reg. Sign	7
$2 \backslash B$	As Seq.	40	\square	$18 \backslash \mathrm{R}$			\square	$34 \backslash z 16$		Reg. Sign	7
$3 \backslash \mathrm{C}$	As Seq.	40	\square	$19 \backslash$ S			\square	$35 \backslash z 14$		Reg. Sign	7
$4 \backslash$ D	As Seq.	40	\square	$20 \backslash T$			\square	$36 \backslash z 12$		Reg. Sign	7
$5 \backslash \mathrm{E}$	As Seq.	40	\square	$21 \backslash U$			\square	37 \b14		Reg. Sign	7
$6 \backslash \mathrm{~F}$	None	40	\square	22 \V			\square	$38 \backslash z 16$		Reg. Sign	7
$7 \backslash \mathrm{G}$	None	40	\square	23 \W			\square	$39 \ z 14$		Reg. Sign	7
8 1 H	As Seq.	40	\square	$24 \backslash X$			\square	$40 \backslash z 12$		Reg. Sign	7
$9 \backslash 1$	As Seq.	40	\square	$25 \ Y$			\square	$41 \backslash$ b14			
$10 \backslash J$	As Seq.	40	\square	$26 \backslash Z$			\square	$42 \backslash z 16$			
11 \K	As Seq.	40	\square	27 \A2			\square	$43 \backslash z 14$			
12 L	As Seq.	40	\square	28 \B2			\square	$44 \backslash z 12$			
$13 \backslash \mathrm{M}$	As Seq.	40	\square	291 C2			\square	$45 \backslash$ b14			
$14 \backslash \mathrm{~N}$	As Seq.	40	\square	$30 \backslash$ D2			\square	$46 \backslash z 16$			
$15 \backslash 0$	As Seq.	40	\square	31 \E2			\square	$47 \backslash z 14$			
$16 \backslash P$	As Seq.	40	\square	$32 \$ F2 & & & \square	$48 \backslash z 12$						

RLM Additional Intergreens

Phases Delayed

RLM Phase Inhibits

Phases Inhibited/Blacked-out

Hurry Call

Manual Panel

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Conditioning

```
; MANUAL PANEL
;===============
;
(MODEO EQL<6>)=MIL17 ; WHEN MOVA IS ACTIVE LIGHT HIGHER PRIORITY LED.
(MODEO EQL<5>)=MIL07 ; HURRY CALL ACTIVE LIGHT HURRY CALL LED.
AMB32+MAUXSW1=MIT22
MAUXSW1=+MOVADET32
;
; MOVA
;=
NOT (PHASEA)=PA ; PHASE A ACTIVE REPLY PA
NOT (PHASEB)=PB ; PHASE B ACTIVE REPLY PB
NOT (PHASED)=PD
PRSLMPAF=+MOVADET22 ; WAIT LAMP CONFIRMS FOR PHASE F
PRSLMPAG=+MOVADET23
;
; VA HURRY CALL
;================
(MODEO EQL<2>).(AMB32+MAUXSW1)=SCRT1 ; DEMAND HURRY CALL ONLY IN VA FROM P/B OR MANUAL PANNEL
;
; MOVA CRB
;===========
;
IFT NOT (MODEO EQL<6>).NOT (CNDTMAO).SSNRM THN ; NOT IN MOVA MODE AND IN NORMAL RUN TIMER
    RUN<0>
END
IFT CNDTERO+((PRVMODO EQL<6>).NOT(MODEO EQL<6>)) THN ; START TIMER WHEN MOVA DROPS OFF OR TIMER TERMINATES
    LOD<10> 1SCRTCH0
    TRUE=2SCRT1
END ; START A 2 SEC INTERNAL TIMER FOR CRB TOGGLE
NOT(1SCRTST0 EQL<0>)=.2SCRT1 ; RESET SCRT BIT WHEN COUNT REACHES ZERO
IFT (1SCRTSTO GRT<0>) THN ; DECREMENT COUNT EVERY 2OOMS UNTIL ZERO
    DEC 1SCRTCH0
END
SSNRM.(NOT (2SCRT1)+(MODEO EQL<6>))=MOVACRB ; WHEN TIMER TERMINATES TOGGLE CRB
; VA STAGE MOVEMENTS
;=
(MODE0 EQL<2>).NOT(LCPHD+UCPHD+LCST3+UCST3)=PRVST3
(MODE0 EQL<2>).NOT (LCPHE+UCPHE+LCST4+UCST4)=PRVST4
(MODE0 EQL<2>).NOT(LCPHH+UCPHH+LCST5+UCST5) =PRVST5
(MODE0 EQL<2>).NOT(LCPHJ+UCPHJ+LCST6+UCST6)=PRVST6
(MODEO EQL<2>).NOT(LCPHF+UCPHF+PEDBUTF+LCST7+UCST7)=PRVST7
```


Special Conditioning Timers

Special Conditioning Timers

Timers		
O-31	$\bigcirc 32-63$	$\bigcirc 64-95$

No	Value	Min	Max	200 ms	Description	No	Value	Min	Max	200 ms	Description
0	120	0	255	\square	CRB TOGGLE	16		0	255	\square	
1		0	255	\square		17		0	255	\square	
2		0	255	\square		18		0	255	\square	
3		0	255	\square		19		0	255	\square	
4		0	255			20		0	255	\square	
5		0	255	\square		21		0	255	\square	
6		0	255	\square		22		0	255	\square	
7		0	255			23		0	255	\square	
8		0	255	\square		24		0	255	\square	
9		0	255	\square		25		0	255	\square	
10		0	255	\square		26		0	255	\square	
11		0	255	\square		27		0	255	\square	
12		0	255			28		0	255	\square	
13		0	255	\square		29		0	255	\square	
14		0	255	\square		30		0	255	\square	
15		0	255	\square		31		0	255	\square	

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Instructions

E63476							
Board	Position	Skt	Port	Type I or O	Line	Cable	Block
CPU	A	X3I	0	I	00-07	101	1TBG
CPU	A	X3I	1	I	08-15		1 TBH
CPU	A	X30	11	0	88-91	105	1TBX
IO1	B	B	2	I	$16-23$	103	1 TBJ
IO1	B	E	4	0	$32-39$		1TBK
IO1	B	C	3	I	24-31	103	1TBL
IO1	B	D	5	0	40-47		1 TBM
IO2	C	B	6	I	48-55	103	1TBN
IO2	C	E	8	0	64-71		1 TBP
IO2	C	C	7	I	$56-63$	103	1 1BR
IO2	C	D	9	0	$72-79$		1 TBS

The socket X 3 on the CPU pcb is the double stacked one
X3I = Inner (nearest the board)
$\mathrm{X} 30=$ Outer

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Instructions

Note 1:

Please refer to special
instruction pages for additional information on items marked with an '*'.

Special Instructions

ST800 Controller Items List sheet 2 (*I*L*)


```
Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH
```


Special Instructions

```
Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH
```


Special Instructions

Special Instructions

DETECTOR EQUIPMENT SHEET (*I*L*)						
\|Item	Drawing Number	DESCRIPTION	\| QTY	TOT		REMARKS
\| 1	$667 / 1 / 20690 / 000$	\| Detector 11 inch detector rack kit	1 \|			
\| $21667 / 1 / 20690 / 001$	\| Detector 19 inch detector rack kit	1				
\| $31667 / 1 / 17705 / 011$	\| Detector Beehive kit (excl Pedestal)	1 \|				
\| $41667 / 2 / 01999 / 000$	\|Pedestal (Metric) D Detr. Housing	1 \|				
I $51667 / 1 / 17212 / 000$	\| Detector L bracket kit	1				
$61667 / 1 / 22447 / 000$	\| Detector Mounting Kit E.F.U. (T500)	1 \|				
$71667 / 1 / 22470 / 000$	\| Detector Frame Assy (T500)	1				
$81667 / 1 / 15990 / 002$	\| Detector double backplane kit	1 \|				
$91667 / 1 / 15990 / 003$	\| Detector single backplane kit	7				
10 \|667/1/15990/004	\| Detector logic backplane kit	1 \|				
\| 11		\|	1 \|			
12 \|667/1/27663/000	\|Siemens STR4 (4 Channel) loop detector	7				
13 \|667/1/21029/001	148 V WAIT SUPPLY KIT	6				
14 \|667/1/20292/008	124 V AGD SUPPLY KIT	13				
15 \|667/1/03887/000	\| Detector Cableform (1 per $2 \mathrm{~B} / \mathrm{Planes}$)	,				
16 \|667/1/15854/000	\| Detector Cable termination kit	5				
\| 17			1 \|			
\| 18	667/1/15991/000	\| Mod Kit Regulator PSU 1.5A 21-38V	1 \|			
\| 19	667/1/15991/001	\| Mod Kit Regulator PSU 0.5A 21-48V	1 \|			
\| 20		,	1			
21 \|	\|	$1 \quad 1$				
22 1667/7/20360/002	\| Microsense Detr. Board 2 Channel	1 \| 1	\|Eng. to supply			
23 1667/7/20360/004	\|Microsense Detr. Board 4 Channel	1 \|		\|Eng. to supply		
$241667 / 7 / 20368 / 000$	\| Microsense Rack 3Ux19"	$1 \mid 1$	\|Eng. to supply			
$251667 / 7 / 20365 / 000$	\| Microsense 20-Way Backplane (Std)	11	\|Eng. to supply			
26 1667/7/20366/000	\| Microsense 20-Way Logic Backplane	1 \|				
27 1667/7/20369/000	\| Microsense Card Frame Guides (Pr.)	11	\|Eng. to supply			
\| 28			1 \| 1			
29 1667/7/20361/002	\| Microsense 2 Channel U/D Logic	1 \|				
30 1667/7/20361/004	\| Microsense 4 Channel U/D Logic	1 \|				
$31 / 667 / 7 / 20362 / 000$	\| Microsense Count Logic $\mathrm{N}, \mathrm{N}+1, \mathrm{U} / \mathrm{D}$ \& DFM	1 \|				
32 1667/7/20363/000	\| Microsense Queue Logic with DFM	1 \| 1	\|Eng. to supply			
$331667 / 7 / 20364 / 000$	\| Microsense Bus Detector 2-Channel	$1 \quad 1$	\|Eng. to supply			
\| 34		\|	$1 \quad 1$			
\| 35		\| ${ }^{\text {a }}$	$1 \quad 1$			
\| $361667 / 7 / 20377 / 000$	\| Microsense MIX 3-1-R-24 I/R detector	$1 \quad 1$	\| Nearside mounting			
\| $371667 / 7 / 20377 / 001$	\| Microsense MIX 3-2-R-24 I/R detector	1 \| 1	\|Offside mounting			
\| 38 1667/7/20378/000	\| Short fixing bracket	1 \| 1				
\| $391667 / 7 / 20379 / 000$	\|Sighting Hood for MIX detectors	11	\|Eng. to supply			
\| 40	667/7/20380/000	\| Handbook for MIX detectors	1 \|	\|Eng. to supply		
		-				

[^1]Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Instructions

SIEMENS SINGLE INTERNAL DETECTOR BACKPLANE INSTRUCTIONS SHEET
 (BACKPLANE

| Note 1 If more than one backplane
power Linking between B/Planes to be made using the Red, Black Pink and White from 667/1/03887/002

Note 2 Use the detector termination kit (667/1/15854/000) to do the intermediate wiring.

Note 3 Ensure that the correct colour wires are used for the intermediate wiring.

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Instructions

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Instructions

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Instructions

SIEMENS SINGLE INTERNAL DETECTOR BACKPLANE INSTRUCTIONS SHEET (BACKPLANE 4)

[Template - Internal intermediate Detectors.txt iss 1.0]

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Instructions

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Instructions

Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH

Special Instructions

SIEMENS SINGLE INTERNAL DETECTOR BACKPLANE INSTRUCTIONS SHEET (BACKPLANE 7)

| Note 1 If more than one backplane
power Linking between B/Planes to be made using the Red, Black Pink and White from 667/1/03887/002

Note 2 Use the detector termination kit (667/1/15854/000) to do the intermediate wiring.

Note 3 Ensure that the correct colour wires are used for the intermediate wiring.

```
Works Order : 199069
EM Number : E63476
Engineer : E DUFFY / S DEAKIN
Intersection : A5 / BIRCH COPPICE DEVELOPMENT TAMWORTH
```


Special Instructions

Input/Output

Input/Output

Input/Output

Input/Output

Input/Output

Aspect Drives

-Aspect Drives															
(-A-L	$\bigcirc M-X$	$\bigcirc Y$													
Phase Driver Card 1- Used For Term Term Block No				$\left[\begin{array}{rll}\text { Phase Driver Card 1- } & & \\ \text { Used For } & \text { Term } & \text { Term } \\ & \text { Block } & \text { No }\end{array}\right.$				-Phase Driver Card 2-							
					Used For	Term Block	$\begin{aligned} & \text { Term } \\ & \text { No } \end{aligned}$								
A - Red	Phase	1TBA	1					E-Red	Phase	1 1BB	1	I - Red	Phase	1 TBC	1
A - Amber	Phase	1TBA	2	E- Amber	Phase	1 TBB	2	I-Amber	Phase	1 TBC	2				
A - Green	Phase	1TBA	3	E - Green	Phase	1 1BB	3	I- Green	Phase	1 TBC	3				
B - Red	Phase	1TBA	4	F-Red	Phase	1TBB	4	J - Red	Phase	1 TBC	4				
B - Amber	Phase	1TBA	5	F - Amber	Phase	1 TBB	5	J - Amber	Phase	1 TBC	5				
B - Green	Phase	1TBA	6	F-Green	Phase	1TBB	6	J - Green	Phase	1 TBC	6				
C-Red	Phase	1TBA	7	G - Red	Phase	1 TBB	7	K - Red							
C - Amber	Phase	1TBA	8	G - Amber	Phase	1 TBB	8	K - Amber							
C- Green	Phase	1TBA	9	G - Green	Phase	1TBB	9	K - Green							
D - Red	Phase	1TBA	10	H-Red	Phase	1 TBB	10	L-Red							
D - Amber	Phase	1TBA	11	H-Amber	Phase	1 TBB	11	L - Amber							
D - Green	Phase	1TBA	12	H-Green	Phase	1TBB	12	L - Green							

I/O - Group DFM Timings

Index

General Junction Data

1.1 Administration

1.2 Streams, Stages, Phases Control
1.3 Facilities/Modes Enabled and Mode Priority Levels
1.4 Phases in Stages
1.5 Stages in Streams

Phases
2.1 Phase Type and Conditions
2.2 Opposing and Conflicting Phases
2.3 Timings
2.3.1 Phase Minimums, Maximums, Extensions, Ped. Leaving periods
2.3.2 Phase Intergreen Times
2.3.3 Handset Intergreen Limits
2.3.4 Phase Timing Handset Ranges
2.4 Phase - VA Demand and Extend Definitions
2.5 Phase Internal/Revertive Demands
2.6 Pelicans, Puffins and Toucans
2.6.1 Phase - OnCrossing and Kerbside Detector Definitions
2.6.2 Stream - Pelican/Puffin/Toucan Times
2.6.3 Phase - Pelican Puffin and Toucan Times
2.6.4 IO and Link - Pelican/Puffin/Toucan Times

Streams and Stages
3.1 Stage - Prohibited, Alternative, Ignored Moves (No configuration data to print)
3.2 Stage Internal Demands / Ped. Window Times
3.3 Phase delays

Modes and Facilites - Detailed
4.1 Fixed Time
4.2 Cableless Linking
4.2.1 CLF - Plan(s) (No configuration data to print)
4.2.2 CLF - Base Time
4.2.3 CLF - Demand Dependent Moves
4.3 Urban Traffic Control
4.3.1 UTC General Data
4.3.2 UTC Control and Reply Data Format
4.3.3 UTC Data Definitions
4.3.3.1 UTC Phase Demand and Extend Definitions (No configuration data to print)
4.3.3.2 UTC Stage and Modes Data Definitions
4.3.3.3 UTC Demand Dependent Forces
4.3.4 Serial MOVA
4.4 Master Time Clock
4.4.1 MTC - Time Switch Parameters
4.4.2 MTC - Time Switch Parameters Array
4.4.3 Master Time Clock - Day Type
4.4.4 Master Time Clock - Time Table
4.5 Integral Lamp Monitoring
4.5.1 LMU - General
4.5.2 LMU - Sensors
4.5.3 RLM Additional Intergreens
4.5.4 RLM Phase Inhibits
4.6 Hurry Call
4.7 Manual
4.7.1 Manual Panel
4.7.2 Manual Mode - Optional Phases Appearance (No configuration data to print)

Conditioning Data
5.1 Special Conditioning
5.2 Special Conditioning Timers
5.3 Fault Log Flags (No configuration data to print)

Special Instructions
I/O
7.1 Call Cancel (No configuration data to print)
7.2 Input/Output
7.3 Aspect Drives
7.4 I/O - Group DFM Timings

Project data

Project	A5 Hall End Lane 351570
Program date	29-11-2016
Version	1
Programmer	M. Broadhurst
Country	UK
City	Dordon
Street1	A5 Hall End Farm
Street2	
Controller type	1
Controller board	EC2 16 Mb RAM
12 NC	0
Serial number	0
Report created at	$12 / 19 / 2016$ 2:57 PM
Database filename (.cpf)	$604 _351570 _$A5_Hall_End_Farm.cpf
Configurator version	11.1 .0 .0

Configuration Notes

FACILITIES MODES AND PRIORITIES

FACILITIES

Facility	Enabled
Manual Control	Yes
Manual Step On Mode	No
CLF	Yes
UTC Facility	Yes
Hurry Call Mode	No
Priority	No
MOVA via UTC TO bits	Yes
MOVA M-inputs / PSVP	No

Hurry call (high priority) options

| Use hurry call (high priority) mode for all red moves: | Yes |
| :--- | :--- | :--- |
| Part Time shutdown HC priority movements required: | No |

MODES AND PRIORITY

| Mode | PRIO | Dem. set leave |
| :--- | :---: | :---: | :---: |
| Hurry call (high priority) | 1 | - |
| Urban Traffic Control (UTC) | - | |
| Hurry call (std priority) | - | - |
| Manual control | - | - |
| Cableless linking facility (CLF) | - | - |
| Vehicle actuated (VA) | - | Start-up demand set |
| Simple fix time (FT) | - | - |
| Public service vehicle priority | - | - |
| Selected cableless linking | - | - |
| Selected vehicle actuated | - | - |
| Selected fix time | - | - |

Revertive Demand Sets

Phase	Type	RDC	Start-up	2	3	4	5	6	7	8
A	802 T: vehicle	A	Yes	No						
B	802 T: vehicle	B	Yes	No						
C	802 T: vehicle	C	Yes	No						
D	802 T: vehicle	D	Yes	No						
E	802 T: vehicle	E	Yes	No						
F	812 TN: toucan near side	-	Yes	No						
G	812 TN: toucan near side	-	Yes	No						
H	$812 \mathrm{TN}:$ toucan near side	-	Yes	No						
I	812 TN: toucan near side	-	Yes	No						
J	812 TN : toucan near side	-	Yes	No						

STREAMS AND STAGES

STREAM

ID	Name	Type
1	STREAM1	Junction

STAGE

ID	Description	Stream No.	Demands AFTER Min Exp.	Demands BEFORE Min Exp.	Ripple Change	Startup stage	Arterial reversion stage	Switch off stage	All Red stage
1	STAGE1	1	No	Yes	No	Yes	Yes	Yes	No
2	STAGE2	1	No	Yes	No	No	No	No	No
3	STAGE3	1	No	Yes	No	No	No	No	No
4	STAGE4	1	No	Yes	No	No	No	No	No
5	STAGE5	1	No	Yes	No	No	No	No	No
6	STAGE 6	1	No	Yes	No	No	No	No	No
7	STAGE7	1	No	Yes	No	No	No	No	Yes

Phases in stages

	A	B	C	D	E	F	G	H	I	J
1	x	x	-	-	-	x	x	-	-	-
2	x	-	x	-	-	x	X	-	x	-
3	x	-	-	X	-	-	-	x	x	-
4	X	-	X	X	-	-	-	-	x	-
5	-	-	-	X	X	-	-	X	x	-
6	-	X	-	-	-	X	X	-	-	X
7	-	-	-	-	-	-	-	-	-	-

PHASES

Types

Phase	Site Phase	Description	Type	Associated Phase
A	A	A5 Eastbound	802 T : vehicle	-
B	B	A5 Westbound	$802 \mathrm{~T}:$ vehicle	-
C	C	A5 Eastbound RT	802 T: vehicle	-
D	D	Hall Farm LT	$802 \mathrm{~T}:$ vehicle	-
E	E	Hall Farm RT	802 T: vehicle	-
F	F	Peds over Hall Farm LT	812 TN : toucan near side	-
G	G	Peds over Hall Farm RT	$812 \mathrm{TN}:$ toucan near side	-
H	H	Peds over Hall Farm Entry	812 TN : toucan near side	-
I	I	Peds over A5 Westbound	812 TN: toucan near side	-
J	J	Peds over A5 Eastbound	812 TN: toucan near side	-

CONDITIONS

Phase	Tactile Interlock	Appearance type	Termination type
A	No	Always	At end of stage
B	No	Always	At end of stage
C	No	Always	At end of stage
D	No	Always	At end of stage
E	No	Al ways	end of stage
F	No	Demand before interstage	When minimum timer expires
G	No	Demand before interstage	When minimum timer expires
H	No	Demand before interstage	When minimum timer expires
I	No	Demand before interstage	When minimum timer expires
J	Demand before interstage		

TIMINGS

Phase	Type	Min green	Min red	Start Amber	Amber	$\begin{gathered} \text { Ped Period } \\ V \end{gathered}$	Ped Period VI	Ped Period VII	Ped Period VIII	Pre-time max
A	802 T : vehicle	7	1	2	3					No
B	802 T : vehicle	7	1	2	3					No
C	802 T : vehicle	7	1	2	3					No
D	802 T: vehicle	7	1	2	3					No
E	802 T : vehicle	7	1	2	3					No
F	812 TN: toucan near side	6	1			3	10	1	3	No
G	812 TN: toucan near side	6	1			3	10	1	3	No
H	812 TN: toucan near side	6	1			3	10	1	3	No
I	812 TN: toucan near side	6	1			3	10	1	3	No
J	812 TN: toucan near side	6	1			3	10	1	3	No

Note: Use of zero second blackout Ped Perod 5 on Type 814 PD: is not current DfT policy and should be discouraged
PHASE GREEN TIMING RANGES

PHASE	MIN Lower Limit	MIN Upper Limit	MAX Lower Limit	MAX Upper Limit
A	3	30	0	
B	3	30	0	
C	3	30	0	
D	3	30	0	120
E	3	30	0	120
F	4	9	0	
G	4	9	0	
H	4	9	0	
I	4	9	0	0
J	4		0	

PHASE TIMING SETS

Regular maximums

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
A	40	30	50	
\mathbf{B}	40	30	50	
\mathbf{C}	20	20	20	
\mathbf{D}	20	15	15	15
\mathbf{E}	15	15	15	10
\mathbf{F}				15
\mathbf{G}				
\mathbf{H}				
\mathbf{I}				
\mathbf{J}				

Alternative maximums

		1		
A		2	3	
B				
C				
D				
E				
F				
G				
H				
I				
J				

Variable blackout/red periods

	1			
A			3	4
\mathbf{B}				
\mathbf{C}				
\mathbf{D}				
\mathbf{E}				
F				
\mathbf{G}				
\mathbf{H}				
\mathbf{I}				
\mathbf{J}				

Minimum green

	1	2	3	
\mathbf{A}				4
\mathbf{B}				
\mathbf{C}				
\mathbf{D}				
\mathbf{E}				
\mathbf{F}				
\mathbf{G}				
\mathbf{H}				
\mathbf{I}				
\mathbf{J}				

PSVP inhibition times

	1	2	3	4
A				
B				
C				
\mathbf{D}				

	1	2	3	4
\mathbf{E}				
F				
\mathbf{G}				
\mathbf{H}				
\mathbf{I}				
\mathbf{J}				

PSVP maximum green times

	1		2	3
A				4
\mathbf{B}				
C				
\mathbf{D}				
E				
F				
\mathbf{G}				
\mathbf{H}				
\mathbf{I}				
\mathbf{J}				

PHASE MATRICES

Settings

Starting intergreen	Handset maximum	Flashing Amber	0
9	30	0	
Handset Int Offset	Default RLM Int		
0	2		

Opposing and conflicting

	A	B	C	D	E	F	G	H	I	J
A	-	-	-	-	C	-	-	-	-	C
B	-	-	C	C	C	-	-	C	C	-
C	-	C	-	-	C	-	-	C	-	-
D	-	C	-	-	-	C	-	-	-	-
E	C	C	C	-	-	-	C	-	-	C
F	-	-	-	C	-	-	-	-	-	-
G	-	-	-	-	C	-	-	-	-	-
H	-	C	C	-	-	-	-	-	-	-
I	-	C	-	-	-	-	-	-	-	-
J	C	-	-	-	C	-	-	-	-	-

Intergreen times

	A	B	c	D	E	F	G	H	I	J
A					5					9
B			6	8	7			9	5	
C		6			6			9		
D		5				5				
E	7	5	6				5			10
F				5						
G					5					
H		5	5							
I		5								
J	5				5					

Handset intergreen limits

	A	B	c	D	E	F	G	H	I	J
A					5					7
B			5	6	5			7	5	
C		6			5			7		
D		5				5				
E	6	5	5				5			8
F				5						
G					5					
H		5	5							
I		5								
J	5				5					

RLM additional intergreens

	A	B	c	D	E	F	G	H	I	J
A					2					2
B			2	2	2			2	2	
C		2			2			2		
D		2				2				
E	2	2	2				2			2
F										
G										
H										
1										
J										

	A	B	C	D	E	F	G	H	I	J
\mathbf{A}	-	-	-	-	x	-	-	-	-	x
\mathbf{B}	-	-	x	x	x	-	-	x	x	-
\mathbf{C}	-	x	-	-	x	-	-	x	-	-
\mathbf{D}	-	x	-	-	-	x	-	-	-	-
\mathbf{E}	x	x	x	-	-	-	x	-	-	x
\mathbf{F}	-	-	-	-	-	-	-	-	-	-
\mathbf{G}	-	-	-	-	-	-	-	-	-	-
\mathbf{H}	-	-	-	-	-	-	-	-	-	-
\mathbf{I}	-	-	-	-	-	-	-	-	-	-
\mathbf{J}	-	-	-	-	-	-	-	-	-	-

LAMP MONITORING

Applied sensing technology

Individual Monitoring Channels Used for RLUs ?	No

Lamp Switches

Phase	Type	SWR	SWA	SWG	SWWL
A	802 T: vehicle	R01	A01	G01	
B	802 T : vehicle	R02	A02	G02	
C	802 T: vehicle	R03	A03	G03	
D	802 T: vehicle	R04	A0 4	G04	
E	802 T: vehicle	R05	A05	G05	
F	812 TN : toucan near side	R06		G06	A0 6
G	812 TN : toucan near side	R07		G07	A07
H	812 TN: toucan near side	R08		G08	A08
I	812 TN : toucan near side	R09		G09	A09
J	812 TN: toucan near side	R10		G10	A10

Phase Lamp Types

Phase	Description	Type	Red	Amber	Green	Wait
A	A5 Eastbound	T	Elite TLED 48	Elite TLED 48	Elite TLED 48	-
B	A5 Westbound	T	Elite TLED 48	Elite TLED 48	Elite TLED 48	-
C	A5 Eastbound RT	T	Elite TLED 48	Elite TLED 48	Elite TLED 48	-
D	Hall Farm LT	T	Elite TLED 48	Elite TLED 48	Elite TLED 48	-
E	Hall Farm RT	T	Elite TLED 48	Elite TLED 48	Elite TLED 48	-
F	Peds over Hall Farm LT	TN	AGDMANCYCLE	-	AGDMANCYCLE	AGDWAIT
G	Peds over Hall Farm RT	TN	AGDMANCYCLE	-	AGDMANCYCLE	AGDWAIT
H	Peds over Hall Farm Entry	TN	AGDMANCYCLE	-	AGDMANCYCLE	AGDWAIT
I	Peds over A5 Westbound	TN	AGDMANCYCLE	-	AGDMANCYCLE	AGDWAIT
J	Peds over A5 Eastbound	TN	AGDMANCYCLE	-	AGDMANCYCLE	AGDWAIT

Lamp Monitor Settings

Phase	Description	Red 1	Red 2	Amber
A	A5 Eastbound	Safety $1 / 2$	None	Maintenance
B	A5 Westbound	Safety $1 / 2$	None	Maintenance
C	A5 Eastbound RT	Safety $1 / 2$	Maintenance	
D	Hall Farm LT	Safety $1 / 2$	Maintenance	
E	Hall Farm RT	Safety $1 / 2$	Maintenance	
F	Peds over Hall Farm LT	Maintenance	None	Maintenance
G	Peds over Hall Farm RT	Maintenance	None	None
H	Peds over Hall Farm Entry	Maintenance	None	Naintenance
I	Peds over A5 Westbound	Maintenance	None	
J	Peds over A5 Eastbound	Maintenance	None	None

Safety Lamp Monitor Shutdown Action

Phase	Description	Red 1	Amber
A	A5 Eastbound	None	
B	A5 Westbound	None	None
C	A5 Eastbound RT	None	None
D	Hall Farm LT	None	None
E	Hall Farm RT	None	
F	Peds over Hall Farm LT	None	None
G	Peds over Hall Farm RT	None	None
H	Peds over Hall Farm Entry	None	
I	Peds over A5 Westbound	None	None
J	Peds over A5 Eastbound	None	None

PHASE DELAYS

ID	Phase	From	To	Delay Time	Associated Phase	Delay Type
1	B	5	1	2	-	Delay phase gaining Right of way

FIXED TIME
FIXED TIME TO CURRENT MAXIMUM

STREAM	Fixed
STREAM1	Yes

Phase	Demand	Extend
A	Yes	Yes
B	Yes	Yes
C	Yes	Yes
D	Yes	Yes
E	Yes	Yes
F	No	No
G	No	No
H	No	No
I	No	No
J	No	No

STAGE MOVES

Move sets

Mode		
Hurry call (high priority)		
Urban Traffic Control (UTC)	1	
Hurry call (std priority)	1	
Manual control	0	
Cableless linking facility (CLF)		
Vehicle actuated (VA)		
Simple fix time (FT)		
Public service vehicle priority	0	

Set 1

	1	2	3	4	5	6	7
1	-	A	A	A	A	A	A
2	A	-	P	A	A	A	A
3	A	P	-	A	A	A	A
4	A	P	P	-	A	A	A
5	A	A	A	A	-	A	A
6	A	A	A	A	A	-	A
7	A	A	A	A	A	A	-

Set 2

	1	2	3	4	5	6	7
1	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-

Set 3

	1	2	3	4	5	6	7
1	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-

Set 4

| | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | - | - | - | - | - | - |
| $\mathbf{2}$ | - | - | - | - | - | |
| $\mathbf{3}$ | - | - | - | - | - | |
| $\mathbf{4}$ | - | - | - | - | - | |
| $\mathbf{5}$ | - | - | - | - | - | |
| $\mathbf{6}$ | - | - | - | - | - | |
| $\mathbf{7}$ | - | - | - | - | - | |

Set 5

	1	2	3	4	5	6	7
1	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-

	1	2	3	4	5	6	7
7	-	-	-	-	-	-	-

Set 6

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	-	-	-	-	-	-	
$\mathbf{2}$	-	-	-	-	-	-	
$\mathbf{3}$	-	-	-	-	-		
$\mathbf{4}$	-	-	-	-	-		
$\mathbf{5}$	-	-	-	-	-		
$\mathbf{6}$	-	-	-	-	-		
$\mathbf{7}$		-	-	-	-		

Set 7

	1	2	3	4	5	$\mathbf{6}$	
$\mathbf{1}$	-	-	-	-	-	-	
$\mathbf{2}$	-	-	-	-	-	-	
$\mathbf{3}$	-	-	-	-	-	-	
$\mathbf{4}$	-	-	-	-	-		
$\mathbf{5}$	-	-	-	-	-	-	
$\mathbf{6}$	-	-	-	-	-		
$\mathbf{7}$		-	-	-	-		

Set 8

	1	2	3	4	5	6	7
$\mathbf{1}$	-	-	-	-	-	-	-
$\mathbf{2}$	-	-	-	-	-	-	-
$\mathbf{3}$	-	-	-	-	-	-	-
$\mathbf{4}$	-	-	-	-	-	-	-
$\mathbf{5}$	-	-	-	-	-	-	-
$\mathbf{6}$	-	-	-	-	-	-	-
$\mathbf{7}$	-	-	-	-	-	-	

MANUAL STAGE SELECTION

But 1	1
But 2	1
But 3	2
But 4	3
But 5	-1
But 6	-1
But 7	-
But 8	-
But 9	-
But 10	-
But 11	-
But 12	-
But 13	-
But 14	-
But 15	-
But 16	-

Detectors

Application

ID	Detector	Type	Phase	Call	Cancel	Extend	Associated Det	DEM	CANCEL
1	AIN11	Vehicle loop	A				-	No	No
2	AIN12	Vehicle loop	A				-	No	No
3	AX1	Vehicle loop	A			4	-	Yes	No
4	AX2	Vehicle loop	A			4	-	Yes	No
5	BIN13	Vehicle loop	B				-	No	No
6	BIN14	Vehicle loop	B				-	No	No
7	BX3	Vehicle loop	B			4	-	Yes	No
8	BX4	Vehicle loop	B			4	-	Yes	No
9	CIN15	Vehicle loop	C				-	No	No
10	CX5	Vehicle loop	C			3.8	-	Yes	No
11	CSL25	Vehicle loop	C			0.6	-	Yes	No
12	DIN16	Vehicle loop	D				-	No	No
13	DX6	Vehicle loop	D			3.4	-	Yes	No
14	DSL26	Vehicle loop	D			0.6	-	Yes	No
15	SPARE_1	-	-				-	No	No
16	EX7	Vehicle loop	E			3.4	-	Yes	No
17	ESL27	Vehicle loop	E			0.6	-	Yes	No
18	SPARE_2	-	-				-	No	No
19	PBFU1	Push button	F				-	Yes	No
20	PBUF2	Push button	F				-	Yes	No
21	PBUF3	Push button	F				-	Yes	No
22	PBUF4	Push button	F				-	Yes	No
23	PBUG1	Push button	G				-	Yes	No
24	PBUG2	Push button	G				-	Yes	No
25	PBUG3	Push button	G				-	Yes	No
26	PBUG4	Push button	G				-	Yes	No
27	PBUH1	Push button	H				-	Yes	No
28	PBUH2	Push button	H				-	Yes	No
29	PBUH3	Push button	H				-	Yes	No
30	PBUH4	Push button	H				-	Yes	No
31	PBUI1	Push button	I				-	Yes	No
32	PBUI2	Push button	I				-	Yes	No
33	PBUI3	Push button	I				-	Yes	No
34	PBUI4	Push button	I				-	Yes	No
35	PBUJ1	Push button	J				-	Yes	No
36	PBUJ2	Push button	J				-	Yes	No
37	PBUJ3	Push button	J				-	Yes	No
38	PBUJ4	Push button	J				-	Yes	No
39	ONXH1	Pedestrian oncrossing detector	H			1	-	No	No
40	ONXH2	Pedestrian oncrossing detector	H			1	-	No	No
41	ONXII	Pedestrian oncrossing detector	I			1	-	No	No
42	ONXI2	Pedestrian oncrossing detector	I			1	-	No	No
43	ONXJ1	Pedestrian oncrossing detector	J			1	-	No	No
44	ONXJ2	Pedestrian oncrossing detector	J			1	-	No	No

Detector Fault Monitoring

ID	Detector	DFM Active Set 1	DFM Inactive Set 2	DFM Active Set 2	DFM Inactive Set 2	DFM Active Set 3	DFM Inactive Set 3	DFM Active Set 4	DFM Inactive Set 4	Detector DFM Error State	Detector Ok Count
1	AIN11	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
2	AIN12	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
3	AX1	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
4	AX2	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
5	BIN13	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
6	BIN14	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
7	BX3	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
8	BX4	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
9	CIN15	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
10	CX5	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
11	CSL25	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8

ID	Detector	DFM Active Set 1	DFM Inactive Set 2	DFM Active Set 2	DFM Inactive Set 2	DFM Active Set 3	DFM Inactive Set 3	DFM Active Set 4	DFM Inactive Set 4	Detector DFM Error State	Detector Ok Count
12	DIN16	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
13	DX6	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
14	DSL26	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
15	SPARE_1	100:00	255:00	00:00	00:00	00:00	00:00	00:00	00:00	-	
16	EX7	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
17	ESL27	00:30	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
18	SPARE_2	100:00	255:00	00:00	00:00	00:00	00:00	00:00	00:00	-	
19	PBFU1	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
20	PBUF2	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
21	PBUF3	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
22	PBUF4	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
23	PBUG1	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
24	PBUG2	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	occupied	2
25	PBUG3	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
26	PBUG4	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	occupied	2
27	PBUH1	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
28	PBUH2	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
29	PBUH3	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
30	PBUH4	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
31	PBUI1	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
32	PBUI2	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
33	PBUI3	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
34	PBUI4	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
35	PBUJ1	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	occupied	2
36	PBUJ2	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
37	PBUJ3	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
38	PBUJ4	00:10	18:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	2
39	ONXH1	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
40	ONXH2	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
41	ONXI1	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
42	ONXI2	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
43	ONXJ1	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8
44	ONXJ2	00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	Occupied	8

Enable ImFlow	Log to TDC

No
No

Settings

Wait time on deadlock (s)	Retries on UTC deadlock	Retries on UTC conflict
300	5	1

MASTER TIME CLOCK

MTC table

| ID | Function | Arg1 | Arg2 | Start | End | Mo | Tu | We | Th | Fr | Sa | Su | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | Description |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Control plan | 1 | 0 | $00: 00: 00$ | $24: 00: 00$ | x | x | x | x | x | x | x | - | - | - | - | - | - | - | - | |
| 2 | Timing set | 4 | 0 | $00: 00: 00$ | $24: 00: 00$ | x | x | x | x | x | x | x | - | - | - | - | - | - | - | - | |
| 3 | Timing set | 1 | 0 | $07: 00: 00$ | $24: 00: 00$ | x | x | x | x | x | x | x | - | - | - | - | - | - | - | - | Max Set A |
| 4 | Timing set | 2 | 0 | $09: 30: 00$ | $24: 00: 00$ | x | x | x | x | x | x | x | - | - | - | - | - | - | - | - | Max Set B |
| 5 | Timing set | 3 | 0 | $16: 00: 00$ | $24: 00: 00$ | x | x | x | x | x | x | x | - | - | - | - | - | - | - | - | Max Set C |
| 6 | Timing set | 4 | 0 | $19: 00: 00$ | $24: 00: 00$ | x | x | x | x | x | x | x | - | - | - | - | - | - | - | - | Max Set D |

CABLELESS LINKING FACILITY

Global settings

Setting	Value
Sync. Mode	Daily
Sync. Day	Monday
Ref. time	$06: 00$

Plans

Functions and actions

OTU

Units

General Integral OTU options

Discrete OTU

ID	Invert control bits	Invert reply bits
1	No	Yes

Control and reply bits

Control / Reply

Function	Arg	Label	Position ID	Label	Arg	Function
F	1	F1	1	G1	1	G
F	2	F2	2	G2	2	G
F	3	F3	3	G3	3	G
F	4	F4	4	G4	4	G
F	5	F5	5	G5	5	G
F	6	F6	6	G6	6	G
F	7	F7	7	G7	7	G
-	0		8	LE	0	LE
-	0		9		0	-
-	0		10		0	-
-	0		11		0	-
-	0		12		0	-
-	0		13		0	-
SF	1	T01	14		0	-
-	0		15	CRB1	1	UF
-	0		16		0	-

Keep default Demand reply options

Default Stage Demand (SD) reply	No
Default Phase Demand (DR) reply	No

RTC

Synchronisation time (UTC TS input)	$12: 00$
Confirm time (UTC RT output)	$0: 0: 0$

Special UTC Reply bits

	G1/G2	
Manual mode operative	No	RR
Manual mode selected	No	Yes
No lamp power (excluding RLM and PT)	Yes	Yes
Normal not selected on the manual panel	No	n/a

CG reply bit weekday-coded	No

UG405 bit mapping

Settings

Enable UG405	No
OTU System Code Number (SCN)	

Control / Reply

ID	Label	Controller SCN	UG405 Name	Bit Index	Label	Controller SCN	UG405 name	Bit index
1	F1		-		G1		-	
2	F2		-		G2		-	
3	F3		-		G3		-	
4	F4		-		G4		-	
5	F5		-		G5		-	
6	F6		-		G6		-	
7	F7		-		G7		-	
8			-		LE		-	
9			-				-	
10			-				-	
11			-				-	

ID	Label	Controller SCN	UG405 Name	Bit Index	Label	Controller SCN	UG405 name	Bit index
12			-				-	
13			-				-	
14	т01		-				-	
15			-		CRB1		-	
16			-				-	

PUBLIC SERVICE VEHICLE PRIORITY

APPLICATION BUILDING BLOCKS

Event Pulses

ID	Name	Type	Input Type	On	OFF
1	CRB1	Wave	Level	2	600

Event Pulse Input Conditioning
$\operatorname{evp} 1()=(\operatorname{macm}(0)>1) \& \&(\operatorname{stgc}(0)!=0) \& \& \operatorname{mpauto}(0) \& \&(\operatorname{mUTC}(0)==0) \& \&(\operatorname{mPSVP}(0)==0)$;

Event Filter Input Conditioning

SPECIAL CONDITIONING - (VM Functions)

O.T.U. Control \& Reply Bit Special Conditioning

```
rf 2(arg) = cfa;
rf_32(arg)
if
    return ((mpauto(0) && (((mPSVP(0) || evp(CRB1)) && (mUTC(0)==0)) || (in(utciTO1) && ufac(0)))) != 1);
endif
return 0;
end
rf_34(arg) = (macm (xp) != 6);
rf_40(arg) = mPSVP(xp);
urG1() = (stgc (0)==1) && (stgr (0,0,0));
urDR1() = dr(A) || dr(B) || dr(F) || dr(G);
urG2() = (stgc(0)==2) && (stgr (0,0,0));
urDR2() = dr(A) || dr(C) || dr(F) || dr(G) || dr(I);
urG3() = (stgc (0)==3) && (stgr (0,0,0));
urDR3() = dr(A) || dr(D) || dr(H) || dr(I);
urG4() = (stgc(0)==4) && (stgr (0,0,0));
urDR4() = dr(A) || dr(C) || dr(D) || dr(I);
urG5() = (stgc(0)==5) && (stgr (0,0,0));
urDR5() = dr(D) || dr(E) || dr(H) || dr(I);
urG6() = (stgc(0)==6) && (stgr(0,0,0));
urDR6() = dr(B) || dr(F) || dr(G) || dr(J);
urg7() = (stgc (0) == 7) && ( stgr (0,0,0));
```


Integral O.T.U. Special Conditioning

otu_dstate (d) = get (h_xdet_sts, d) \& DET_BEZET_MASK;
otu_dfault(d) = get(h_xdet_sts, d) \& DET_FAULT_MASK;
otu_dent(d) = get(h_xdet_cnt, d);

U.T.C. (G1/G2) Special Conditioning

CLF Request \& Inhibit Special Conditioning

P.S.V.P. Pre Check-in, Check-in \& Check-out Special Conditioning

Hurry Call Delay, Force, Demand \& Inhibit Special Conditioning

Phase Delay Appearance Special Conditioning

```
Stream On/Off Control Special Conditioning
roffsync() = okoff(0);
mac1_swon(t) = yellow_period(0,t);
macon1() = (minon(xp)==0);
macoff1() = ((macm(xp) <= 1) && (mact(xp) <= tson(7)));
```


Detector Count Activity Window Special Conditioning

```
nokbs()
var det;
for det=0 to (nrel(h dfunc) -1) do
    if ddo(det) && fcr(get(h_dsg,det)) && (ddr(det)!=1) && (geti(h_dfunc,det) & 16) then
        put(h_dfunc, det, 65);
    endif
    if (get(h_dfunc,det)==65) && fcg(get(h_dsg,det)) then
        put(h_dfunc, det, geti(h_dfunc,det));
    endif
endfor
end
dact_ONXH1() = fcg(H) | fcre(H) || (fcbo(H) >= 3);
dact_ONXH2() = fcg(H) || fcr(H) || (fcbo(H) >= 3);
dact_ONXI1() = fcg(I) || fcr(I) || (fcbo(I) >= 3);
dact_ONXI2() = fcg(I) || fcr(I) || (fcbo(I) >= 3);
dact_ONXJ1() = fcg(J) || fcr(J) || (fcbo(J) >= 3);
dact_ONXJ2() = fcg(J) || fcr(J) || (fcbo(J) >= 3);
```

```
Phase Control Special Conditioning
latch(ph) = dx(ph) && (fcg(ph)==0);
pd ALL (ph)
if ((xSf(XSF_PSET_ERR) != AUTOSET_STATE_DONE) && (xSf(XSF_PSET_ERR) != AUTOSET_STATE_ERROR)) then return (1); endif
end
pe_ALL(ph) = ngpl(ph);
wl F() = dr(F) || fci(F);
pa_F() = dr(F) && (stgt(xp) == 0);
pt_F() = fcg(F);
wl_G() = dr(G) || fci(G);
pa_G() = dr(G) && (stgt(xp) == 0);
pt_G() = fcg(G);
wl_H() = dr(H) || fci(H);
pa_H() = dr(H) && (stgt(xp) == 0);
pt_H() = fcg(H);
pvbo_H() = ((dact (ONXH1)==0) || dde(ONXH1) || (ddg1 (ONXH1)==0)) || ((dact (ONXH2)==0) || dde(ONXH2) | | (ddg1 (ONXH2)==0));
wl I() = dr(I) || fci(I);
pa_I() = dr(I) && (stgt(xp) == 0);
pt_I() = fcg(I);
pvbo_I() = ((dact (ONXI1)==0) || dde(ONXI1) || (ddg1 (ONXI1)==0)) || ((dact (ONXI2)==0) || dde(ONXI2) || (ddg1(ONXI2)==0));
wl J() = dr(J) || fci(J);
pa_J() = dr(J) && (stgt(xp) == 0);
pt_J() = fcg(J);
pvbo_J() = ((dact (ONXJ1)==0) || dde(ONXJ1) || (ddg1 (ONXJ1)==0)) || ((dact(ONXJ2)==0) || dde(ONXJ2) || (ddg1 (ONXJ2)==0));
```


Phase Timing Set Selection Special Conditioning

Dummy Detector Special Conditioning

Mode Control Special Conditioning

Mode Control Special Conditioning

```
rHCH() = rar(xp);
rUTC ()
if (xp==0) then
    return ufac(xp) && in(utciTO1);
endif
return ufav(xp)||ufpv(xp);
end
rMAN() = mpman(xp);
rVA() = 1;
rFT() = 1;
rSCLF() = clfp && (mpclf(xp) || clfmp);
rSVA() = mpva(xp);
rSFT() = mpft(xp);
```


All Red Detection Operation Special Conditioning

Manual Panel Stage LED Conditions

MpStageLEDsNoDefault()
mpdiso $(20,1)$
mpdiso $(21,1)$;
mpdiso $(22,1)$;
mpdiso $(23,1)$
mpdiso $(24,1)$;
mpdiso $(25,1)$;
mpdiso $(26,1)$
mpdiso $(27,1)$;
mpdiso $(28,1)$
mpdiso $(29,1)$,
mpdiso $(30,1)$;
mpdiso $(31,1)$
mpdiso $(32,1)$;
mpdiso $(33,1)$
mpdiso $(34,1)$,
mpdiso $(35,1)$;
end
DriveMpStageLEDs()
MpStageLEDsNoDefault() ;
mpledfunc20();
mpledfunc21();
mpledfunc22();
mpledfunc23();
mpledfunc24();
mpledfunc25();
mpledfunc26();
mpledfunc27();
mpledfunc28();
mpledfunc29();
mpledfunc30();
mpledfunc31();
mpledfunc32();
mpledfunc33();
mpledfunc34();
mpledfunc35();
end
mpledfunc20() $=\operatorname{cmled}(20,(\operatorname{stgc}(0)==1) *(2-\operatorname{stgr}(0,1,0)))$;
mpledfunc21 ()$=\operatorname{cmled}(21,(\operatorname{stgc}(0)==2) *(2-\operatorname{stgr}(0,1,0)))$;
mpledfunc22 ()$=\operatorname{cmled}(22,(\operatorname{stgc}(0)==3) *(2-\operatorname{stgr}(0,1,0)))$;
mpledfunc23() $=\operatorname{cmled}(23,(\operatorname{stgc}(0)==4) *(2-\operatorname{stgr}(0,1,0)))$;
mpledfunc24() $=\operatorname{cmled}(24,(\operatorname{stgc}(0)==5) *(2-\operatorname{stgr}(0,1,0)))$;
mpledfunc25() $=\operatorname{cmled}(25,(\operatorname{stgc}(0)==6) *(2-\operatorname{stgr}(0,1,0)))$;
mpledfunc26() $=\operatorname{cmled}(26,(\operatorname{stgc}(0)==7) *(2-\operatorname{stgr}(0,1,0)))$;
mpledfunc27() = 0;
mpledfunc28() $=0$;
mpledfunc29() $=0$;
mpledfunc30() $=0$;
mpledfunc31() $=0$
mpledfunc32() $=0$;
mpledfunc33() $=0$;
mpledfunc34() = 0
mpledfunc35() $=0$;

Initialisation \& General Special Conditioning

init()
open_handles()
return 1;
end
$\operatorname{dfm} f()=\operatorname{sf1}(-1)$ || fci(-1);

User Defined VM Functions

User Defined VM Functions

post_100ms() = mova_outputs();
mova_outputs()
cout (MDET1, ddo (AX1));
cout (MDET2,ddo (AX2)); cout (MDET3, ddo (BX3)) ; cout (MDET4, ddo (BX4)); cout (MDET5, ddo (CX5)); cout (MDET6, ddo (DX6)); cout (MDET7, ddo (EX7)); cout (MDET11, ddo(AIN11)); cout (MDET12, ddo (AIN12)) cout (MDET13, ddo(BIN13)); cout (MDET14, ddo (BIN14)); cout (MDET15, ddo(CIN15)); cout (MDET16, ddo(DIN16)); cout (MDET20, dr(F)); cout (MDET21,dr(G)) ; cout (MDET22,dr(H)); cout (MDET23,dr(I)) ; cout (MDET24, dr (J)) ;
cout (MDET25, ddo (CSL25)); cout (MDET26, ddo(DSL26)); cout (MDET27, ddo (ESL27)); cout (SISPWR,in(sispwr)); cout (SISFLT,in(sisflt));
end

Stage Moves

Hurry Call High Mode - HCH (Normally for Part Time / Prom Swap Facility)

mHCH1_7d() = rar (xp);
mHCH2_7d() $=\operatorname{rar}(x p)$;
mHCH3_7d() = rar $(x p)$;
mHCH4 7d() = rar(xp);
mHCH5_7d() $=$ rar $(x p)$;
mHCH6_7d() = rar $(x p)$;

Hurry Call Standard Mode - HCL

Vehicle Actuated Mode - VA

mVA1_2d() $=\operatorname{dSTGd}(1,2)$;
mVA1_2e() = dSTGe(1, 2);
mVA1_2i() = FALSE;
mVA1_3d() $=\operatorname{dSTGd}(1,3)$;
mVA1_3e() = dSTGe(1, 3);
mVA1_3i() = FALSE;
mVA1_4d() $=\operatorname{dSTGd}(1,4)$;
mVA1_4e() = $\operatorname{dSTGe}(1,4)$;
mVA1_4i() = FALSE;
mVA1_5d() = dSTGd(1, 5);
mVA1_5e() = dSTGe(1, 5);
mVA1_5i() = FALSE;
mVA1_6d() = $\operatorname{dSTGd}(1,6)$;
mVA1_6e() = dSTGe(1, 6);
mVA1_6i() = FALSE;
mVA1_7d() = $\operatorname{dSTGd}(1,7)$;
mVA1_7e() = dSTGe(1, 7);
mVA1_7i() = FALSE;
mVA2_4d() $=\operatorname{dSTGd}(2,4)$;
mVA2_4e() = dSTGe(2, 4);
mVA2_4i() = FALSE;
mVA2_5d() $=\operatorname{dSTGd}(2,5)$;
mVA2_5e() = dSTGe (2, 5);
mVA2_5i() = FALSE;
mVA2_6d() $=\operatorname{dSTGd}(2,6)$;
mVA2_6e() = $\operatorname{dSTGe}(2,6)$;
mVA2_6i() = FALSE;
mVA2_7d() $=\operatorname{dSTGd}(2,7)$;
mVA2_7e() = dSTGe (2, 7);
mVA2_7i() = FALSE;
mVA2_1d() = dSTGd(2, 1);
mVA2_1e() = dSTGe(2, 1);
mVA2_1i() = FALSE;
mVA2_1du4 () = dn();
mVA2_1eu4 () = dSTGe(2, 1);
mVA2_1iu4 () = FALSE;
mVA3_4d() = dSTGd $(3,4)$;

Vehicle Actuated Mode - VA

mVA3_4e() = dSTGe (3, 4);
mVA3_4i() = FALSE;
mVA3_5d() $=\operatorname{dSTGd}(3,5)$;
mVA3_5e() = dSTGe(3, 5);
mVA3_5i() = FALSE;
mVA3_6d() $=\operatorname{dSTGd}(3,6)$;
mVA3_6e() = dSTGe $(3,6)$;
mVA3_6i() = FALSE;
mVA3_7d() $=\operatorname{dSTGd}(3,7)$;
mVA3_7e() = dSTGe $(3,7)$;
mVA3_7i() = FALSE;
mVA3_1d() $=\operatorname{dSTGd}(3,1)$;
mVA3_1e() = $\operatorname{dSTGe}(3,1)$;
mVA3_1i() = FALSE;
mVA3_1du4() = dn();
mVA3_1eu4() = dSTGe (3, 1);
mVA3_1iu4 () = FALSE;
mVA4 5d() $=\operatorname{dSTGd}(4,5)$;
mVA4_5e() = dSTGe(4, 5);
mVA4_5i() = FALSE;
mVA4_6d() = $\operatorname{dSTGd}(4,6)$;
mVA4_6e() $=\operatorname{dSTGe}(4,6)$;
mVA4_6i() = FALSE;
mVA4_7d() $=\operatorname{dSTGd}(4,7)$;
mVA4_7e() = dSTGe(4, 7);
mVA4 7i() = FALSE;
mVA4_1d() $=\operatorname{dSTGd}(4,1)$;
mVA4_1e() = dSTGe(4, 1);
mVA4_1i() = FALSE;
mVA4_1du4() = dn();
mVA4_1eu4 () = dSTGe (4, 1);
mVA4_1iu4() = FALSE;
mVA5_6d() $=\operatorname{dSTGd}(5,6)$;
mVA5_6e() = dSTGe $(5,6)$;
mVA5_6i() = FALSE;
mVA5_7d() $=\operatorname{dSTGd}(5,7)$;
mVA5_7e() = dSTGe (5, 7);
mVA5_7i() = FALSE;
mVA5_1d() = dSTGd(5, 1);
mVA5_1e() = $\operatorname{dSTGe}(5,1)$;
mVA5_1i() = FALSE;
mVA5_2d() $=\operatorname{dSTGd}(5,2)$;
mVA5_2e() $=\operatorname{dSTGe}(5,2)$;
mVA5_2i() = FALSE;
mVA5_3d() $=\operatorname{dSTGd}(5,3)$;
mVA5_3e() = dSTGe (5, 3);
mVA5_3i() = FALSE;
mVA5_4d() $=\operatorname{dSTGd}(5,4)$;
mVA5_4e() $=\operatorname{dSTGe}(5,4)$;
mVA5_4i() = FALSE;
mVA5_1du4() = dn();
mVA5_1eu4 () = dSTGe (5, 1);

Vehicle Actuated Mode - VA

Fixed Time Mode - FT

mFT1_2d() $=\operatorname{dSTGd}(1,2)$;
mFT1_2e() = dSTGe(1, 2);
mFT1_2i() = FALSE;
mFT1_3d() $=\operatorname{dSTGd}(1,3)$;
mFT1_3e() = $\operatorname{dSTGe}(1,3)$;

Fixed Time Mode - FT

mFT1_3i() = FALSE;
mFT1_4d() = $\operatorname{dSTGd}(1,4)$;
mFT1_4e() = dSTGe (1, 4);
mFT1_4i() = FALSE;
mFT1_5d() = dSTGd(1, 5);
mFT1_5e() = $\operatorname{dSTGe}(1,5)$;
mFT1_5i() = FALSE;
mFT1_6d() $=\operatorname{dSTGd}(1,6)$;
mFT1_6e() = $\operatorname{dSTGe}(1,6)$;
mFT1_6i() = FALSE;
mFT1_7d() = dSTGd(1, 7);
mFT1_7e() = dSTGe (1, 7);
mFT1_7i() = FALSE;
mFT2_4d() = dSTGd (2, 4);
mFT2_4e() = $\operatorname{dSTGe}(2,4)$;
mFT2_4i() = FALSE;
mFT2_5d() = dSTGd (2, 5);
mFT2_5e() = dSTGe (2, 5);
mFT2_5i() = FALSE;
mFT2_6d () $=\operatorname{dSTGd}(2,6)$;
mFT2_6e() = dSTGe (2, 6);
mFT2_6i() = FALSE;
mFT2_7d() $=\operatorname{dSTGd}(2,7)$;
mFT2_7e() = $\operatorname{dSTGe}(2,7)$;
mFT2_7i() = FALSE;
mFT2_1d () $=\operatorname{dSTGd}(2,1)$;
mFT2_1e () = $\operatorname{dSTGe}(2,1)$;
mFT2_1i() = FALSE;
mFT2_1du4 () = dn();
mFT2_1eu4 () = $\operatorname{dSTGe}(2,1)$;
mFT2_1iu4 () = FALSE;
mFT3_4d() = $\operatorname{dSTGd}(3,4)$;
mFT3_4e() = dSTGe $(3,4)$;
mFT3_4i() = FALSE;
mFT3_5d() $=\operatorname{dSTGd}(3,5)$;
mFT3_5e() = dSTGe (3, 5);
mFT3_5i() = FALSE;
mFT3_6d() $=\operatorname{dSTGd}(3,6)$;
mFT3_6e() = dSTGe (3, 6) ;
mFT3_6i() = FALSE;
mFT3_7d () = dSTGd $(3,7)$;
mFT3_7e() = $\operatorname{dSTGe}(3,7)$;
mFT3_7i() = FALSE;
mFT3_1d() $=\operatorname{dSTGd}(3,1)$;
mFT3_1e() = $\operatorname{dSTGe}(3,1)$;
mFT3_1i() = FALSE;
mFT3_1du4 () = dn();
mFT3_1eu4 () = dSTGe (3, 1);
mFT3_1iu4() = FALSE;
mFT4_5d() = dSTGd(4, 5);
mFT4_5e() = dSTGe (4, 5);
mFT4_5i() = FALSE;

Fixed Time Mode - FT

mFT4_6d() $=\operatorname{dSTGd}(4,6)$;
mFT4_6e() = dSTGe (4, 6);
mFT4_6i() = FALSE;
mFT4_7d() = $\operatorname{dSTGd}(4,7)$;
mFT4_7e() = dSTGe (4, 7);
mFT4_7i() = FALSE;
mFT4_1d() = $\operatorname{dSTGd}(4,1)$;
mFT4_1e() = dSTGe(4, 1);
mFT4_1i() = FALSE;
mFT4_1du4 () = dn();
mFT4_1eu4 () = dSTGe (4, 1);
mFT4_1iu4() = FALSE;
mFT5_6d() $=\operatorname{dSTGd}(5,6)$;
mFT5_6e() = dSTGe(5, 6);
mFT5_6i() = FALSE;
mFT5_7d() $=\operatorname{dSTGd}(5,7)$;
mFT5_7e() = dSTGe(5, 7);
mFT5_7i() = FALSE;
mFT5_1d() $=\operatorname{dSTGd}(5,1)$;
mFT5_1e() = $\operatorname{dSTGe}(5,1)$;
mFT5_1i() = FALSE;
mFT5_2d() $=\operatorname{dSTGd}(5,2)$;
mFT5_2e() = dSTGe (5, 2);
mFT5_2i() = FALSE;
mFT5_3d() $=\operatorname{dSTGd}(5,3)$;
mFT5_3e() = $\operatorname{dSTGe}(5,3)$;
mFT5_3i() = FALSE;
mFT5_4d() = dSTGd $(5,4)$;
mFT5_4e() = dSTGe (5, 4);
mFT5_4i() = FALSE;
mFT5_1du4 () = dn();
mFT5_1eu4 () = $\operatorname{dSTGe}(5,1)$;
mFT5_1iu4() = FALSE;
mFT6_7d() $=\operatorname{dSTGd}(6,7)$;
mFT6_7e() = dSTGe (6, 7);
mFT6_7i() = FALSE;
mFT6_1d() $=\operatorname{dSTGd}(6,1)$;
mFT6_1e() = dSTGe(6, 1);
mFT6_1i() = FALSE;
mFT6_2d() $=\operatorname{dSTGd}(6,2)$;
mFT6_2e() $=\operatorname{dSTGe}(6,2)$;
mFT6_2i() = FALSE;
mFT6_3d() $=\operatorname{dSTGd}(6,3)$;
mFT6_3e() = $\operatorname{dSTGe}(6,3)$;
mFT6_3i() = FALSE;
mFT6_4d() $=\operatorname{dSTGd}(6,4)$;
mFT6_4e() = dSTGe $(6,4)$;
mFT6_4i() = FALSE;
mFT6_5d() $=\operatorname{dSTGd}(6,5)$;
mFT6_5e() = dSTGe(6, 5);
mFT6_5i() = FALSE;

Fixed Time Mode - FT
mFT6 1du4() = dn();
mFT6_1eu4() = $\operatorname{dSTGe}(6,1)$;
mFT6_1iu4() = FALSE;
mFT7_1d() $=\operatorname{dSTGd}(7,1)$:
mFT7_1e() = $\operatorname{dSTGE}(7,1)$;
mFT7_1i() = FALSE;
mFT7_2d() = dSTGd(7, 2);
mFT7_2e() = dSTGe(7, 2);
mFT7_2i() = FALSE;
mFT7_3d() = dSTGd(7, 3);
mFT7_3e() = dSTGe(7, 3);
mFT7_3i() = FALSE;
mFT7_4d() $=\operatorname{dSTGd}(7,4)$;
mFT7_4e() = dSTGe(7, 4);
mFT7_4i() = FALSE;
mFT7_5d() $=\operatorname{dSTGd}(7,5)$;
mFT7_5e() = dSTGe (7, 5);
mFT7_5i() = FALSE;
mFT7_6d() $=\operatorname{dSTGd}(7,6)$;
mFT7_6e() = $\operatorname{dSTGE}(7,6)$;
mFT7_6i() = FALSE;
mFT7_1du4() = dn();
mFT7_1eu4 () = dSTGe (7, 1);
mFT7_1iu4 () = FALSE;

Cableless Linking Mode - CLF

Urban Traffic Control Mode - UTC

mUTC1_2d() $=\operatorname{dUTCd}(1,2)$;
mUTC1_2i() = dUTCi(1, 2);
mUTC1_3d() = dUTCd $(1,3)$;
mUTC1_3i() = dUTCi $(1,3)$;
mUTC1_4d() = dUTCd (1, 4);
mUTC1_4i() = dUTCi(1, 4);
mUTC1_5d() $=\operatorname{dUTCd}(1,5)$;
mUTC1_5i() = dUTCi(1, 5);
mUTC1_6d() = dUTCd (1, 6);
mUTC1_6i() = dUTCi(1, 6);
mUTC1_7d() $=\operatorname{dUTCd}(1,7)$;
mUTC1_7i() = dUTCi $(1,7)$;
mUTC2_4d() $=\operatorname{dUTCd}(2,4) ;$
mUTC2_4i() = dUTCi $(2,4)$;
mUTC2_5d() = dUTCd $(2,5)$;
mUTC2_5i() = dUTCi(2, 5);
mUTC2_6d() $=\operatorname{dUTCd}(2,6)$;
mUTC2_6i() = $\operatorname{dUTCi}(2,6)$;
mUTC2_7d() = dUTCd $(2,7)$;
mUTC2_7i() = dUTCi(2, 7);
$\operatorname{mUTC} 2 _1 d()=\operatorname{dUTCd}(2,1)$;
mUTC2_1i() = $\operatorname{dUTCi}(2,1)$;

Urban Traffic Control Mode - UTC
mUTC3_4d() $=\operatorname{dUTCd}(3,4)$;

```
mUTC3_4i() = dUTCi(3, 4)
```

mUTC3_5d() = dUTCd(3, 5);
mUTC3_5i() = dUTCi $(3,5)$;
mUTC3_6d() $=\operatorname{dUTCd}(3,6)$;
mUTC3_6i() = dUTCi $(3,6)$;
mUTC3_7d() = dUTCd(3, 7);
mUTC3_7i() $=\operatorname{dUTCi}(3,7)$;
mUTC3_1d() $=\operatorname{dUTCd}(3,1)$;
mUTC3_1i() = dUTCi $(3,1)$;
mUTC4_5d() = dUTCd(4, 5);
mUTC4_5i() = dUTCi $(4,5)$;
mUTC4_6d() $=\operatorname{dUTCd}(4,6)$;
mUTC4_6i() = dUTCi(4, 6);
mUTC4_7d() $=\operatorname{dUTCd}(4,7)$;
mUTC4_7i() $=\operatorname{dUTCi}(4,7)$;
mUTC4_1d() = dUTCd(4, 1);
mUTC4_1i() = dUTCi $(4,1)$;
mUTC5_6d() $=\operatorname{dUTCd}(5,6)$;
mUTC5_6i() $=\operatorname{dUTCi}(5,6)$;
mUTC5_7d() = dUTCd (5, 7);
mUTC5_7i() = dUTCi $(5,7)$;
mUTC5_1d() $=\operatorname{dUTCd}(5,1)$;
mUTC5_1i() = dUTCi (5, 1);
mUTC5_2d() $=\operatorname{dUTCd}(5,2)$;
mUTC5_2i() = $\operatorname{dUTCi}(5,2)$;
mUTC5_3d() $=\operatorname{dUTCd}(5,3)$;
mUTC5_3i() = dUTCi $(5,3)$;
mUTC5_4d() $=\operatorname{dUTCd}(5,4)$;
mUTC5_4i() = dUTCi $(5,4)$;
mUTC6_7d() $=\operatorname{dUTCd}(6,7)$;
mUTC6_7i() = dUTCi (6, 7);
mUTC6_1d() $=\operatorname{dUTCd}(6,1)$;
mUTC6_1i() = $\operatorname{dUTCi}(6,1) ;$
mUTC6_2d() $=\operatorname{dUTCd}(6,2)$;
mUTC6_2i() = dUTCi $(6,2)$;
mUTC6_3d() $=\operatorname{dUTCd}(6,3)$;
mUTC6_3i() = dUTCi $(6,3)$;
mUTC6_4d() $=\operatorname{dUTCd}(6,4)$;
mUTC6_4i() $=\operatorname{dUTCi}(6,4)$;
mUTC6_5d() $=\operatorname{dUTCd}(6,5)$;
mUTC6_5i() = dUTCi(6, 5);
mUTC7_1d() = $\operatorname{dUTCd}(7,1)$;
mUTC7_1i() = dUTCi $(7,1)$;
mUTC7_2d() $=\operatorname{dUTCd}(7,2)$;
mUTC7_2i() = dUTCi(7, 2);
mUTC7_3d() $=\operatorname{dUTCd}(7,3)$;
mUTC7_3i() = $\operatorname{dUTCi}(7,3)$;
mUTC7_4d() = dUTCd $(7,4)$;
mUTC7_4i() = dUTCi $(7,4)$;
mUTC 7_5d() $=\operatorname{dUTCd}(7,5)$;

Manual Control Mode - MAN

mMAN1_2d() $=\operatorname{mstg}(x p)==2$;
mMAN1_3d() $=\operatorname{mstg}(x p)==3$
mMAN1_4d() $=\operatorname{mstg}(x p)==4$;
mMAN1_5d() $=\operatorname{mstg}(x p)==5$;
mMAN1_6d() $=\operatorname{mstg}(x p)==6$;
mMAN1_7d() $=\operatorname{mstg}(x p)==7$;
mMAN2_4d() $=\operatorname{mstg}(x p)==4$;
mMAN2_5d() $=\operatorname{mstg}(x p)==5$;
mMAN2 6 d()$=\operatorname{mstg}(x p)==6$
mMAN2_7d() $=\operatorname{mstg}(x p)==7$;
mMAN2_1d() $=\operatorname{mstg}(x p)==1$;
mMAN3_4d() = mstg $(x p)==4$;
mMAN3_5d() $=$ mstg $(x p)==5$;
mMAN3_6d ()$=\operatorname{mstg}(\mathrm{xp})==6$;
mMAN3_7d() $=\operatorname{mstg}(x p)==7$;
mMAN3_1d() $=\operatorname{mstg}(x p)==1$
mMAN4 5d() $=\operatorname{mstg}(x p)==5$;
mMAN4_6d() $=\operatorname{mstg}(x p)==6$;
mMAN4_7d() = mstg $(x p)==7$;
mMAN4 1d() $=\operatorname{mstg}(x p)==1$;
mMAN5_6d ()$=\operatorname{mstg}(x p)=6$;
mMAN5_7d() $=\operatorname{mstg}(x p)==7$;
mMAN5_1d() = mstg $(x p)==1$;
mMAN5_2d() $=\operatorname{mstg}(\mathrm{xp})==2$;
mMAN5_3d() $=\operatorname{mstg}(x p)==3$;
mMAN5_4d() $=\operatorname{mstg}(x p)==4$;
mMAN6 7d() $=\operatorname{mstg}(x p)==7$;
mMAN6_1d() $=\operatorname{mstg}(\mathrm{xp})==1$;
mMAN6_2d() $=\operatorname{mstg}(\mathrm{xp})==2$;
mMAN6_3d() $=\operatorname{mstg}(x p)==3$;
mMAN6 4d() $=\operatorname{mstg}(\mathrm{xp})==4$;
mMAN6_5d() $=\operatorname{mstg}(x p)==5$;
mMAN7_1d() = mstg $(x p)==1$;
mMAN7_2d() $=\operatorname{mstg}(x p)==2$;
mMAN7_3d() $=\operatorname{mstg}(x p)==3$;
mMAN7_4d() $=\operatorname{mstg}(x p)==4$;
mMAN7_5d() = mstg $(x p)==5$;
mMAN7_6d() $=\operatorname{mstg}(x p)==6$;

$\operatorname{dUTCd}(f, t)$

if $t==1$ then return $u F(1)|\mid(u F D(1) \& \&(u D(1)| | ~ i n(u t c i T O 1))) ; ~ e n d i f$ if $t==2$ then return $u F(2)|\mid(u F D(2) \& \&(u D(2)| |$ in(utciTO1))); endif if $t==3$ then return $u F(3)|\mid(u F D(3) \& \&(u D(3)| | i n(u t c i T O 1)))$; endif if $t==4$ then return $u F(4)|\mid(u F D(4) \& \&(u D(4)$ || in(utciTO1))); endif if $t==5$ then return $u F(5)|\mid(u F D(5) ~ \& \&(u D(5)| |$ in(utciTO1))); endif if $t==6$ then return $u F(6)|\mid(u F D(6) \& \&(u D(6)$ || in(utciTO1))); endif if $t==7$ then return $u F(7)|\mid(u F D(7) \& \&(u D(7)$ || in(utciTO1))); endif return $u F(t)|\mid(u F D(t) \& \&(u D(t)| | d r s(t)))$; end
$\operatorname{dUTCi}(f, t)=((u F(f)| | \operatorname{uFD}(f)) \& \&((u G O(x p)==0)| | e x(t))) ;$
$\operatorname{dCLFd}(f, t)=c I M(t)\|(c D D(t) \& \& \operatorname{drs}(t))\|(c P S(t) \& \& d r s(t)) ;$
$\operatorname{dCLFi}(f, t)=\operatorname{cIM}(f)| | \operatorname{cDD}(f)| | c H(x p)| |(c P S(t) \& \& e x(t)) ;$
$\operatorname{dPSVPd}(f, t)=d r s(t) ;$
$\operatorname{dPSVPe}(f, t)=\operatorname{exm}(t) ;$
$\operatorname{dSTGd1}()=d r(A)| | d r(B)| | d r(F)| | d r(G) ;$
dSTGe1 () = er (A) || er (B) || er(F) || er (G);
dPSVPd1() = pdp(A) || pdp(B) || pdp(F) || pdp(G);
$\operatorname{dPSVPe} 1()=\operatorname{pep}(A) \quad| | \operatorname{pep}(B)| | \operatorname{pep}(F)| | \operatorname{pep}(G) ;$
$\operatorname{dUTCd}(t)=u F(t)| |(\operatorname{uFD}(t) \& \&(u D(t)| | \operatorname{dr}(A)| | \operatorname{dr}(B)| | \operatorname{dr}(F)| | d r(G)))$;
$\operatorname{dUTCil}(f, t)=((u F(f)| | \operatorname{uFD}(f)) \& \&((u G O(x p)==0)| | e x(t)))$;
$\operatorname{dCLFd}(t)=c I M(t) \|(C D D(t) \& \&(d r(A)\|d r(B)\| d r(F)| | d r(G)))| |(C P S(t) \& \&(d r(A)| | d r(B)| | d r(F)| | d r(G))) ;$
$\operatorname{dCLFi1}(f, t)=C I M(f)| | C D D(f)| | c H(x p)| |(c P S(t) \& \& e x(t)) ;$
$\operatorname{dSTGd2}()=d r(A)| | d r(C)| | d r(F)| | d r(G)| | d r(I) ;$
dSTGe2() $=\operatorname{er}(A)| | \operatorname{er}(C)| | \operatorname{er}(F)| | \operatorname{er}(G)| | \operatorname{er}(I) ;$
$\operatorname{dPSVPd} 2()=\operatorname{pdp}(A)| | \operatorname{pdp}(C)| | \operatorname{pdp}(F)| | \operatorname{pdp}(G)| | \operatorname{pdp}(I)$;
$\operatorname{dPSVPe} 2()=\operatorname{pep}(A)| | \operatorname{pep}(C)| | \operatorname{pep}(F)| | \operatorname{pep}(G)| | \operatorname{pep}(I)$;
$\operatorname{dUTCd} 2(t)=u F(t)| |(u F D(t) \& \&(u D(t)| | d r(A)| | d r(C)| | d r(F)| | d r(G)| | d r(I)))$;
$\operatorname{dUTCi2}(f, \mathrm{t})=((\mathrm{uF}(\mathrm{f})| | \operatorname{uFD}(\mathrm{f}))$ \&\& ((uGO(xp)==0)$| |$ ex(t)));
$\operatorname{dCLFd} 2(t)=c I M(t) \|(C D D(t) \& \&(d r(A)\|d r(C)\| d r(F) \| d r(G)| | d r(I)))| |(C P S(t) \& \&(d r(A)| | d r(C)| | d r(F)| | d r(G)| | d r(I))) ;$ $\operatorname{dCLFi}(f, t)=C I M(f) \| \operatorname{CDD}(f)| | c H(x p)| |(c P S(t) \& \& e x(t)) ;$
dSTGd3() $=d r(A)| | d r(D)| | d r(H)| | d r(I) ;$
dSTGe3() = er(A) || er(D) || er(H) || er(I);
$\operatorname{dPSVPd}()=\operatorname{pdp}(A)| | \operatorname{pdp}(D)| | \operatorname{pdp}(H)| | \operatorname{pdp}(I)$;
dPSVPe3() $=\operatorname{pep}(A)| | \operatorname{pep}(D)| | \operatorname{pep}(H)| | \operatorname{pep}(I)$;
dUTCd3 (t) $=u F(t)| |(u F D(t) \& \&(u D(t)| | d r(A)| | d r(D)| | d r(H)| | d r(I))) ;$
$\operatorname{dUTCi3}(f, t)=((u F(f)| | \operatorname{uFD}(f)) \& \&((u G O(x p)==0)| |$ ex(t)));
$\operatorname{dCLFd}(t)=\operatorname{cIM}(t) \||(c D D(t) \& \&(d r(A)| | d r(D)| | d r(H)| | d r(I)))| \mid(c P S(t) \& \&(d r(A)| | d r(D)| | d r(H)| | d r(I))) ;$ $\operatorname{dCLFi} 3(f, t)=C I M(f)| | C D D(f)| | c H(x p)| |(c P S(t) \& \& e x(t)) ;$
$\operatorname{dSTGd4}()=d r(A)| | d r(C)| | d r(D)| | d r(I) ;$
dSTGe4() $=\operatorname{er}(\mathrm{A})| | \operatorname{er}(\mathrm{C})| | \operatorname{er}(\mathrm{D})| | \operatorname{er}(\mathrm{I})$;
$\operatorname{dPSVPd} 4()=\operatorname{pdp}(A)| | \operatorname{pdp}(C)| | \operatorname{pdp}(D)| | \operatorname{pdp}(I)$;
dPSVPe4() = pep(A) || pep(C) || pep(D) || pep(I);
$\operatorname{dUTCd} 4(t)=u F(t)| |(u F D(t) \& \&(u D(t)| | d r(A)| | d r(C)| | d r(D)| | d r(I))) ;$
$\operatorname{dUTCi4}(f, t)=((u F(f)| | \operatorname{uFD}(f)) \& \&((u G O(x p)==0)| |$ ex(t)));
$\operatorname{dCLFd} 4(t)=\operatorname{cIM}(t) \|(\operatorname{cDD}(t) \& \&(\operatorname{dr}(A)| | \operatorname{dr}(C)| | \operatorname{dr}(D)| | d r(I)))| |(c P S(t) \& \&(d r(A)| | d r(C)| | d r(D)| | d r(I))) ;$ $\operatorname{dCLFi}(f, t)=C I M(f)\|C D D(f)\| C H(x p) \|(c P S(t) \& \& e x(t)) ;$
$\operatorname{dSTGd5}()=d r(D)| | d r(E)| | d r(H)| | d r(I) ;$
dSTGe5() $=\operatorname{er}(\mathrm{D})| | \operatorname{er}(\mathrm{E})| | \operatorname{er}(\mathrm{H})| | \operatorname{er}(\mathrm{I})$;
dPSVPd5() = pdp(D) || pdp(E) || pdp(H) || pdp(I);
dPSVPe5() $=\operatorname{pep}(\mathrm{D})$ || pep(E) || pep(H) || pep(I);
$\operatorname{dUTCd5}(t)=u F(t)| |(u F D(t) \& \&(u D(t)| | d r(D)| | d r(E)| | d r(H)| | d r(I))) ;$
$\operatorname{dUTCi5}(f, t)=((u F(f)| | \operatorname{uFD}(f)) \& \&((u G O(x p)==0)| | e x(t)))$;
$\operatorname{dCLFd}(t)=c I M(t) \|(c D D(t) \& \&(d r(D)\|d r(E)\| d r(H) \| d r(I)))| |(c P S(t) \& \&(d r(D)| | d r(E)| | d r(H)| | d r(I))) ;$
$\operatorname{dCLFi5}(f, t)=C I M(f) \| \operatorname{CDD}(f)| | c H(x p)| |(c P S(t) \& \& e x(t)) ;$
$\mathrm{dSTGd6}()=\mathrm{dr}(\mathrm{B})| | \mathrm{dr}(\mathrm{F})| | \mathrm{dr}(\mathrm{G})| | \mathrm{dr}(\mathrm{J})$;

General (default) Stage Move Conditions

```
dSTGe6() = er(B) || er(F) || er(G) || er(J);
dPSVPd6() = pdp(B) || pdp(F) || pdp(G) || pdp(J);
dPSVPe6() = pep(B) || pep(F) || pep(G) || pep(J);
dUTCd6(t) = uF(t) || (uFD(t) && (uD(t) || dr(B) || dr(F) || dr(G) || dr(J)));
dUTCi6(f,t) = ((uF(f) || uFD(f)) && ((uGO(xp)==0) || ex(t)));
dCLFd6(t) = cIM(t) || (cDD(t) && (dr(B) || dr(F) || dr(G)|| |r(J))) || (cPS(t) && (dr(B) || dr(F) || dr(G) || dr(J)));
dCLFi6(f,t) = cIM(f) || cDD(f) || cH(xp) || (cPS(t) && ex(t));
dUTCd7(t) = uF(t) || (uFD(t) && (uD(t) || drs(t)));
dUTCi7(f,t) = ((uF(f) || uFD(f)) && ((uGO(xp)==0) || ex(t)));
dCLFd7(t) = cIM(t) || (cDD(t) && (drs(t))) || (cPS(t) && (drs(t)));
dCLFi7(f,t) = CIM(f) || CDD(f) || cH(xp) || (cPS(t) && ex(t));
```


SYSTEM PARAMETERS

UK Parameters

Name	Description	Min	Max	Def	Value
MAN_TIMEOUT	Manual control timeout	60	600	600	600
MAN_DEMAND_ERROR	Duration of the manual demand error indication	0	60	5	5
MAN_ENABLE	Manual control enabled.	0	1	1	1
DFM_FUNC	Bit mask specifying behaviour of DFM indicator	0	999	1	1
CLF_TIMER_SYNC	Duration of the CLF group Timer Synchronisation Signal	0	0	0	0
UTC_TS	Time in HH:MM used for COTU_TS	0	2359	1200	1200
UTC_FORCE_TIMEOUT	The force bit watchdog timeout	120	300	200	200
UTC_FORCE_ACCEPT	The force accept timeout in system ticks.	1	10	4	4
UTC_LO_DELAY	Delay in seconds before COTU_LO changes is accepted.	0	99	10	10
UTC_RT_HOUR	Hours used for RT reply bit ($-1=$ any hour).	-1	23	0	0
UTC_RT_MIN	Minutes used for RT reply bit (-1 = any minute).	-1	59	0	0
UTC_RT_SEC	Seconds used for RT reply bit	-1	59	0	0
UTC_RT_DURATION	Duration of the RT reply bit in seconds	1	10	3	3
UTC_CG_DURATION	Duration of the CG reply bit in seconds	1	10	3	3
UTC_TSR_DURATION	Duration of the TSR reply bit in seconds	1	10	3	3
UTC_G1G2_FUNC	Bit mask specifying behaviour of G1/G2 reply bits	0	255	1	1
UTC_RR_FUNC	Bit mask specifying behaviour of RR reply bit	0	255	14	14
UTC_PV_ACCEPT	The PV accept time in system ticks	0	255	0	0
UTC_PV_HOLD	The PV hold time in system ticks	0	255	40	40
UKSTG_DIM_ALARM	```The maximum time [in hours] for dimmed operation (-1 = solar cell disabled, 0 = enabled without timeout processing)```	-1	100	24	24
UKSTG_DIM_FILTER	The call/cancel delay [in sec] for the DIM relays	0	255	15	15
UTC_CRB_PULSE_ON_TIME	CRB On Timer	0	1800	600	600
UTC_CRB_PULSE_OFF_TIME	CRB Off Timer	0	10	2	2

System Parameters

Name	Description	Min	Max	Value
MMI 8408	XMMI: 8×40 MMI	0	1	1
XIN_L	XIN_L: Number of IN logging lines	1	999	10
xout_L	XOUT_L: Number of OUT logging lines	1	999	10
XDET_L	XDET_L: Number of DET logging lines	1	999	100
XDET_F	XDET_F: Status in case of fault	0	2	0
XSG_L	XSG_L: Number of SG logging lines	0	999	100
Хнтт	XHTTP: Presence of web server	0	1	1
XHTTP_PORT	XHTTP_PORT: Webserver port	0	65535	80
XLM_MAL	XLM_MAL: Go to major alarm if power reference(s) are not set	0	1	0
XLM_RLM	XLM_RLM: RLM callback interval in 0.1 [s]	0	100	10
XLM_T	XLM_T: Tracking off / on	0	20	5
XLM_TF	XLM_TF: Tracking filter	1	20	8
XLM_NV	XLM_NV: Nominal (bright) voltage	0	240	230
XLM_MON	XLM_MON: Monitoring type	0	10	3
XLM_AC	XLM_AC: Automatic calibration	0	1	1
XLM_DIM	XIM_DIM: Bright Din Calibration off / on	0	1	1
CLF_SYNC	CLF Synchronisation option.	0	3	0
CLF_SYNC_WDAY	CLF Weekly sync is done on..	1	7	1
CLE_TIMER_SYNC	Duration of the CLF group Timer Synchronisation Signal	0	2400	600
CLF_NON_BASE_TIME	Select base time or non base time (0 or 1)	0	1	1
XIOTU_RTS	RTS activated after \# received characters (use 1, 2 or 3)	1	3	1
XIOTU_SCOOT	Default bit number used for scoot counted detectors (0 to 7)	0	7	0
XIOTU_CTS	CTS timeout per 10 ms	4	10	6
UKMP_TYPE	UK Manual panel type (0=std, 1=ped, 2=multiple stages)	0	2	2
ENGTERM_BAUD	Engterm baudrate	0	99999	9600
HCH_ALLRED	Use HCH for all red stage moves	0	1	1
HCH_SWOFF	Use HCH for switch off stage moves	0	1	0
PT_SYNC	Synchronize move to part time mode	0	1	1
CLE_MANUAL_STEP	Enable the Manual Step	0	1	0
CLF_DEFAULT_PLAN		-1	999	0
CLF_MANUAL_MEMOS	Memo for the manual step	0	1	0
COMPRESS_HARDWARE	Compress Hardware	0	1	0
XWDS_SENSOR_TIMEOUT	Wireless Detection sensor time out value	0	65535	60
ALERTPLUS_ENABLE	Alert+: Enable the service	0	1	0
ALERTPLUS_NRSESSIONS	Alert+: Number of sessions	1	99	2
ALERTPLUS_LOGINUSERG1	Alert+: Login code for user group 1	0	9999	0

Name	Description	Min	Max	Value
ALERTPLUS_LOGINUSERG2	Alert+: Login code for user group 2	0	9999	0
ALERTPLUS_LOGINUSERG3	Alert+: Login code for user group 3	0	9999	0
ALERTPLUS_LOGINUSERG4	Alert+: Login code for user group 4	0	9999	0
IMFLOW_ENABLE	ImFlow enabled	0	1	0
IMFLOW_WDG_TIME	ImFlow: Wait time for deadlock supervision [s]	1	999	300
IMFLOW_MAX_WDG_RETRIES	ImFlow: Max. retries on deadlocks in UTC control	1	99	5
IMFLOW_MAX_CONFL_RETRIES	ImFlow: Max. retries on conflicts in UTC control	1	99	1
IMFLOW_SIM_IF	ImFlow Sim. interface	0	1	1
IMFLOW_TDC	ImFlow TDC logging	0	1	0

Traffic Data Collector (TDC)

TDC enabled	Persistent	Readonly	MF (max. files)	Assigned memory
No	0	0	0	1 Mb

MEMO FIELDS

HISTORY	
Description	Text in the History text block between: --CREDAT-- and --UPDATE--
Contents	* This is memofield HISTORY

B_HISTORY		
Description	Text in the History text block between: --CREDAT-- and --UPDATE-- (AMSEC1.CNF)	
Contents	; This is memofield HISTORY_B	

ABC_INC		
Description	Code at the end of the file before the end of file remark (AMSEC1.CNF)	
Contents	; This is memofield AMSEC_INC	

XP1_INC		
Description	Code at the begin of the file, just below History, under the heading 'XP1_INC'.	
Contents	/* This is memofield XP1_INC */	

XP2_INC	
Description	Code under the heading 'XP2_INC', just before the 'XIN INPUTS' definitions.
Contents	/* This is memofield XP2_INC */

XP3_INC	
Description	Code under the heading 'XP3_INC', at the end of the file.
Contents	```/* This is memofield XP3_INC */ P("MPDISO.R1") { P(0);D(1); P(1);D(1); P(2);D(1); P(3);D(1); P(4);D(1); P(5);D(1); P(6);D(1); P(7);D(1); }```

SADAT_INC
Description Code at end of the file. (SADAT.CNF)
Contents \quad /* This is memofield SADAT INC */
/* Function Stops CER Dets Extending phase A */
P("DFUNC.R30")
/* P(Clearance Det); D(0b00000000); */

VMFUNC_INC1	
Description	VMFUNC process conditions
Contents	/* This is memofield VMFUNC_INC1 */

VMFUNC_INC2	
Description	VMFUNC process conditions
Contents	/* This is memofield VMFUNC_INC2 */

HARDWARE CONFIGURATION

Device counts

Lamp control devices	Count	Detection devices	Count	I/O devices	Count
VIRTUAL-LCM	3	ED316	0	IO1616	
LCM	3	MTS4E	4	RIO	
RLU	0	WDS	0		
RLU-9	0	FLIR-ZONE	0		
		FLIR-OUTPUT	0		
Dummy-Phase	0	Dummy-Detector	2		

Optional devices	Setting
Manual Panel Type	Multi stage
Manual Panel Flashing	Disabled
Solar Cell Monitor	24 hour time out
Dimming Operating	ELV 24V Solar Cell

Configuration - RLU / LCM

RLU	LCM

Configuration - ED316 / MTS4E

ED316	MTS4E
	MTS $4 E$ --- Unit: 01 --- 001: Detector AIN11 002: Detector AIN12 003: Detector AX1 004: Detector AX2 --- Unit: 02 --- 001: Detector BIN13 002: Detector BIN14 003: Detector BX3 004: Detector BX4 --- Unit: 03 --- 001: Detector CIN15 002: Detector CX5 003: Detector CSL25 004: Detector DIN16 --- Unit: 04 --- 001: Detector DX6 002: Detector DSL26 003: Detector EX7 004: Detector ESL27

Configuration - WDS

WDS

IOT State - Detection

WDS	
WDS	
Unit	Addr
$=======$	
$==============$	

FLIR-ZONE		FLIR-OUTPUT	
FLIR-ZONE		FLIR-OUTPUT	
Unit Addr	*	Unit Addr	

IOT State - IO1616, RIO

IN	OUT

\qquad

IN			OUT		
IO1616-IN			IO1616-OUT		
Unit	Addr	*		Addr	*
01	001	UTC_I1	01	001	UTC_01
01	002	UTC_I2	01	002	UTC_-02
01	003	UTC_I3	01	003	UTC-03
01	004	UTC_I4	01	004	UTC-04
01	005	UTC_I5	01	005	UTC_05
01	006	UTC_I6	01	006	UTC-06
01	007	UTC_I7	01	007	UTC-07
01	008	sispwr	01	008	UTC_-08
01	009	sisflt	01	009	UTC_-09
01	010	UTC_I10	01	010	UTC-010
01	011	UTC-I11	01	011	UTC-011
01	012	UTC_I12	01	012	UTC_O12
01	013	UTC_I13	01	013	UTC_-013
01	014	UTC-I14	01	014	UTC-014
01	015	UTC-I15	01	015	UTC-015
01	016	UTC_I16	01	016	UTC_-016
02	001	PBFU1	02	001	MDET1
02	002	PBUF2	02	002	MDET2
02	003	PbuF3	02	003	MDET3
02	004	PBUF4	02	004	MDET4
02	005	PBUG1	02	005	MDET5
02	006	PBUG2	02	006	MDET6
02	007	PBUG3	02	007	MDET7
02	008	PBUG4	02	008	MDET11
02	009	PBUH1	02	009	MDET12
02	010	PBUH2	02	010	MDET13
02	011	PBUH3	02	011	MDET14
02	012	PBUH4	02	012	MDET15
02	013	PBUI1	02	013	MDET16
02	014	PBUI2	02	014	MDET20
02	015	PBUI3	02	015	MDET21
02	016	PBUI4	02	016	MDET22
03	001	PBUJ1	03	001	MDET23
03	002	PBUJ2	03	002	MDET24
03	003	PBUJ3	03	003	MDET25
03	004	PBUJ4	03	004	MDET26
03	005	ONXH1	03	005	MDET27
03	006	ONXH2	03	006	SISPWR
03	007	ONXI1	03	007	SISFLT
03	008	ONXI2			
03	009	ONXJ1			
03	010	ONXJ2			

IOT State - Controller connections (KOPMV)

KOPMV-IN		KOPMV-OUT	
KOPMV-IN		KOPMV-OUT	
Unit Addr	*	Unit Addr	*

INPUTS and OUTPUTS

Detectors

ID	Detector Name	Invert	Unit Type	Unit Pos.
1	AIN11	No	MTS $4 \mathrm{E}-1$	1
2	AIN12	No	MTS4E-1	2
3	AX1	No	MTS4E-1	3
4	AX2	No	MTS4E-1	4
5	BIN13	No	MTS4E-2	1
6	BIN14	No	MTS4E-2	2
7	BX3	No	MTS 4E-2	3
8	BX4	No	MTS 4E-2	4
9	CIN15	No	MTS 4E-3	1
10	CX5	No	MTS 4E-3	2
11	CSL25	No	MTS 4E-3	3
12	DIN16	No	MTS 4E-3	4
13	DX6	No	MTS4E-4	1
14	DSL26	No	MTS4E-4	2
15	SPARE_1	No	DUMMY-1	1
16	EX7	No	MTS4E-4	3
17	ESL27	No	MTS 4E-4	4
18	SPARE_2	No	DUMMY-2	1
19	PBFU1	No	IO1616-2	1
20	PBUF2	No	IO1616-2	2
21	PBUF3	No	IO1616-2	3
22	PBUF4	No	I01616-2	4
23	PBUG1	No	IO1616-2	5
24	PBUG2	No	I01616-2	6
25	PBUG3	No	I01616-2	7
26	PBUG4	No	IO1616-2	8
27	PBUH1	No	IO1616-2	9
28	PBUH2	No	I01616-2	10
29	PBUH3	No	IO1616-2	11
30	PBUH4	No	I01616-2	12
31	PBUI1	No	IO1616-2	13
32	PBUI2	No	I01616-2	14
33	PBUI3	No	IO1616-2	15
34	PBUI4	No	I01616-2	16
35	PBUJ1	No	IO1616-3	1
36	PBUJ2	No	I01616-3	2
37	PBUJ3	No	I01616-3	3
38	PBUJ4	No	IO1616-3	4
39	ONXH1	Yes	I01616-3	5
40	ONXH2	Yes	IO1616-3	6
41	ONXI1	Yes	IO1616-3	7
42	ONXI2	Yes	IO1616-3	8
43	ONXJ1	Yes	IO1616-3	9
44	ONXJ2	Yes	IO1616-3	10

Inputs

ID	Input	Label	Invert	Toggle	Unit Type	Unit Pos.
1	sispwr		No	No	IO1616-1	8
2	sisflt		No	No	IO1616-1	9
3	UTC_I1	F1	No	No	IO1616-1	1
4	UTC_I2	F2	No	No	IO1616-1	2
5	UTC_I3	F3	No	No	IO1616-1	3
6	UTC_I4	F4	No	No	IO1616-1	4
7	UTC_I5	F5	No	No	I01616-1	5
8	UTC_I6	F6	No	No	IO1616-1	6
9	UTC_I7	F7	No	No	IO1616-1	7
10	UTC_I8		No	No	-	8
11	UTC_I9		No	No	-	9
12	UTC_I10		No	No	IO1616-1	10
13	UTC_I11		No	No	IO1616-1	11
14	UTC_I12		No	No	IO1616-1	12
15	UTC_I13		No	No	IO1616-1	13
16	UTC_I14	T01	No	No	IO1616-1	14
17	UTC_I15		No	No	I01616-1	15

ID	Input	Label	Invert	Toggle	Unit Type	Unit Pos.
18	UTC_I16		No	No	IO1616-1	16
19	DIM_IN		No	No	DIMMING	1

Outputs

ID	Output	Label	Invert	Unit Type	Unit Pos.
1	MDET1		No	IO1616-2	1
2	MDET2		No	IO1616-2	2
3	MDET3		No	I01616-2	3
4	MDET4		No	I01616-2	4
5	MDET5		No	IO1616-2	5
6	MDET6		No	I01616-2	6
7	MDET 7		No	IO1616-2	7
8	MDET11		No	I01616-2	8
9	MDET12		No	I01616-2	9
10	MDET13		No	I01616-2	10
11	MDET14		No	IO1616-2	11
12	MDET15		No	101616-2	12
13	MDET16		No	IO1616-2	13
14	MDET20		No	I01616-2	14
15	MDET21		No	I01616-2	15
16	MDET22		No	IO1616-2	16
17	MDET23		No	101616-3	1
18	MDET24		No	I01616-3	2
19	MDET25		No	IO1616-3	3
20	MDET26		No	IO1616-3	4
21	MDET27		No	I01616-3	5
22	SISPWR		No	IO1616-3	6
23	SISFLT		No	I01616-3	7
24	UTC_01	G1	No	I01616-1	1
25	UTC_02	G2	No	I01616-1	2
26	UTC_03	G3	No	I01616-1	3
27	UTC_04	G4	No	I01616-1	4
28	UTC_05	G5	No	IO1616-1	5
29	UTC_06	G6	No	101616-1	6
30	UTC_07	G7	No	I01616-1	7
31	UTC_08	LE	No	I01616-1	8
32	UTC_09		No	I01616-1	9
33	UTC_O10		No	I01616-1	10
34	UTC_011		No	101616-1	11
35	UTC_012		No	101616-1	12
36	UTC_O13		No	I01616-1	13
37	UTC_O14		No	IO1616-1	14
38	UTC_015	CRB1	No	I01616-1	15
39	UTC_016		No	IO1616-1	16
40	DIM_OUT		No	DIMMING	1

APPENDIX C

Saturation Flows					West Bound A5 (Site 1 Location 14) at Junction 10											
Stop Line	Cycle	Jack H			Lane 3											
		Seconds of Saturated Flow - Stop Line														
		6	12	18	24	30	36	42	48	54	1 m	1 m 6	TOTAL	TIME PERIODS	TIME	
	1	2.3	3.0	3.0	2.0	3.0	1.0						11	4	24	
	2	3.0	3.0	3.0	3.0	4.0	3.0						16	5	30	
	3	3.0	2.0	2.3	2.0	4.0	3.0	4.0					17	6	36	
	4	2.0	4.0	3.0	4.0	2.5	2.0						14	4	24	
	5	2.0	3.0	3.0	3.0								9	3	18	
	6	2.0	4.0	3.0	4.0	3.0							14	4	24	
	7	3.0	3.0	3.0	3.0								9	3	18	
	8	3.0	2.0	4.0	2.0	3.0							11	4	24	
	9	2.5	3.0	3.0	1.0								6	2	12	
	10	3.0	2.0	4.6	3.0	3.0	4.0	1.0					17	5	30	
	Total	26	29	32	27	23	13	5	0	0	0	0				
														123		240
			123			"=" traff	not in	din s	on flo	ulatio						
TOTAL TIME		240			Addition											
SAT FLOW		1851														

Saturation Flows			23-Mar-22		M42 Northbound Slip Road Circulating (Site 1 Location 10) on Junction 10										
Stop Line Cycle		Jack H	AM		Lane 1 nearside										
		Seconds of Saturated Flow - Stop Line													
		6	12	18	24	30	36	42	48	54	1 m	1 m 6	TOTAL	TIME PERIODS	TIME
1		2.0	4.0	4.0	1.0								8	2	12
	2	2.0	3.0	4.0	2.3	4.3	3.0	3.8					20	6	36
	3	2.0	3.8	3.0	3.3	2.5	3.0	3.0	4.0	2.0			23	7	42
	4	3.3	3.0	3.5	3.5	4.0	3.0	4.0	3.0	2.5			24	7	42
	5	3.0	2.0	3.0	2.5								5	2	12
	6	2.0	3.5	3.3	4.3	4.0	3.5	1.0					19	5	30
	7	2.0	2.3	4.0	4.3	1.0							11	3	18
	8	2.3	3.0	3.0	3.0	4.0	4.0	4.0	2.0				21	6	36
	9	2.0	4.0	3.0	2.0	4.3	3.0	4.0	3.0				20	6	36
	10	1.5	2.0	4.0	4.0	2.0	4.0						16	5	30
	Total	22	31	35	30	26	24	20	12	5	0	0			
													167		294
TOTAL FL	OW	167			"=" traffi	not in	in	on flow	ulatio						
TOTAL TIM		294			Addition	en tim									
SAT FLOW		2039													

APPENDIX D

				AM Peak		PM Peak	
M42 Junction 10							
Traffic Stream(s)	Lane	Saturation Flow pcu/hr	Model Output	Observed Queue	Results	Observed Queue	Results
1/1	M42 Northbound Offslip Lane 1	1740	Queue Aver Delay	7	$\begin{gathered} 7 \\ 33 \text { secs } \end{gathered}$	7	$\begin{gathered} 8 \\ 48 \text { secs } \end{gathered}$
1/2	M42 Northbound Offslip Lane 2	1740	Queue Aver Delay	4	$\begin{gathered} 3 \\ 25 \text { secs } \end{gathered}$	5	$\begin{gathered} 6 \\ 31 \text { secs } \end{gathered}$
1/3	M42 Northbound Offslip Lane 3	1740	Queue Aver Delay	3	$\begin{gathered} 2 \\ 21 \text { secs } \end{gathered}$	3	$\begin{gathered} 3 \\ 25 \text { secs } \end{gathered}$
3/1	M42 Northbound Offslip Lane 4	1849	Queue Aver Delay	4	$\begin{gathered} 6 \\ 30 \text { secs } \end{gathered}$	6	$\begin{gathered} 7 \\ 37 \text { secs } \end{gathered}$
3/2	M42 Northbound Offslip Lane 5	1849	Queue Aver Delay	7	$\begin{gathered} 4 \\ 24 \text { secs } \end{gathered}$	9	$\begin{gathered} 4 \\ 27 \text { secs } \end{gathered}$
7/1	M42 Northbound Circulating Lane 1	2039	Queue Aver Delay	15	$\begin{gathered} 13 \\ 13 \text { secs } \end{gathered}$	16	$\begin{gathered} \hline 15 \\ 14 \text { secs } \end{gathered}$
7/2	M42 Northbound Circulating Lane 2	1840	Queue Aver Delay	12	$\begin{gathered} 13 \\ 16 \text { secs } \end{gathered}$	12	$\begin{gathered} 11 \\ 14 \text { secs } \end{gathered}$
$\begin{gathered} 8 / 1+9 / 1+ \\ 11 / 1 \end{gathered}$	A5 Eastbound Lane 1	1828	Queue Aver Delay	37	$\begin{gathered} 56 \\ 3 \mathrm{~m} 35 \mathrm{~s} \end{gathered}$	35	$\begin{gathered} 46 \\ 2 \mathrm{~m} 49 \mathrm{~s} \end{gathered}$
8/2	A5 Eastbound Lane 2	1900	Queue Aver Delay	10	$\begin{gathered} 5 \\ 24 \text { secs } \end{gathered}$	10	$\begin{gathered} 5 \\ 23 \text { secs } \end{gathered}$
$\begin{gathered} 8 / 3+9 / 2+ \\ 11 / 2 \end{gathered}$	A5 Eastbound Lane 3	1900	Queue Aver Delay	33	$\begin{gathered} 21 \\ 1 \mathrm{~m} 11 \mathrm{~s} \end{gathered}$	25	$\begin{gathered} 19 \\ 1 \mathrm{~m} 10 \mathrm{~s} \end{gathered}$
12/1	A5 Eastbound Circulating Lane 1	1846	Queue Aver Delay	6	$\begin{gathered} 4 \\ 15 \text { secs } \end{gathered}$	4	$\begin{gathered} 5 \\ 18 \text { secs } \end{gathered}$
12/2	A5 Eastbound Circulating Lane 2	1878	Queue Aver Delay	7	$\begin{gathered} 7 \\ 21 \text { secs } \end{gathered}$	7	$\begin{gathered} 7 \\ 21 \text { secs } \end{gathered}$
12/3	A5 Eastbound Circulating Lane 3	1878	Queue Aver Delay	5	$\begin{gathered} 5 \\ 17 \text { secs } \end{gathered}$	4	$\begin{gathered} 3 \\ 19 \text { secs } \end{gathered}$
12/4	A5 Eastbound Circulating Lane 4	1878	Queue Aver Delay	1	$\begin{gathered} 1 \\ 14 \text { secs } \end{gathered}$	1	$\begin{gathered} 1 \\ 16 \text { secs } \end{gathered}$
14/1	Green Lane Lane 1	1602	Queue Aver Delay	3	$\begin{gathered} 4 \\ 59 \text { secs } \end{gathered}$	6	$\begin{gathered} 5 \\ 47 \text { secs } \end{gathered}$
14/2	Green Lane Lane 2	1602	Queue Aver Delay	4	$\begin{gathered} 9 \\ 2 \mathrm{~m} 3 \mathrm{~s} \end{gathered}$	7	$\begin{gathered} 8 \\ 1 \mathrm{~m} \text { 12s } \end{gathered}$
15/1	Green Lane Circulating Lane 1	1950	Queue Aver Delay	9	$\begin{gathered} 10 \\ 6 \mathrm{secs} \end{gathered}$	6	$\begin{gathered} 9 \\ 9 \text { secs } \end{gathered}$
15/2	Green Lane Circulating Lane 2	1745	Queue Aver Delay	9	$\begin{gathered} 6 \\ 7 \text { secs } \end{gathered}$	8	$\begin{gathered} 5 \\ 8 \mathrm{secs} \end{gathered}$
15/3	Green Lane Circulating Lane 3	1745	Queue Aver Delay	1	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	1	$\begin{gathered} 1 \\ 3 \mathrm{secs} \end{gathered}$
18/1	M42 Southbound Offslip Lane 1	1804	Queue Aver Delay	4	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$	3	$\begin{gathered} 1 \\ 19 \text { secs } \end{gathered}$
18/2	M42 Southbound Offslip Lane 2	1813	Queue Aver Delay	5	$\begin{gathered} 9 \\ 1 \mathrm{~m} 9 \mathrm{~s} \end{gathered}$	4	$\begin{gathered} 4 \\ 28 \text { secs } \end{gathered}$
18/3	M42 Southbound Offslip Lane 3	1813	Queue Aver Delay	6	$\begin{gathered} 8 \\ 49 \text { secs } \end{gathered}$	6	$\begin{gathered} 4 \\ 31 \text { secs } \end{gathered}$
17/1	M42 Southbound Circulating Lane 1	1956	Queue Aver Delay	5	$\begin{gathered} 5 \\ 6 \text { secs } \end{gathered}$	6	$\begin{gathered} 5 \\ 7 \mathrm{secs} \end{gathered}$
17/2	M42 Southbound Circulating Lane 2	1956	Queue Aver Delay	9	$\begin{gathered} 12 \\ 12 \text { secs } \end{gathered}$	8	$\begin{gathered} 12 \\ 11 \text { secs } \end{gathered}$
17/3	M42 Southbound Circulating Lane 3	1800	Queue Aver Delay	7	$\begin{gathered} 3 \\ 8 \mathrm{secs} \end{gathered}$	7	$\begin{gathered} 12 \\ 11 \text { secs } \end{gathered}$
17/4	M42 Southbound Circulating Lane 4	1800	Queue Aver Delay	1	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$	2	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$
23/1	A5 Westbound Lane 1	1930	Queue Aver Delay	5	$\begin{gathered} 4 \\ 19 \text { secs } \end{gathered}$	6	$\begin{gathered} 6 \\ 16 \text { secs } \end{gathered}$
23/2	A5 Westbound Lane 2	1851	Queue Aver Delay	6	$\begin{gathered} 3 \\ 17 \text { secs } \end{gathered}$	5	$\begin{gathered} 4 \\ 15 \text { secs } \end{gathered}$
$\begin{gathered} 23 / 3+24 / 1 \\ +25 / 1 \end{gathered}$	A5 Westbound Lane 3	1851	Queue Aver Delay	13	$\begin{gathered} 10 \\ 30 \mathrm{secs} \end{gathered}$	15	$\begin{gathered} 14 \\ 1 \mathrm{~min} \end{gathered}$
23/4 + 24/1	A5 Westbound Lane 4	1851	Queue Aver Delay	7	$\begin{gathered} 4 \\ 19 \text { secs } \end{gathered}$	8	$\begin{gathered} 7 \\ 22 \text { secs } \end{gathered}$
22/1	A5 Westbound Circulating Lane 1	1797	Queue Aver Delay	7	$\begin{gathered} 8 \\ 17 \text { secs } \end{gathered}$	7	$\begin{gathered} 9 \\ 25 \text { secs } \end{gathered}$
22/2	A5 Westbound Circulating Lane 2	1797	Queue Aver Delay	7	$\begin{gathered} \hline 3 \\ 13 \text { secs } \end{gathered}$	9	$\begin{gathered} 4 \\ 16 \text { secs } \end{gathered}$
22/3	A5 Westbound Circulating Lane 3	1902	Queue Aver Delay	5	$\begin{gathered} 3 \\ 11 \text { secs } \end{gathered}$	6	$\begin{gathered} \hline 3 \\ 16 \text { secs } \end{gathered}$
22/4	A5 Westbound Circulating Lane 4	1902	Queue Aver Delay	5	$\begin{gathered} 5 \\ 12 \text { secs } \end{gathered}$	6	$\begin{gathered} 3 \\ 16 \text { secs } \end{gathered}$

28/1 + 29/1	Trinity Road Lane 1	1669	Queue Aver Delay	7	$\begin{gathered} 7 \\ 48 \text { secs } \end{gathered}$	6	$\begin{gathered} 5 \\ 46 \text { secs } \end{gathered}$
28/2	Trinity Road Lane 2	1669	Queue Aver Delay	7	$\begin{gathered} 5 \\ 40 \text { secs } \end{gathered}$	7	$\begin{gathered} 5 \\ 39 \text { secs } \end{gathered}$
27/1	Trinity Road Circulating Lane 1	1846	Queue Aver Delay	3	$\begin{gathered} 3 \\ 7 \mathrm{secs} \end{gathered}$	3	$\begin{gathered} 5 \\ 8 \mathrm{secs} \end{gathered}$
27/2	Trinity Road Circulating Lane 2	1846	Queue Aver Delay	8	$\begin{gathered} 4 \\ 9 \mathrm{secs} \end{gathered}$	10	$\begin{gathered} 7 \\ 10 \text { secs } \end{gathered}$
27/3	Trinity Road Circulating Lane 3	1878	Queue Aver Delay	10	$\begin{gathered} 7 \\ 5 \mathrm{secs} \end{gathered}$	9	$\begin{gathered} 6 \\ 6 \text { secs } \end{gathered}$
27/4	Trinity Road Circulating Lane 4	1878	Queue Aver Delay	7	$\begin{gathered} 12 \\ 8 \mathrm{secs} \end{gathered}$	8	$\begin{gathered} 5 \\ 9 \mathrm{secs} \end{gathered}$
A5/ Birch Coppice							
31/1	A5 Eastbound Ahead Lane 1	1814	Queue Aver Delay	10	$\begin{gathered} 7 \\ 8 \text { secs } \end{gathered}$	8	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$
31/2	A5 Eastbound Ahead Lane 2	2082	Queue Aver Delay	6	$\begin{gathered} 4 \\ 5 \mathrm{secs} \end{gathered}$	5	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$
32/1	A5 Eastbound Right Turn Lane 3	1960	Queue Aver Delay	6	$\begin{gathered} 5 \\ 36 \text { secs } \end{gathered}$	5	$\begin{gathered} 6 \\ 35 \text { secs } \end{gathered}$
32/2	A5 Eastbound Right Turn Lane 4	1667	Queue Aver Delay	6	$\begin{gathered} 6 \\ 37 \text { secs } \end{gathered}$	4	$\begin{gathered} 3 \\ 33 \text { secs } \end{gathered}$
37/1	A5 Westbound Ahead Lane 1	1751	Queue Aver Delay	2	$\begin{gathered} 2 \\ 16 \text { secs } \end{gathered}$	2	$\begin{gathered} 2 \\ 15 \text { secs } \end{gathered}$
37/2 + 38/1	A5 Westbound Ahead Lane 2	2015	Queue Aver Delay	10	$\begin{gathered} 8 \\ 20 \text { secs } \end{gathered}$	10	$\begin{gathered} 10 \\ 21 \text { secs } \end{gathered}$
37/3 + 38/2	A5 Westbound Ahead Lane 3	2015	Queue Aver Delay	16	$\begin{gathered} 9 \\ 23 \text { secs } \end{gathered}$	18	$\begin{gathered} 13 \\ 25 \text { secs } \end{gathered}$
42/1	Birch Coppice Left Turn Lane 1	1695	Queue Aver Delay	5	$\begin{gathered} 7 \\ 37 \text { secs } \end{gathered}$	6	$\begin{gathered} 8 \\ 41 \text { secs } \end{gathered}$
42/2	Birch Coppice Left Turn Lane 2	1983	Queue Aver Delay	5	$\begin{gathered} 4 \\ 31 \text { secs } \end{gathered}$	8	$\begin{gathered} 6 \\ 36 \text { secs } \end{gathered}$
43/1	Birch Coppice Right Turn Lane 3	1690	Queue Aver Delay	3	$\begin{gathered} 2 \\ 36 \text { secs } \end{gathered}$	5	$\begin{gathered} 5 \\ 46 \text { secs } \end{gathered}$
A5/ Core 42							
46/1	A5 Eastbound Ahead Lane 1	1833	Queue Aver Delay	1	$\begin{gathered} 1 \\ 2 \mathrm{secs} \end{gathered}$	5	$\begin{gathered} 3 \\ 4 \text { secs } \end{gathered}$
46/2	A5 Eastbound Ahead Lane 2	2082	Queue Aver Delay	1	$\begin{gathered} 1 \\ 1 \mathrm{sec} \end{gathered}$	2	$\begin{gathered} 2 \\ 2 \mathrm{secs} \end{gathered}$
47/1	A5 Eastbound Right Turn Lane 3	1667	Queue Aver Delay	2	$\begin{gathered} 1 \\ 36 \text { secs } \end{gathered}$	1	$\begin{gathered} 1 \\ 34 \text { secs } \end{gathered}$
49/1	A5 Westbound Ahead \& Left Turn Lane 1	1957	Queue Aver Delay	4	$\begin{gathered} 6 \\ 5 \mathrm{secs} \end{gathered}$	5	$\begin{gathered} 6 \\ 7 \text { secs } \end{gathered}$
49/2	A5 Westbound Ahead Lane 2	1909	Queue Aver Delay	5	$\begin{gathered} 4 \\ 5 \mathrm{secs} \end{gathered}$	6	$\begin{gathered} 7 \\ 7 \text { secs } \end{gathered}$
51/1	Core 42 Left Turn Lane 1	1695	Queue Aver Delay	1	$\begin{gathered} 1 \\ 31 \text { secs } \end{gathered}$	2	$\begin{gathered} 1 \\ 32 \text { secs } \end{gathered}$
52/1	Core 42 Right Turn Lane 2	1690	Queue Aver Delay	0	$\begin{gathered} 1 \\ 5 \mathrm{~m} 21 \mathrm{~s} \end{gathered}$	1	$\begin{gathered} 1 \\ 1 \mathrm{~m} 49 \mathrm{~s} \end{gathered}$
			Network PI	3918.78		4030.28	

1 INTRODUCTION

1.1 Tetra Tech (TT) have been appointed by Hodgetts Estates to provide technical support for their outline planning application for a proposed development of up to 100,000sqm of employment uses and 150 space overnight lorry park (including an associated 400sqm amenity block) on land to the northeast of M42 Junction 10. The application is also supported by a Transport Assessment (TA) prepared by Bancroft Consulting, Version C dated November 2021.
1.2 A Modelling Strategy Report dated 18 ${ }^{\text {th }}$ March 2022 was approved by Warwickshire County Council (WCC) and National Highways (NH). The Modelling Strategy identified the opening and future year assessments for Reference Case and Local Plan scenarios. This report follows the agreed strategy.
1.3 Traffic surveys to underpin a TRANSYT 16 model were undertaken in April 2022 and a network model was prepared. A 2022 Baseline Validation Report, dated 13 ${ }^{\text {th }}$ May 2022 sets out the surveys used, the model structure and its validation. The model was reviewed by AECOM, National Highways (NH) consultants. AECOM provided comments to the model and TT made various adjustments to the model and provided further clarifications. On $1^{\text {st }}$ August 2022 the base TRANSYT 16 model was approved by AECOM and is suitable for use in assessing the future year scenarios.

2 AGREED SCOPE OF NETWORK

2.1 It has been agreed in the Modelling Strategy Report that in order to test the traffic impacts of the proposed development, the following four junctions require detailed analysis.

1. M42 Junction 10 Interchange (6 arm grade separated signalised roundabout)
2. A5 Watling Street/ Site Access junction (proposed 3 arm signalised junction)
3. A5 Watling Street/ Danny Morson Way (4 arm signalised junction, known as Birch Coppice)
4. A5 Watling Street/ Meridian Drive (3 arm signalised junction, known as Core 42)
2.2 The first stage is now complete which has set up a validated 2022 baseline model of the existing operational performance for junctions 1, 3 and 4. This report considers the performance of the network without the proposed development (junctions 1, 3 and 4) and with the addition of the proposed development generated traffic and its associated access junction (junctions 1, 2, 3 and 4).

3 TRAFFIC FLOWS

Reference Case - 2026 Opening \& 2031 Future Year Flows

3.1 As agreed with NH and WCC, an opening assessment year and future design year assessment is required for the reference case, i.e. without the Local Plan generated traffic and associated highway infrastructure. An opening assessment year of 2026 and future assessment year of 2031 has previously been agreed and will be the years used in this TRANSYT modelling assessment.
3.2 The following scenarios have been modelled in the AM peak (08:00 to 09:00) and PM peak (17:00 to 18:00) periods;
a) 2026 Reference Case - No Development
b) 2031 Reference Case - No Development
3.3 The traffic flows have been extracted from the demand flows supplied by Vectos from the WCC Atherstone A5 PARAMICS model and for ease of reference Bancroft Consulting Figure 10 shows the AM peak flows for scenario a) and Figure 11 shows the PM peak flows also for scenario a) - both attached in Appendix A. Bancroft Consulting Figure 14 shows the AM peak flows for scenario b) and Figure 15 shows the PM peak flows also for scenario b) - both attached in Appendix A.

The traffic flows from the Bancroft TA did not include the Core 42 junction, therefore these have been added to the network diagram. The 2022 traffic surveys (discussed in the 2022 Baseline Validation Report) have been used to establish the current traffic to/ from Core 42 as well as the turning proportions, refer to TT Figure 1 at Appendix B for the AM peak and TT Figure 2 for the PM peak. Core 42 was not fully built and occupied at the time of the 2022
traffic surveys therefore the approved trip generation from the site has been extracted from the supporting Transport Assessment under the planning reference PAP/2013/0272. The turning proportions have been applied to the total predicted generated traffic at Core 42 and the development was assumed to be fully built and occupied for the 2026 and 2031 assessment years.
3.5 The Bancroft Consulting traffic flows show all vehicle movements, plus the HGV vehicle movements. As set out in the agreed LMVR, the flows have been converted to Passenger Car Units (PCU) by adding the HGV flow to the total vehicle movement effectively doubling the HGV flow and is effectively a 2.0 pcu factor. TT Figure 3 attached in Appendix B shows the 2026 Reference Case flows and TT Figure 4 shows the PM peak equivalent. TT Figure 5 attached in Appendix B shows the 2031 Reference Case flows and TT Figure 6 shows the PM peak equivalent.
3.6 The proposed site access junction as shown at TT Drawing B033920-TTE-00-ZZ-PL-H-0002 Rev P01 attached at Appendix C (discussed in more detail below) has been coded into the TRANSYT model to assess the following scenarios;
c) 2026 Reference Case - With Development
d) 2031 Reference Case - With Development
3.7 Bancroft Consulting Figure 12 shows the AM peak flows for scenario c) and Figure 13 shows the PM peak flows also for scenario c) - both attached in Appendix A. Bancroft Consulting Figure 14 shows the AM peak flows for scenario d) and Figure 15 shows the PM peak flows also for scenario d) - both attached in Appendix A.
3.8 For the purpose of the TRANSYT model, the flows have been converted to Passenger Car Units (PCU) as described in para 3.5. TT Figure 7 attached in Appendix B shows the 2026 Reference Case + Development flows and TT Figure 8 shows the PM peak equivalent. TT Figure 9 attached in Appendix B shows the 2031 Reference Case + Development flows and TT Figure 10 shows the PM peak equivalent.

Proposed Site Access Arrangement

3.9 The proposed site access junction as shown at TT Drawing B033920-TTE-00-ZZ-PL-H-0002 Rev P01 attached at Appendix C. At the site access it is proposed to develop a $3^{\text {rd }}$ lane from
the Junction 10 eastbound exit upto the site access stop line. The nearside lane is allocated for left turn and head movements, and the middle and offside lanes for ahead movements only. The A5 eastbound exit would facilitate an offside merge to DMRB standard. The site access would provide three lanes at the stop line, the nearside lane for left turning traffic and the middle and offside lanes for traffic turning right. On the A5 westbound movement it is proposed to retain the two ahead lanes and develop a third lane for traffic turning right into the site. On the westbound approach to Junction 10 it is proposed to lengthen the three lane flared section by circa 80 m to cater for the additional traffic demands.
3.11 Pedestrian and cycle controlled facilities are proposed across the site access junction and pedestrian only controlled facilities the A5 on the eastern side of the junction. The crossings can all run during traffic phases, ensuring no unnecessary delays to vehicles.
3.12 The proposals will also include diverting the 766/767 bus service into the site. In accordance with DMRB the existing eastbound bus layby is relocated to the west and at the same time the layby length will be increased and a modern bus shelter installed.

Local Plan - 2031 Future Year Flows

3.13 As agreed with NH and WCC, and as previously agreed during scooping discussions, a future design year assessment is required for the Local Plan case, which includes all the Local Plan allocations and associated highway infrastructure. A future assessment year of 2031 has been agreed with NH and WCC and will be the year used in this TRANSYT modelling assessment.
3.14 The Local Plan highways schemes and PARAMICS model included a mitigation scheme at Junction 10. It was agreed at a meeting held in March 2022 with NH and WCC that when assessing the network including the traffic associated with the Local Plan allocations, the
scheme at Junction 10 must be included. The Junction 10 proposal was supplied by WCC and is attached at Appendix B as Phil Jones Associates Drawing No. 02853-01 Rev A.

4 REFERENCE CASE MODELLING RESULTS

No Development

4.1 The approved baseline TRANSYT model has been used to assess the predicted performance of the network in 2026 and 2031. The 2022 flows have been replaced by the reference case flows and the 2022 timings were initially used. The model predicted extensive queueing and delays and so improvements to the signal timings were required. The Lane Simulation feature in TRANSYT does not have the capability to optimise the signal timings, therefore the model
was switched to the Platoon Dispersion Model (PDM) with flared approaches and the internal circulatory stop lines on Junction 10 switched to "flared" approaches to model any blocking back effects. The PDM was optimised and an 80 second cycle time for all junctions was considered to provide the lowest Network Performance Index.
4.2 The model was then switched back to Lane Simulation and the signal timings retained. An iterative process was carried out, manually adjusting the signal timings each time to get the network to perform with the lowest queues and delays, similar to how it would operate in the real world under MOVA control. In addition to the manual phase timings, the following changes were also implemented at the A5 Birch Coppice junction;

- The pedestrian phase G (across the A5 westbound movement) was removed from stage 4 in order to increase the phase B phase time (A5 westbound traffic stream).
- The pedestrian phase G was extended between stage 2 and 4 to lengthen the time available for pedestrians to cross the road.
- Within the confines of the intergreen timings, phase D (left turn out of Birch Coppice) was adjusted to start 3 seconds earlier.
4.3 The 2026 and 2031 AM Peak No Development results are shown at Table 4.1 in Appendix D. The results are discussed in more detail later on when comparing to the With Development results.

With Development

The approved baseline TRANSYT model has been updated to incorporate the proposed site access junction arrangement as shown at TT Drawing B033920-TTE-00-ZZ-PL-H-0002 Rev P01 in Appendix C. It should be noted that the proposed westbound flared approach extension to Junction 10 was modelled with a slightly shorter extension of some 50 m . The proposed stage sequence of the new site access junction is shown below at Image 4.1. Phases G, H and J across the site access junction are for pedestrians and cyclists, whilst phases M, L and K across the A5 are for pedestrians only.

Image 4.1- Proposed Site Access Stage Sequence
Stage 1 Stage 2
4.5 The volume of traffic departing the site in the AM (148pcu) and PM (216pcu) peaks is relatively low and as such it is unlikely that the site access arm (Stage 1) will be required every cycle. However, for robustness, Stage 1 has been assumed to be activated every cycle. The volume of right turning vehicles into the site is low at 44 pcu in the AM peak and 14 pcu in the PM peak, therefore Stage 3 which facilitates the phase D right turn has been set up to occur every $2^{\text {nd }}$ cycle.
4.6 It has been assumed for the AM and PM peak scenarios that 20% of traffic travelling eastbound on the A5 at the site access junction will use the offside ahead lane. In the AM peaks it has been assumed that 35% of A5 eastbound ahead traffic will use the nearside lane (+ the left turning traffic) and 45% use the middle lane. The imbalance in ahead flows is to take account of the development generated traffic turning left into the site from the nearside lane. In the PM peaks it has been assumed that 40% of eastbound ahead traffic will use the nearside and middle lanes.

2026 \& 2031 AM Peak Existing Arrangement Summary Results

4.7 The 2026 and 2031 AM Peak results are shown at Table 4.1 in Appendix D.
4.8 The results show that in the 2026 No Development scenario in the AM Peak there is a long queue of over 55 pcu and nearly $31 / 2$ min delay on the A5 Eastbound Lane 1 (stream $8 / 1$ etc.) at Junction 10. The effects of the development generated traffic would increase this queue to 107pcu with a 3 minute increase in delay. The queue in the A5 Eastbound Lane 3 (stream 8/3 etc in the table) increases from 58pcu to 117pcu with a $2^{11 / 2}$ minute increase in delay. On all of the other lanes on the network the impact of the proposed development is considered
negligible to minor with queue increases of no more than 6 pcu and no more than 16 sec increase in delay. The proposed site access junction is predicted to operate well with queues of no more than 15pcu on the A5 eEastbound approach (stream 56/1). Queueing does not extend back to affect the operation of Junction 10. The model predicts a queue of 2 pcu with a 1 min 5 sec delay on the A5 right turn (stream 60/1) into the site.
4.9 In the 2031 AM peak scenario, the effects of the proposed development are similar to 2026 in that the A5Eastbound approach (stream 8/1 etc) to Junction 10 increases from 110pcu queue to 157 pcu with a delay increase of $21 / 2$ mins in the nearside lane, whilst the A5 Eastboundoffside lane (stream $8 / 3$ etc) increases from 82 pcu to 145 pcu with a $21 / 2$ min delay increase. On all of the other lanes on the network the impact of the proposed development is considered negligible to minor with queue increases of no more than 7 pcu and no more than a 22 sec increase in delay. The proposed site access junction is predicted to operate well with queues of no more than 16pcu on the A5 eastbound approach (stream 56/1). Queueing does not extend back to affect the operation of Junction 10. The model predicts a queue of 2 pcu with a 1 min 4 sec delay on the A 5 right turn (stream 60/1) into the site.
4.10 The results demonstrate mitigation is required to reduce the queueing and delays on the A5 eastbound approach to Junction 10, discussed later in this note.

2026 \& 2031 PM Peak Existing Arrangement Summary Results

4.11 The 2026 and 2031 PM Peak results are shown at Table 4.2 in Appendix D.
4.12 The results show that in the 2026 No Development scenario in the PM Peak the queuing on the A5 Eastbound Lane 1 approach (stream $8 / 1$ etc) at Junction 10 is significantly less than the AM peak with the longest queue of $14 p c u$ which will increase by 13 pcu to $27 p c u$ and the delay increases by 47 seconds with the proposed development traffic. The M42 Northbound Offslip is predicted to operate with a 16 pcu queue and 2 minute 10 sec delay on the busiest lane, Lane 5 (stream $3 / 2$), but would only increase by 7 pcu with an additional 59 sec delay with the development generated traffic. On the A5 Westbound approach to Junction 10 the longest queue is precited to be 24 pcu with a 54 sec delay in Lane 3 (stream $23 / 3$ etc), which would increase to a 36 pcu queue and a 27 sec delay increase. The A5 Westbound Lane 4 (stream $23 / 4$ etc) has a 15 pcu queue in the No development scenario and would increase to 28 pcu with a 26 sec delay increase. On all of the other lanes on the network the impact of the proposed
development is considered negligible to minor with queue increases of no more than 3pcu and no more than 10 sec increase in delay.

In the 2031 PM peak scenario the effects of the proposed development are similar to 2026 in that the A5Eastbound approach (stream $8 / 1$ etc) at Junction 10 is significantly less than the AM peak with the longest queue of $12 p c u$ which would increase by 6 pcu to $18 p c u$ and the delay increases by 40 seconds to 1 minute 10 sec with the proposed development traffic. The M42 Northbound Offslip is predicted to operate with a 15 pcu queue and 2 minute 1 sec delay on the busiest lane, Lane 5 (stream 3/2), but would only increase by 1 pcu with an additional 14 sec delay with the development generated traffic. On the A5 Westbound approach to Junction 10 the longest queue is in Lane 3 and is precited to be 34 pcu with a 1 minute 10 sec delay, which would increase to a 35 pcu queue with development. The A5 Westbound Lane 4 (stream 23/4 etc) has a 18pcu queue in the No development scenario and would increase to 29 pcu with a 18 sec delay increase in the With Development scenario. On all of the other lanes on the network the impact of the proposed development is considered negligible to minor with queue increases of no more than 4 pcu and no more than 43 sec increase in delay.

Proposed Mitigation Results

4.14 It is clear from the AM peak hour results that mitigation is required to reduce the queueing and delays on the A5 Eastbound approach to Junction 10 as a result of the development generated traffic.

15 There is an opportunity to increase the capacity of the A5 eastbound approach by developing a $4^{\text {th }}$ lane at the stop line and creating a 3-lane section up to the Pennine Way eastbound merge arrangement. In addition, a fourth lane would be added on the circulating lanes adjacent to Green Lane. TT Drawing B033920-TTE-00-ZZ-PL-H-0001 Rev P01 attached at Appendix C shows the proposed improvement works.

Owing to land constraints on the A5 Eastbound approach some 170 m west of the stopline the offside and middle lanes have been reduced from 3.5 m to 3.0 m . The nearside lane width has been retained at 3.5 m and 1.0 m hard strips have also been retained, both nearside and offside. In addition the foot/cycle way has been reduced from 2.0 m to 1.8 m and the separation from moving vehicles reduced from 1.5 m to 1.0 m In association with the reduction in two lane widths and reduction in the foot/cycleway, it is proposed that the speed limit is reduced on the
eastbound A5 carriageway from national (70 mph) to 50 mph between the Pennine Way overbridge in the west to the existing 50 mph speed limit which commences 500 m east of Jn 10 . It is also proposed that the existing 50 mph speed limit on the A5 westbound carriageway is extended by 500 m to Jn10.
4.17 It is also proposed to install toucan crossing facilities on the M42 north facing slip roads and on Green Lane. This would significantly enhance the safety of the crossing facilities for pedestrians and cyclists. The crossing facilities have been coded into the TRANSYT model to model any queuing back effects. The crossing phase would occur every cycle at the M42 southbound off-slip and on the Green Lane approach to Junction 10, whilst it has been assumed the crossing phase would be called on demand, every other cycle on the exit to the M42 northbound and the exit to Green Lane.

In the 2031 PM peak hour, the queues and delays on the majority of the lanes on the network are broadly the same in the No Development and With Development scenarios, where there
are increases, they are not considered severe. For example, on the M42 northbound off-slip the queue in Lane 5 (stream $3 / 2$) increases from 15 pcu to 20 pcu and the delays increases by 39 secs. This queue is readily accommodated on the slip road with very low risk of extending back to the M42 mainline.

Summary

4.22 The proposed development generated traffic has a significant impact on the performance and operation of the A5 Eastbound approach to Junction 10 in the AM peak hour, which requires mitigation. With carriageway widening to the A5 Eastbound approach and to the circulating island adjacent to Green Lane, the performance of the Eastbound approach is significantly improved. The proposed mitigation works also provide safety enhancements for pedestrians and cyclists crossing the M42 north facing slip roads and Green Lane, a considerable betterment to the existing crossing facilities.
4.23 With the proposed site access junction and mitigation works to Junction 10, it is considered they satisfy all of the components of NPPF paragraph 110; that the site is highly accessible by sustainable modes of travel; that the proposed highway works and alterations constitute "safe, suitable, adequate and cost effective mitigation", that there would be no unacceptable impact on highway safety, and no residual cumulative highway impacts that could be considered to be severe.

5 LOCAL PLAN MODELLING RESULTS

No Development

5.1 Following discussions with NH and WCC, the Local Plan scenario includes an assessment of the M42 Junction 10 indicative scheme as shown at Phil Jones Associates Drawing 02853-01 Rev A attached in Appendix C. The indicative scheme includes the following improvements:

- Re-align the existing A5 eastbound merge taper as a lane gain from Pennine Way;
- Fourth lane added to the A5 eastbound approach to Junction 10.
- The central island at Green lane modified to create a $4^{\text {th }}$ lane, facilitating a 2 lane exit to the M42 north.

TETRA TECH

Date: December 2022

- Amend the M42 southbound slip road to create a segregated left turn lane with a physical island, the lane then merges into the A5 eastbound carriageway.
- Third Lane added to the Trinity Road approach.
- A new/ widened southern overbridge to facilitate 4 lanes.
5.3 The No Development model with the Local Plan indicative scheme discussed above has been used as the base and adjusted for the following:
- Site access junction added, operating with the same stage sequence and frequency as per the Reference Case model, see Chapter 4.
- To facilitate the site access junction the segregated left turn slip arrangement from the M42 southbound slip road has been removed, effectively leaving the arrangement as it is.
- Removing the 2 lane exit to the M42 northbound on slip road.
- The inclusion of 4 toucan crossing facilities on the M42 north facing slip roads and Green Lane.
5.4 The 2031 AM and PM Peak With Development results are shown at Table 5.1 in Appendix D. The results are discussed in more detail below.

2031 AM \& PM Peak Local Plan Summary Results

5.5 The 2031 AM and PM peak results comparing the Local Plan scenario with and without the proposed development are shown at Table 5.1 in Appendix D.
5.6 In the AM peak the results show the biggest increase in queue and delay at Junction 10 is on the A5 Eastbound approach, Lane 2 (stream 8/2 etc) with the queue increasing from 14 pcu to

33 pcu and the delay increasing from 32 secs to 1 minute 37 secs. Although the queue increases on this approach, it is significantly less than the No Development scenario in the Reference Case scenario (110pcu) and the queue is unlikely to extend back and affect the performance of the Pennine Way roundabout junction. The proposed development generated traffic has negligible to minor impacts on the other approaches to Junction 10.
5.7 The site access junction performs well with manageable queues and delays. The A5 Eastbound, Lane 2 (stream 56/2 etc) queue of 23 pcu and 24 secs delay does not extend back and interfere with the performance of Junction 10. The A5 Westbound, Lane 2 (stream 59/3 etc) operates with a queue of 11 pcu and 16 sec delay. The site access operates with queues of 1 pcu on each lane with delays all under 30 secs.
5.8 The queues and delays at the A5/ Birch Coppice junction are very similar in the No Development and With Development scenarios. At the A5/ Core 42 junction the A5 Westbound, Lane 1 (stream 49/2) queue increases from 85 pcu to 92 pcu with a 23 sec delay increase.
5.9 In the PM peak the results show the biggest increase in queue and delay at Junction 10 is on the A5 Eastbound Lane 3 (stream $8 / 3$ etc) approach with the queue increasing from 41 pcu to 66 pcu and the delay increasing from 2 minutes 27 secs to 3 minutes 59 secs. The queue on Lane 2 (stream 14/2) of the Green Lane approach increases from $19 p c u$ to 26 pcu with a 1 minute 19 sec delay increase. The proposed development generated traffic has negligible to minor impacts on the other approaches to Junction 10.
5.10 The site access junction performs well with manageable queues and delays. The A5 Eastbound Lane 1 (stream 56/1 queue of 15 pcu and 24 secs delay does not extend back and interfere with the performance of Junction 10. The A5 Westbound, Lane 1 (stream 59/2 etc) operates with a queue of 13 pcu and 18 sec delay. The site access operates with queues of 1 pcu on each lane with delays all under 30 secs.
5.11 The queues and delays at the A5/ Birch Coppice junction are broadly similar in the No Development and With Development scenarios. At the A5/ Core 42 junction the A5 Westbound Lane 1 (stream 49/2) queue increases from 39 pcu to 46 pcu with a 18 sec delay increase.
5.12 The residual cumulative impact of the proposed development in the AM and PM peaks on the performance of the indicative the Local Plan scheme for M42Jn10 are not considered severe with reference to NPPF para 111.
6.1 TT have been appointed by Hodgetts Estates to provide technical support of their outline planning application for a proposed development of up to 100,000 sqm of employment uses and 150 space overnight lorry park (including an associated 400sqm amenity block) on land to the northeast of M42 Junction 10.
6.2 To assess the impacts of the proposed development its has been agreed with NH and WCC to assess the M42 Junction 10 interchange, the A5/ Birch Coppice and A5/ Core 42 signalised junctions, and with the site access junction in the With Development scenarios. It was also agreed to assess a Reference Case scenario in 2026 and 2031, whilst a Local Plan scenario in 2031 was also considered necessary.
6.3 In the Reference Case scenario mitigation was required to address the impacts of the proposed development particularly on the A5 Eastbound approach to M42 Junction 10 in the AM peak. A scheme has been identified which would considerably reduce the queuing and delays on the A5 Eastbound approach, a significant improvement compared to the No Development scenario. Meanwhile enhanced and widened pedestrian/ cycle provisions around Junction 10 together with toucan crossings on the M42 north facing slips and Green Lane would also provide substantially safer crossing facilities.
6.4 In the Local Plan scenario, an indicative improvement scheme provided by WCC has been assessed which shows the proposed development does not have a severe impact when comparing to the No Development scenario. Indeed, the modelling has also shown that a left turn segregated slip from the M42 southbound slip road is not required, whilst, as part of the proposed development, toucan crossing facilities would also be provided on the M42 north facing slips and Green Lane.
6.5 This modelling note has demonstrated the proposed signalised site access junction can be readily accommodated on the network which, with mitigation in the Reference Case scenario, achieves the aims set out at para 110 of NPPF. In the indicative Local Plan scenario the proposed development does not have a severe impact with reference to NPPF para 111.

APPENDIX A

BANCROFT CONSULTING FIGURES

FIGURE 10
2026 REFERENCE - AM PEAK (0800 TO 0900) - DEMAND FLOWS
LAND NORTH OF THE A5, DORDON
JOB NUMBER: F19123
DRAWN BY: CAB

FIGURE 11
2026 REFERENCE - PM PEAK (1700 TO 1800) - DEMAND FLOWS
LAND NORTH OF THE A5, DORDON

FIGURE 12 2026 REFERENCE + DEVELOPMENT - AM PEAK (0800 TO 0900) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 13 2026 REFERENCE + DEVELOPMENT - PM PEAK (1700 TO 1800) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 15
2031 REFERENCE - PM PEAK (1700 TO 1800) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 16 2031 REFERENCE + DEVELOPMENT - AM PEAK (0800 TO 0900) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 17
2031 REFERENCE + DEVELOPMENT - PM PEAK (1700 TO 1800) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 18 2031 LOCAL PLAN - AM PEAK (0800 TO 0900) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 19

FIGURE 20 2031 LOCAL PLAN + DEVELOPMENT - AM PEAK (0800 TO 0900) - DEMAND FLOWS LAND NORTH OF THE A5, DORDON

FIGURE 21
2031 LOCAL PLAN + DEVELOPMENT - PM PEAK (1700 TO 1800) - DEMAND FLOWS
LAND NORTH OF THE A5, DORDON

APPENDIX B

TT FIGURES

TT FIGURE 1

TT FIGURE 2

TT FIGURE 3

2026 Reference Case AM Peak - DEMAND FLOWS
Land North East of M42 Junction 10

TT FIGURE 4

2026 Reference Case PM Peak - DEMAND FLOWS
Land North East of M42 Junction 10

TT FIGURE 5

2031 Reference Case AM Peak - DEMAND FLOWS

TT FIGURE 6

TT FIGURE 7

TT FIGURE 8

TT FIGURE 9

2031 Reference Case + Development AM Peak - DEMAND FLOWS

TT FIGURE 10
TE TETRA TECH
2031 Reference + Development PM Peak - DEMAND FLOWS
Land North East of M42 Junction 10

TT FIGURE 11

2031 Local Plan AM Peak - DEMAND FLOWS
Land North East of M42 Junction 10

2031 Local Plan PM Peak - DEMAND FLOWS
Land North East of M42 Junction 10

TT FIGURE 13

2031 Local Plan + Development AM Peak - DEMAND FLOWS
Land North East of M42 Junction 10

TT FIGURE 14

2031 Local Plan + Development PM Peak - DEMAND FLOWS
Land North East of M42 Junction 10

APPENDIX C

DRAWINGS

 Ommencici vortson

02853 M42 Junction 10

Orowing	
${ }^{\text {rawing }}$ Indicative S	Solution.
Level Interv	vention
$2 \mathrm{~B}+\mathrm{C}+\mathrm{D}$	+E+F
Drown by: AH ${ }_{\text {240882077 }}$	Scole:
Checked by: MN 2 200902017	1:2000 @ A1
Orowing No.	
02853 -	01 A

APPENDIX D

TRANSYT SUMMARY RESULTS

				2026 AM Peak			2031 AM Peak		
M42 Junction 10									
Traffic Stream(s)	Lane	Saturation Flow pcu/hr	Model Output	No Dev	With Dev	With Dev Mitigation	No Dev	With Dev	With Dev Mitigation
1/1	M42 Northbound Offslip Lane 1	1740	Queue Aver Delay	$\begin{gathered} 3 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 24 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 24 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 24 \text { secs } \end{gathered}$
1/2	M42 Northbound Offslip Lane 2	1740	Queue Aver Delay	$\begin{gathered} 2 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 23 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 23 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 23 \text { secs } \end{gathered}$
1/3	M42 Northbound Offslip Lane 3	1740	Queue Aver Delay	$\begin{gathered} 2 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$
3/1	M42 Northbound Offslip Lane 4	1849	Queue Aver Delay	$\begin{gathered} 10 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 42 \text { secs } \end{gathered}$	$\begin{gathered} 14 \\ 50 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 13 \\ 47 \text { secs } \end{gathered}$	$\begin{gathered} 18 \\ 1 \mathrm{~m} 5 \mathrm{~s} \end{gathered}$
3/2	M42 Northbound Offslip Lane 5	1849	Queue Aver Delay	$\begin{gathered} 6 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 28 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 33 \text { secs } \end{gathered}$
7/1	M42 Northbound Circulating Lane 1	2039	Queue Aver Delay	$\begin{gathered} 9 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 8 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 10 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 12 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 17 \\ 9 \mathrm{secs} \end{gathered}$
7/2	M42 Northbound Circulating Lane 2	1840	Queue Aver Delay	$\begin{gathered} 18 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 24 \\ 19 \mathrm{secs} \end{gathered}$	$\begin{gathered} 24 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 24 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 24 \\ 21 \text { secs } \end{gathered}$	$\begin{gathered} 27 \\ 24 \text { secs } \end{gathered}$
$8 / 1+9 / 1+11 / 1$	A5 Eastbound Lane 1	1828	Queue Aver Delay	$\begin{gathered} 55 \\ 3 \mathrm{~m} 22 \mathrm{~s} \end{gathered}$	$\begin{gathered} 107 \\ 6 \mathrm{~m} \mathrm{30s} \end{gathered}$	$\begin{gathered} 3 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 110 \\ 6 \mathrm{~m} \mathrm{14s} \end{gathered}$	$\begin{gathered} 157 \\ 8 \mathrm{~m} 53 \mathrm{~s} \end{gathered}$	$\begin{gathered} 3 \\ 10 \text { secs } \end{gathered}$
$\begin{gathered} 8 / 2+9 / 2+11 / 2+ \\ 63 / 1 \end{gathered}$	A5 Eastbound Lane 2	1900	Queue Aver Delay	$\begin{gathered} 7 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 13 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 31 \mathrm{secs} \end{gathered}$	$\begin{gathered} 7 \\ 34 \text { secs } \end{gathered}$	$\begin{gathered} 18 \\ 44 \text { secs } \end{gathered}$
$\begin{gathered} 8 / 3+9 / 2+11 / 2 \\ (9 / 3+11 / 3)+63 / 2 \end{gathered}$	A5 Eastbound Lane 3	1900	Queue Aver Delay	$\begin{gathered} 58 \\ 2 \mathrm{~m} 36 \mathrm{~s} \end{gathered}$	$\begin{gathered} 117 \\ 4 \mathrm{~m} 59 \mathrm{~s} \end{gathered}$	$\begin{gathered} 13 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 82 \\ 3 \mathrm{~m} 52 \mathrm{~s} \end{gathered}$	$\begin{gathered} 145 \\ 6 \mathrm{~m} 12 \mathrm{~s} \end{gathered}$	$\begin{gathered} 18 \\ 43 \text { secs } \end{gathered}$
8/4	A5 Eastbound Lane 4	1900	Queue Aver Delay	N/A	N/A	$\begin{gathered} \hline 4 \\ 14 \text { secs } \end{gathered}$	N/A	N/A	$\begin{gathered} 4 \\ 17 \text { secs } \end{gathered}$
12/1	A5 Eastbound Circulating Lane 1	1846	Queue Aver Delay	$\begin{gathered} 11 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 32 \text { secs } \end{gathered}$
12/2	A5 Eastbound Circulating Lane 2	1878	Queue Aver Delay	$\begin{gathered} 11 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 13 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 15 \text { secs } \end{gathered}$
12/3	A5 Eastbound Circulating Lane 3	1878	Queue Aver Delay	$\begin{gathered} 7 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 30 \text { secs } \end{gathered}$
12/4	A5 Eastbound Circulating Lane 4	1878	Queue Aver Delay	$\begin{gathered} 1 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 39 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 43 \text { secs } \end{gathered}$
14/1	Green Lane Lane 1	1602	Queue Aver Delay	$\begin{gathered} 11 \\ 2 \mathrm{~m} 33 \mathrm{~s} \end{gathered}$	$\begin{gathered} 12 \\ 2 \mathrm{~m} 35 \mathrm{~s} \end{gathered}$	$\begin{gathered} 11 \\ 2 \mathrm{~m} 26 \mathrm{~s} \end{gathered}$	$\begin{gathered} 21 \\ 4 \mathrm{~m} 49 \mathrm{~s} \end{gathered}$	$\begin{gathered} 23 \\ 4 \mathrm{~m} 43 \mathrm{~s} \end{gathered}$	$\begin{gathered} 22 \\ 4 \mathrm{~m} \mathrm{45s} \end{gathered}$
14/2	Green Lane Lane 2	1602	Queue Aver Delay	$\begin{gathered} 15 \\ 3 \mathrm{~m} 22 \mathrm{~s} \end{gathered}$	$\begin{gathered} 15 \\ 3 \mathrm{~m} 12 \mathrm{~s} \end{gathered}$	$\begin{gathered} 14 \\ 3 \mathrm{~m} 11 \mathrm{~s} \end{gathered}$	$\begin{gathered} 18 \\ 3 \mathrm{~m} 54 \mathrm{~s} \end{gathered}$	$\begin{gathered} 15 \\ 3 m^{19 s} \end{gathered}$	$\begin{gathered} 16 \\ 3 \mathrm{~m} 40 \mathrm{~s} \end{gathered}$
15/1	Green Lane Circulating Lane 1	1950	Queue Aver Delay	$\begin{gathered} 12 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 12 \\ 8 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 14 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 12 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 6 \mathrm{secs} \end{gathered}$
15/2	Green Lane Circulating Lane 2	1745	Queue Aver Delay	$\begin{gathered} 14 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 15 \\ 13 \mathrm{secs} \end{gathered}$	$\begin{gathered} 9 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} \hline 15 \\ 13 \text { secs } \end{gathered}$	$\begin{gathered} 15 \\ 13 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 9 \mathrm{secs} \end{gathered}$
15/3	Green Lane Circulating Lane 3	1745	Queue Aver Delay	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 14 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 16 \\ 10 \text { secs } \end{gathered}$
15/4	Green Lane Circulating Lane 4	1745	Queue Aver Delay	N/A	N/A	$\begin{gathered} 1 \\ 3 \text { secs } \end{gathered}$	N/A	N/A	$\begin{gathered} 2 \\ 3 \mathrm{secs} \end{gathered}$
13/1	Exit to Green Lane Toucan Crossing	2272	Queue Aver Delay	N/A	N/A	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	N/A	N/A	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$
18/1	M42 Southbound Offslip Lane 1	1804	Queue Aver Delay	$\begin{gathered} 3 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 38 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 38 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 43 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 42 \text { secs } \end{gathered}$
18/2	M42 Southbound Offslip Lane 2	1813	Queue Aver Delay	$\begin{gathered} 3 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 34 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 34 \text { secs } \end{gathered}$
18/3	M42 Southbound Offslip Lane 3	1813	Queue Aver Delay	$\begin{gathered} \hline 4 \\ 38 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 41 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 42 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 40 \text { secs } \end{gathered}$
17/1	M42 Southbound Circulating Lane 1	1956	Queue Aver Delay	$\begin{gathered} 3 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 2 \mathrm{secs} \end{gathered}$	$\begin{gathered} 8 \\ 2 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 2 \mathrm{secs} \end{gathered}$	$\begin{gathered} 10 \\ 3 \mathrm{secs} \end{gathered}$
17/2	M42 Southbound Circulating Lane 2	1956	Queue Aver Delay	$\begin{gathered} 11 \\ 3 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 3 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 13 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 12 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 12 \\ 3 \mathrm{secs} \end{gathered}$
17/3	M42 Southbound Circulating Lane 3	1800	Queue Aver Delay	$\begin{gathered} 4 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$	6 5 secs	$\begin{gathered} 4 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$
17/4	M42 Southbound Circulating Lane 4	1800	Queue Aver Delay	$\begin{gathered} 2 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 7 \text { secs } \end{gathered}$
16/1	Exit to M42 Northbound Toucan Crossing	2200	Queue Aver Delay	N/A	N/A	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	N/A	N/A	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$
23/1	A5 Westbound Lane 1	1930	Queue Aver Delay	$\begin{gathered} 8 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 10 \text { secs } \end{gathered}$
23/2	A5 Westbound Lane 2	1851	Queue Aver Delay	$\begin{gathered} 3 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 8 \mathrm{secs} \end{gathered}$
$\begin{gathered} 23 / 3+24 / 2+ \\ 25 / 2 \end{gathered}$	A5 Westbound Lane 3	1851	Queue Aver Delay	$\begin{gathered} 14 \\ 48 \mathrm{secs} \end{gathered}$	$\begin{gathered} 15 \\ 44 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 25 \text { secs } \end{gathered}$	$\begin{gathered} 15 \\ 50 \text { secs } \end{gathered}$	$\begin{gathered} 22 \\ 1 \mathrm{~m} 11 \mathrm{~s} \end{gathered}$	$\begin{gathered} 12 \\ 28 \mathrm{secs} \end{gathered}$
$\begin{gathered} \hline 23 / 4+24 / 3+ \\ 25 / 3 \end{gathered}$	A5 Westbound Lane 4	1851	Queue Aver Delay	$\begin{gathered} 8 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 14 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 25 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 1 \mathrm{~m} 2 \mathrm{~s} \end{gathered}$	$\begin{gathered} 17 \\ 1 \mathrm{~m} 1 \mathrm{~s} \end{gathered}$
22/1	A5 Westbound Circulating Lane 1	1797	Queue Aver Delay	$\begin{gathered} 6 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 30 \text { secs } \end{gathered}$	6 27 secs	$\begin{gathered} 8 \\ 39 \text { secs } \end{gathered}$
22/2	A5 Westbound Circulating Lane 2	1797	Queue Aver Delay	$\begin{gathered} 3 \\ 21 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 20 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 21 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 35 \text { secs } \end{gathered}$

22/3	A5 Westbound Circulating Lane 3	1902	Queue Aver Delay	$\begin{gathered} 1 \\ 0 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 0 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{sec} \end{gathered}$	$\begin{gathered} 1 \\ 0 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 0 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 4 \mathrm{secs} \end{gathered}$
22/4	A5 Westbound Circulating Lane 4	1902	Queue Aver Delay	$\begin{gathered} 1 \\ 0 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{sec} \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{sec} \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{sec} \end{gathered}$	$\begin{gathered} 1 \\ 2 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 3 \mathrm{secs} \end{gathered}$
28/1 + 29/1	Trinity Road Lane 1	1669	Queue Aver Delay	$\begin{gathered} 3 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} \hline 3 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 36 \text { secs } \end{gathered}$
28/2	Trinity Road Lane 2	1669	Queue Aver Delay	$\begin{gathered} 4 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 34 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 41 \text { secs } \end{gathered}$
27/1	Trinity Road Circulating Lane 1	1846	Queue Aver Delay	$\begin{gathered} 6 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 5 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 8 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 6 \mathrm{secs} \end{gathered}$
27/2	Trinity Road Circulating Lane 2	1846	Queue Aver Delay	$\begin{gathered} 5 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 6 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 5 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 7 \mathrm{secs} \end{gathered}$
27/3	Trinity Road Circulating Lane 3	1878	Queue Aver Delay	$\begin{gathered} 9 \\ 4 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 9 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 10 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 11 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 11 \\ 4 \mathrm{secs} \end{gathered}$
27/4	Trinity Road Circulating Lane 4	1878	Queue Aver Delay	$\begin{gathered} 8 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 13 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 12 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 11 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 14 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 15 \\ 12 \text { secs } \end{gathered}$
A5/ Site Access									
56/1	A5 Eastbound Left Turn Lane 1	1751	Queue Aver Delay	N/A	$\begin{gathered} 15 \\ 15 \mathrm{secs} \end{gathered}$	$\begin{gathered} 18 \\ 21 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 16 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 20 \\ 25 \text { secs } \end{gathered}$
56/2 + 21/1	A5 Eastbound Lane 2	1814	Queue Aver Delay	N/A	$\begin{gathered} 14 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 19 \\ 19 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 15 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 22 \\ 23 \mathrm{secs} \end{gathered}$
53/3 + 21/2	A5 Eastbound Lane 3	2082	Queue Aver Delay	N/A	$\begin{gathered} 5 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 8 \mathrm{secs} \end{gathered}$	N/A	$\begin{gathered} 5 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 6 \\ 9 \mathrm{secs} \end{gathered}$
$\begin{gathered} 59 / 2+62 / 1+ \\ 61 / 1+39 / 1 \end{gathered}$	A5 Westbound Lane 1	2015	Queue Aver Delay	N/A	$\begin{gathered} 4 \\ 15 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 7 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 15 \text { secs } \end{gathered}$
$\begin{gathered} 59 / 3+62 / 2+ \\ 61 / 2+39 / 2 \end{gathered}$	A5 Westbound Lane 2	2015	Queue Aver Delay	N/A	$\begin{gathered} 4 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 27 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 6 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 17 \text { secs } \end{gathered}$
60/1	A5 Westbound Right Turn Lane 3	1667	Queue Aver Delay	N/A	$\begin{gathered} 2 \\ 1 \mathrm{~m} 5 \mathrm{~s} \end{gathered}$	$\begin{gathered} 1 \\ 26 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 2 \\ 1 \mathrm{~m} 4 \mathrm{~s} \end{gathered}$	$\begin{gathered} 2 \\ 1 \mathrm{~m} 4 \mathrm{~s} \end{gathered}$
54/1	Site Access Left Turn Lane 1	1695	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 23 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 12 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$
55/1	Site Access Right Turn Lane 2	1690	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 28 \mathrm{secs} \end{gathered}$	$\begin{gathered} \hline 3 \\ 12 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 1 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 28 \text { secs } \end{gathered}$
55/2	Site Access Right Turn Lane 3	1690	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 28 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 1 \mathrm{~m} 4 \mathrm{~s} \end{gathered}$	N/A	$\begin{gathered} 1 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 28 \text { secs } \end{gathered}$
A5/ Birch Coppice									
31/1	A5 Eastbound Ahead Lane 1	1814	Queue Aver Delay	$\begin{gathered} 7 \\ 5 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 7 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 9 \mathrm{secs} \end{gathered}$
31/2	A5 Eastbound Ahead Lane 2	2082	Queue Aver Delay	$\begin{gathered} 3 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 2 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$
32/1	A5 Eastbound Right Turn Lane 3	1960	Queue Aver Delay	$\begin{gathered} 10 \\ 42 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 47 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 42 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 51 \text { secs } \end{gathered}$
32/2	A5 Eastbound Right Turn Lane 4	1667	Queue Aver Delay	$\begin{gathered} 7 \\ 41 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 48 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 41 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 46 \text { secs } \end{gathered}$
37/1	A5 Westbound Left Turn Lane 1	1751	Queue Aver Delay	$\begin{gathered} 5 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 15 \text { secs } \end{gathered}$
$\begin{gathered} 37 / 2+38 / 1+ \\ 53 / 1 \end{gathered}$	A5 Westbound Ahead Lane 2	2015	Queue Aver Delay	$\begin{gathered} 9 \\ 26 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 21 \text { secs } \end{gathered}$
$\begin{gathered} 37 / 3+38 / 2+ \\ 53 / 2 \end{gathered}$	A5 Westbound Ahead Lane 3	2015	Queue Aver Delay	$\begin{gathered} 9 \\ 26 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 21 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 21 \text { secs } \end{gathered}$
42/1	Birch Coppice Left Turn Lane 1	1695	Queue Aver Delay	$\begin{gathered} 6 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 42 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 47 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 43 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 44 \text { secs } \end{gathered}$
42/2	Birch Coppice Left Turn Lane 2	1983	Queue Aver Delay	$\begin{gathered} \hline 3 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} \hline 3 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} \hline 3 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} \hline 3 \\ 31 \text { secs } \end{gathered}$
$43 / 1+44 / 2$	Birch Coppice Right Turn Lane 3	1690	Queue Aver Delay	$\begin{gathered} 5 \\ 1 \mathrm{~m} 23 \mathrm{~s} \end{gathered}$	$\begin{gathered} 5 \\ 1 \mathrm{~m} 24 \mathrm{~s} \end{gathered}$	$\begin{gathered} 5 \\ 1 \mathrm{~m}^{16 s} \end{gathered}$	$\begin{gathered} 3 \\ 52 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 57 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 56 \text { secs } \end{gathered}$
A5/ Core 42									
$46 / 1+45 / 1$	A5 Eastbound Ahead Lane 1	1833	Queue Aver Delay	$\begin{gathered} 1 \\ 4 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 4 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 4 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 4 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 5 \text { secs } \end{gathered}$
$46 / 2+45 / 2$	A5 Eastbound Ahead Lane 2	2082	Queue Aver Delay	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$
47/1	A5 Eastbound Right Turn Lane 3	1667	Queue Aver Delay	$\begin{gathered} 7 \\ 48 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 42 \mathrm{secs} \end{gathered}$	$\begin{gathered} 9 \\ 1 \text { min } \end{gathered}$	$\begin{gathered} 5 \\ 41 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 49 \text { secs } \end{gathered}$
49/1	A5 Westbound Ahead \& Left Turn Lane 1	1957	Queue Aver Delay	$\begin{gathered} 22 \\ 33 \mathrm{secs} \end{gathered}$	$\begin{gathered} 25 \\ 39 \text { secs } \end{gathered}$	$\begin{gathered} 24 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 21 \\ 32 \mathrm{secs} \end{gathered}$	$\begin{gathered} 27 \\ 38 \text { secs } \end{gathered}$	$\begin{gathered} 28 \\ 47 \mathrm{secs} \end{gathered}$
49/2	A5 Westbound Ahead Lane 2	1909	Queue Aver Delay	$\begin{gathered} 27 \\ 46 \text { secs } \end{gathered}$	$\begin{gathered} 34 \\ 58 \mathrm{secs} \end{gathered}$	$\begin{gathered} 32 \\ 58 \text { secs } \end{gathered}$	$\begin{gathered} 30 \\ 53 \text { secs } \end{gathered}$	$\begin{gathered} 36 \\ 1 \mathrm{~m} 5 \mathrm{~s} \end{gathered}$	$\begin{gathered} 35 \\ 1 \mathrm{~m} 8 \mathrm{~s} \end{gathered}$
51/1	Core 42 Left Turn Lane 1	1695	Queue Aver Delay	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 21 \mathrm{secs} \end{gathered}$
52/1	Core 42 Right Turn Lane 2	1690	Queue Aver Delay	$\begin{gathered} 2 \\ 1 \mathrm{~m} 44 \mathrm{~s} \end{gathered}$	$\stackrel{2}{1 \mathrm{~m} 45 \mathrm{~s}}$	$\begin{gathered} 2 \\ 1 \mathrm{~m} 43 \mathrm{~s} \end{gathered}$	$\begin{gathered} 2 \\ 1 \mathrm{~m} 42 \mathrm{~s} \end{gathered}$	$\begin{gathered} 2 \\ 1 \mathrm{~m} 45 \mathrm{~s} \end{gathered}$	$\begin{gathered} 2 \\ 1 \mathrm{~m} 43 \mathrm{~s} \end{gathered}$
			Network PI	6195.22	8495.28	5380.73	7840.38	10250.89	6511.17

\# = new traffic streams as a result of the proposed development site access junction
\# = new traffic streams as a result of proposed off-site mitigation improvements

				2026 PM Peak			2031 PM Peak		
M42 Junction 10									
Traffic Stream(s)	Lane	Saturation Flow pcu/hr	Model Output	No Dev	With Dev	With Dev Mitigation	No Dev	With Dev	With Dev Mitigation
1/1	M42 Northbound Offslip Lane 1	1740	Queue Aver Delay	$\begin{gathered} 4 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 45 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 42 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 45 \text { secs } \end{gathered}$
1/2	M42 Northbound Offslip Lane 2	1740	Queue Aver Delay	$\begin{gathered} \hline 3 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 34 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 34 \text { secs } \end{gathered}$
1/3	M42 Northbound Offslip Lane 3	1740	Queue Aver Delay	$\begin{gathered} 2 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 30 \text { secs } \end{gathered}$
3/1	M42 Northbound Offslip Lane 4	1849	Queue Aver Delay	$\begin{gathered} 15 \\ 2 \mathrm{mins} \end{gathered}$	$\begin{gathered} 18 \\ 2 \mathrm{~m} 20 \mathrm{~s} \end{gathered}$	$\begin{gathered} 18 \\ 2 \mathrm{~m} 35 \mathrm{~s} \end{gathered}$	$\begin{gathered} 14 \\ 1 \mathrm{~m} 37 \mathrm{~s} \end{gathered}$	$\begin{gathered} 14 \\ 2 m 6 s \end{gathered}$	$\begin{gathered} 16 \\ 2 m^{16 s} \end{gathered}$
3/2	M42 Northbound Offslip Lane 5	1849	Queue Aver Delay	$\begin{gathered} 16 \\ 2 \mathrm{~m} 10 \mathrm{~s} \end{gathered}$	$\begin{gathered} 23 \\ 3 \mathrm{~m} 9 \mathrm{~s} \end{gathered}$	$\begin{gathered} 21 \\ 2 \mathrm{~m} 54 \mathrm{~s} \end{gathered}$	$\begin{gathered} 15 \\ 2 \mathrm{~m} 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} 16 \\ 2 m^{15 s} \end{gathered}$	$\begin{gathered} 20 \\ 2 \mathrm{~m} 40 \mathrm{~s} \end{gathered}$
7/1	M42 Northbound Circulating Lane 1	2039	Queue Aver Delay	$\begin{gathered} 23 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 22 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 23 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 25 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 23 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 24 \\ 8 \mathrm{secs} \end{gathered}$
7/2	M42 Northbound Circulating Lane 2	1840	Queue Aver Delay	$\begin{gathered} 25 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 27 \\ 11 \mathrm{secs} \end{gathered}$	$\begin{gathered} 27 \\ 11 \mathrm{secs} \end{gathered}$	$\begin{gathered} 25 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 26 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 26 \\ 11 \text { secs } \end{gathered}$
$8 / 1+9 / 1+11 / 1$	A5 Eastbound Lane 1	1828	Queue Aver Delay	$\begin{gathered} 14 \\ 45 \text { secs } \end{gathered}$	$\begin{gathered} 27 \\ 1 \mathrm{~m} 32 \mathrm{~s} \end{gathered}$	$\begin{gathered} 3 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 30 \mathrm{secs} \end{gathered}$	$\begin{gathered} 18 \\ 1 \mathrm{~m} 10 \mathrm{~s} \end{gathered}$	$\begin{gathered} 3 \\ 12 \text { secs } \end{gathered}$
$8 / 2+9 / 2+11 / 2$	A5 Eastbound Lane 2	1900	Queue Aver Delay	$\begin{gathered} 6 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 49 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} \hline 7 \\ 26 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 16 \text { secs } \end{gathered}$
$\begin{gathered} 8 / 3+9 / 2+11 / 2 \\ (9 / 3+11 / 3) \end{gathered}$	A5 Eastbound Lane 3	1900	Queue Aver Delay	$\begin{gathered} 6 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 15 \text { secs } \end{gathered}$
8/4	A5 Eastbound Lane 4	1900	Queue Aver Delay	N/A	N/A	$\begin{gathered} 4 \\ 12 \text { secs } \end{gathered}$	N/A	N/A	$\begin{gathered} 5 \\ 13 \text { secs } \end{gathered}$
12/1	A5 Eastbound Circulating Lane 1	1846	Queue Aver Delay	$\begin{gathered} 5 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 24 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 24 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 24 \text { secs } \end{gathered}$
12/2	A5 Eastbound Circulating Lane 2	1878	Queue Aver Delay	$\begin{gathered} 7 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} \hline 7 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} \hline 7 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 15 \text { secs } \end{gathered}$
12/3	A5 Eastbound Circulating Lane 3	1878	Queue Aver Delay	$\begin{gathered} 7 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} \hline 7 \\ 39 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 37 \text { secs } \end{gathered}$
12/4	A5 Eastbound Circulating Lane 4	1878	Queue Aver Delay	$\begin{gathered} 1 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 41 \text { secs } \end{gathered}$	$\begin{gathered} \hline 1 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 41 \text { secs } \end{gathered}$
14/1	Green Lane Lane 1	1602	Queue Aver Delay	$\begin{gathered} 7 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 38 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 34 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 34 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 35 \text { secs } \end{gathered}$
14/2	Green Lane Lane 2	1602	Queue Aver Delay	$\begin{gathered} 12 \\ 1 \mathrm{~m} 16 \mathrm{~s} \end{gathered}$	$\begin{gathered} 12 \\ 1 \mathrm{~m} 11 \mathrm{~s} \end{gathered}$	$\begin{gathered} 12 \\ 1 \mathrm{~m}^{19 \mathrm{~s}} \end{gathered}$	$\begin{gathered} 13 \\ 1 \mathrm{~m} 33 \mathrm{~s} \end{gathered}$	$\begin{gathered} 14 \\ 1 \mathrm{~m} \mathrm{35s} \end{gathered}$	$\begin{gathered} 14 \\ 1 \mathrm{~m} \mathrm{30s} \end{gathered}$
15/1	Green Lane Circulating Lane 1	1950	Queue Aver Delay	$\begin{gathered} 12 \\ 11 \mathrm{secs} \end{gathered}$	$\begin{gathered} 12 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} \hline 10 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 9 \mathrm{secs} \end{gathered}$
15/2	Green Lane Circulating Lane 2	1745	Queue Aver Delay	$\begin{gathered} \hline 15 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 13 \\ 13 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 10 \text { secs } \end{gathered}$
15/3	Green Lane Circulating Lane 3	1745	Queue Aver Delay	$\begin{gathered} 2 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 12 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 11 \\ 11 \text { secs } \end{gathered}$
15/4	Green Lane Circulating Lane 4	1745	Queue Aver Delay	N/A	N/A	$\begin{gathered} 2 \\ 4 \text { secs } \end{gathered}$	N/A	N/A	$\begin{gathered} 2 \\ 5 \mathrm{secs} \end{gathered}$
13/1	Exit to Green Lane Toucan Crossing	2272	Queue Aver Delay	N/A	N/A	$\begin{gathered} 1 \\ 10 \text { secs } \end{gathered}$	N/A	N/A	$\begin{gathered} 1 \\ 10 \text { secs } \end{gathered}$
18/1	M42 Southbound Offslip Lane 1	1804	Queue Aver Delay	$\begin{gathered} 2 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 19 \text { secs } \end{gathered}$
18/2	M42 Southbound Offslip Lane 2	1813	Queue Aver Delay	$\begin{gathered} 2 \\ 18 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 21 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 19 \text { secs } \end{gathered}$
18/3	M42 Southbound Offslip Lane 3	1813	Queue Aver Delay	$\begin{gathered} 3 \\ 20 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 20 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 20 \text { secs } \end{gathered}$
17/1	M42 Southbound Circulating Lane 1	1956	Queue Aver Delay	$\begin{gathered} 11 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 17 \\ 10 \text { secs } \end{gathered}$
17/2	M42 Southbound Circulating Lane 2	1956	Queue Aver Delay	$\begin{gathered} 18 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 18 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 18 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 18 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 17 \\ 11 \text { secs } \end{gathered}$
17/3	M42 Southbound Circulating Lane 3	1800	Queue Aver Delay	$\begin{gathered} 7 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 17 \text { secs } \end{gathered}$
17/4	M42 Southbound Circulating Lane 4	1800	Queue Aver Delay	$\begin{gathered} 3 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 18 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 30 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 17 \text { secs } \end{gathered}$
16/1	Exit to M42 Northbound Toucan Crossing	2200	Queue Aver Delay	N/A	N/A	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	N/A	N/A	$\begin{gathered} 1 \\ 1 \mathrm{sec} \end{gathered}$
23/1 + 25/1	A5 Westbound Lane 1	1930	Queue Aver Delay	$\begin{gathered} 3 \\ 8 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 12 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 8 \mathrm{secs} \end{gathered}$
23/2	A5 Westbound Lane 2	1851	Queue Aver Delay	$\begin{gathered} 2 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 8 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 7 \mathrm{secs} \end{gathered}$
$\begin{gathered} 23 / 3+24 / 2+ \\ 25 / 2 \end{gathered}$	A5 Westbound Lane 3	1851	Queue Aver Delay	$\begin{gathered} 24 \\ 54 \text { secs } \end{gathered}$	$\begin{gathered} 36 \\ 1 \mathrm{~m} 21 \mathrm{~s} \end{gathered}$	$\begin{gathered} 33 \\ 1 \mathrm{~m} 18 \mathrm{~s} \end{gathered}$	$\begin{gathered} 34 \\ 1 \mathrm{~m} 10 \mathrm{~s} \end{gathered}$	$\begin{gathered} 35 \\ 1 \mathrm{~m} 20 \mathrm{~s} \end{gathered}$	$\begin{gathered} 39 \\ 1 \mathrm{~m} \mathrm{35s} \end{gathered}$
$\begin{gathered} 23 / 4+24 / 3+ \\ 25 / 3 \end{gathered}$	A5 Westbound Lane 4	1851	Queue Aver Delay	$\begin{gathered} 15 \\ 46 \text { secs } \end{gathered}$	$\begin{gathered} 28 \\ 1 \mathrm{~m} 12 \mathrm{~s} \end{gathered}$	$\begin{gathered} 30 \\ 1 \mathrm{~m} 19 \mathrm{~s} \end{gathered}$	$\begin{gathered} 18 \\ 52 \text { secs } \end{gathered}$	$\begin{gathered} 29 \\ 1 \mathrm{~m} \mathrm{10s} \end{gathered}$	$\begin{gathered} 31 \\ 1 \mathrm{~m} 28 \mathrm{~s} \end{gathered}$
22/1	A5 Westbound Circulating Lane 1	1797	Queue Aver Delay	$\begin{gathered} 8 \\ 53 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 53 \mathrm{secs} \end{gathered}$	$\begin{gathered} 6 \\ 47 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 55 \mathrm{secs} \end{gathered}$	$\begin{gathered} 11 \\ 1 \mathrm{~m}^{13 \mathrm{~s}} \end{gathered}$	$\begin{gathered} 8 \\ 55 \text { secs } \end{gathered}$

22/2	A5 Westbound Circulating Lane 2	1797	Queue Aver Delay	$\begin{gathered} 6 \\ 53 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 52 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 58 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 51 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 54 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 1 \mathrm{~m} 4 \mathrm{~s} \end{gathered}$
22/3	A5 Westbound Circulating Lane 3	1902	Queue Aver Delay	$\begin{gathered} 3 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 37 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 36 \text { secs } \end{gathered}$
22/4	A5 Westbound Circulating Lane 4	1902	Queue Aver Delay	$\begin{gathered} 5 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 23 \text { secs } \end{gathered}$
28/1 + 29/1	Trinity Road Lane 1	1669	Queue Aver Delay	$\begin{gathered} 7 \\ 1 \mathrm{~m} 7 \mathrm{~s} \end{gathered}$	$\begin{gathered} 12 \\ 1 \mathrm{~m} 45 \mathrm{~s} \end{gathered}$	$\begin{gathered} 10 \\ 1 \mathrm{~m} 38 \mathrm{~s} \end{gathered}$	$\begin{gathered} 8 \\ 1 \mathrm{~m} 15 \mathrm{~s} \end{gathered}$	$\begin{gathered} 12 \\ 1 \mathrm{~m} 58 \mathrm{~s} \end{gathered}$	$\begin{gathered} 12 \\ 1 \mathrm{~m} 57 \mathrm{~s} \end{gathered}$
28/2	Trinity Road Lane 2	1669	Queue Aver Delay	$\begin{gathered} 5 \\ 1 \mathrm{~m} 4 \mathrm{~s} \end{gathered}$	$\begin{gathered} 6 \\ 1 \mathrm{~m} 17 \mathrm{~s} \end{gathered}$	$\begin{gathered} 5 \\ 1 \mathrm{~m}^{19 s} \end{gathered}$	$\begin{gathered} 4 \\ 1 \mathrm{~m} 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} 5 \\ 1 \mathrm{~m} 11 \mathrm{~s} \end{gathered}$	$\begin{gathered} 6 \\ 1 \mathrm{~m}^{14 \mathrm{~s}} \end{gathered}$
27/1	Trinity Road Circulating Lane 1	1846	Queue Aver Delay	$\begin{gathered} 3 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 7 \text { secs } \end{gathered}$
27/2	Trinity Road Circulating Lane 2	1846	Queue Aver Delay	$\begin{gathered} 7 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 7 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 9 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 8 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 8 \mathrm{secs} \end{gathered}$
27/3	Trinity Road Circulating Lane 3	1878	Queue Aver Delay	$\begin{gathered} 13 \\ 13 \mathrm{secs} \end{gathered}$	$\begin{gathered} 16 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 15 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} \hline 16 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 14 \text { secs } \end{gathered}$
27/4	Trinity Road Circulating Lane 4	1878	Queue Aver Delay	$\begin{gathered} 15 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 15 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 115 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 15 \text { secs } \end{gathered}$
A5/ Site Access									
56/1	A5 Eastbound Left Turn Lane 1	1751	Queue Aver Delay	N/A	$\begin{gathered} 14 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 14 \\ 16 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 14 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 14 \\ 17 \text { secs } \end{gathered}$
56/2 + 21/1	A5 Eastbound Lane 2	1814	Queue Aver Delay	N/A	$\begin{gathered} 14 \\ 13 \mathrm{secs} \end{gathered}$	$\begin{gathered} \hline 14 \\ 14 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 12 \\ 13 \text { secs } \end{gathered}$	$\begin{gathered} 13 \\ 13 \text { secs } \end{gathered}$
53/3 + 21/2	A5 Eastbound Lane 3	2082	Queue Aver Delay	N/A	$\begin{gathered} 5 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 5 \\ 8 \mathrm{secs} \end{gathered}$	N/A	$\begin{gathered} 5 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 5 \\ 8 \mathrm{secs} \end{gathered}$
$\begin{gathered} 59 / 2+62 / 1+ \\ 61 / 1+39 / 1 \end{gathered}$	A5 Westbound Lane 1	2015	Queue Aver Delay	N/A	$\begin{gathered} 97 \\ 56 \text { secs } \end{gathered}$	$\begin{gathered} 20 \\ 44 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 43 \\ 1 \mathrm{~m} 36 \mathrm{~s} \end{gathered}$	$\begin{gathered} 32 \\ 1 \mathrm{~m}^{15 \mathrm{~s}} \end{gathered}$
$\begin{gathered} 59 / 3+62 / 2+ \\ 61 / 2+39 / 2 \end{gathered}$	A5 Westbound Lane 2	2015	Queue Aver Delay	N/A	$\begin{gathered} 23 \\ 56 \text { secs } \end{gathered}$	$\begin{gathered} 20 \\ 44 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 42 \\ 1 \mathrm{~m} 37 \mathrm{~s} \end{gathered}$	$\begin{gathered} 30 \\ 1 \mathrm{~m} \mathrm{14s} \end{gathered}$
60/1	A5 Westbound Right Turn Lane 3	1667	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 1 \mathrm{~m} 5 \mathrm{~s} \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{~min} \end{gathered}$	N/A	$\begin{gathered} 1 \\ 53 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{~min} \end{gathered}$
54/1	Site Access Left Turn Lane 1	1695	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$
55/1	Site Access Right Turn Lane 2	1690	Queue Aver Delay	N/A	$\begin{gathered} 2 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 34 \text { secs } \end{gathered}$	N/A	$\begin{gathered} \hline 1 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} \hline 1 \\ 37 \text { secs } \end{gathered}$
55/2	Site Access Right Turn Lane 3	1690	Queue Aver Delay	N/A	$\begin{gathered} 2 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 35 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 2 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 37 \text { secs } \end{gathered}$
A5/ Birch Coppice									
31/1	A5 Eastbound Ahead Lane 1	1814	Queue Aver Delay	$\begin{gathered} 10 \\ 13 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 13 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 13 \text { secs } \end{gathered}$
$31 / 2$	A5 Eastbound Ahead Lane 2	2082	Queue Aver Delay	$\begin{gathered} 11 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 8 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 9 \text { secs } \end{gathered}$
32/1	A5 Eastbound Right Turn Lane 3	1960	Queue Aver Delay	$\begin{gathered} 4 \\ 1 \mathrm{~m} 3 \mathrm{~s} \end{gathered}$	$\begin{gathered} 5 \\ 59 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 1 \mathrm{~m} 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} 7 \\ 1 \mathrm{~m} 25 \mathrm{~s} \end{gathered}$	$\begin{gathered} 5 \\ 1 \mathrm{~m} 5 \mathrm{~s} \end{gathered}$	$\begin{gathered} 6 \\ 1 \mathrm{~m} 18 \mathrm{~s} \end{gathered}$
32/2	A5 Eastbound Right Turn Lane 4	1667	Queue Aver Delay	$\begin{gathered} 2 \\ 52 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 43 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 44 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 51 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 45 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 44 \text { secs } \end{gathered}$
37/1	A5 Westbound Ahead Lane 1	1751	Queue Aver Delay	$\begin{gathered} 2 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 13 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 11 \text { secs } \end{gathered}$
$37 / 2+38 / 1$	A5 Westbound Ahead Lane 2	2015	Queue Aver Delay	$\begin{gathered} 9 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} \hline 10 \\ 39 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 45 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 43 \mathrm{secs} \end{gathered}$
$37 / 3+38 / 2$	A5 Westbound Ahead Lane 3	2015	Queue Aver Delay	$\begin{gathered} 9 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 45 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 44 \text { secs } \end{gathered}$
42/1	Birch Coppice Left Turn Lane 1	1695	Queue Aver Delay	$\begin{gathered} 8 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 32 \text { secs } \end{gathered}$
42/2	Birch Coppice Left Turn Lane 2	1983	Queue Aver Delay	$\begin{gathered} 8 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 34 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 42 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 33 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 37 \text { secs } \end{gathered}$
$43 / 1+44 / 2$	Birch Coppice Right Turn Lane 3	1690	Queue Aver Delay	$\begin{gathered} 19 \\ 1 \mathrm{~m} \mathrm{39s} \end{gathered}$	$\begin{gathered} 16 \\ 1 \mathrm{~m} 33 \mathrm{~s} \end{gathered}$	$\begin{gathered} 16 \\ 1 \mathrm{~m} 36 \mathrm{~s} \end{gathered}$	$\begin{gathered} 15 \\ 1 \mathrm{~m} 23 \mathrm{~s} \end{gathered}$	$\begin{gathered} 15 \\ 1 \mathrm{~m}^{29 \mathrm{~s}} \end{gathered}$	$\begin{gathered} 16 \\ 1 \mathrm{~m} 37 \mathrm{~s} \end{gathered}$
A5/ Core 42									
46/1	A5 Eastbound Ahead Lane 1	1833	Queue Aver Delay	$\begin{gathered} 1 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 8 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 8 \mathrm{secs} \end{gathered}$
46/2	A5 Eastbound Ahead Lane 2	2082	Queue Aver Delay	$\begin{gathered} 1 \\ 5 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 4 \text { secs } \end{gathered}$
47/1	A5 Eastbound Right Turn Lane 3	1667	Queue Aver Delay	$\begin{gathered} 1 \\ 21 \text { secs } \end{gathered}$	$\begin{gathered} \hline 1 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 21 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$
49/1	A5 Westbound Ahead \& Left Turn Lane 1	1957	Queue Aver Delay	$\begin{gathered} 21 \\ 52 \text { secs } \end{gathered}$	$\begin{gathered} 18 \\ 49 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 26 \text { secs } \end{gathered}$	$\begin{gathered} 21 \\ 46 \text { secs } \end{gathered}$	$\begin{gathered} 20 \\ 52 \text { secs } \end{gathered}$	$\begin{gathered} 22 \\ 57 \text { secs } \end{gathered}$
49/2	A5 Westbound Ahead Lane 2	1909	Queue Aver Delay	$\begin{gathered} 21 \\ 43 \mathrm{secs} \end{gathered}$	$\begin{gathered} 17 \\ 45 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 26 \text { secs } \end{gathered}$	$\begin{gathered} 24 \\ 53 \text { secs } \end{gathered}$	$\begin{gathered} 22 \\ 1 \mathrm{~m} 3 \mathrm{~s} \end{gathered}$	$\begin{gathered} 24 \\ 58 \mathrm{secs} \end{gathered}$
51/1	$\begin{gathered} \text { Core } 42 \\ \text { Left Turn Lane } 1 \end{gathered}$	1695	Queue Aver Delay	$\begin{gathered} 3 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 25 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 23 \text { secs } \end{gathered}$
52/1	Core 42 Right Turn Lane 2	1690	Queue Aver Delay	$\begin{gathered} 3 \\ 1 \mathrm{~m}^{22 \mathrm{~s}} \end{gathered}$	$\begin{gathered} 3 \\ 1 \mathrm{~m} 22 \mathrm{~s} \end{gathered}$	$\begin{gathered} 3 \\ 1 \mathrm{~m} 19 \mathrm{~s} \end{gathered}$	$\begin{gathered} 3 \\ 1 \mathrm{~m} 20 \mathrm{~s} \end{gathered}$	$\begin{gathered} 3 \\ 1 \mathrm{~m}^{22 \mathrm{~s}} \end{gathered}$	$\begin{gathered} 3 \\ 1 \mathrm{~m} 22 \mathrm{~s} \end{gathered}$
			Network PI	5805.88	7376.85	6651.73	6456.33	8194.02	7585.32

\# = new traffic streams as a result of the proposed development site access junction
\# = new traffic streams as a result of proposed off-site mitigation improvements

				2031			
M42 Junction 10							
Traffic Stream(s)	Lane	Saturation Flow pcu/hr	Model Output	AM Peak No Dev	AM Peak With Dev	PM Peak No Dev	PM Peak With Dev
1/1	M42 Northbound Offslip Lane 1	1740	Queue Aver Delay	$\begin{gathered} 3 \\ 24 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 24 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 23 \text { secs } \end{gathered}$
1/2	M42 Northbound Offslip Lane 2	1740	Queue Aver Delay	$\begin{gathered} 2 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 22 \text { secs } \end{gathered}$
1/3	M42 Northbound Offslip Lane 3	1740	Queue Aver Delay	$\begin{gathered} 3 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 21 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 22 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 21 \text { secs } \end{gathered}$
3/1	M42 Northbound Offslip Lane 4	1849	Queue Aver Delay	$\begin{gathered} 6 \\ 28 \text { secs } \end{gathered}$	$\begin{gathered} 13 \\ 52 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 33 \text { secs } \end{gathered}$
3/2	M42 Northbound Offslip Lane 5	1849	Queue Aver Delay	$\begin{gathered} 10 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 32 \mathrm{secs} \end{gathered}$	$\begin{gathered} 10 \\ 32 \mathrm{sec} \end{gathered}$
7/1	M42 Northbound Circulating Lane 1	2039	Queue Aver Delay	$\begin{gathered} 3 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 7 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 8 \\ 7 \mathrm{secs} \end{gathered}$
7/2	M42 Northbound Circulating Lane 2	1840	Queue Aver Delay	$\begin{gathered} 6 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 6 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 22 \\ 20 \mathrm{secs} \end{gathered}$	$\begin{gathered} 15 \\ 18 \text { secs } \end{gathered}$
7/3	M42 Northbound Circulating Lane 3	1840	Queue Aver Delay	$\begin{gathered} 6 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 15 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 21 \\ 18 \text { secs } \end{gathered}$
7/4	M42 Northbound Circulating Lane 4	1840	Queue Aver Delay	$\begin{gathered} 3 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 21 \text { secs } \end{gathered}$
$8 / 1+9 / 1+11 / 1$	A5 Eastbound Lane 1	1828	Queue Aver Delay	$\begin{gathered} 3 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} \hline 3 \\ 16 \text { secs } \end{gathered}$
$\begin{gathered} 8 / 2+9 / 2+11 / 2 \\ +63 / 1 \end{gathered}$	A5 Eastbound Lane 2	1900	Queue Aver Delay	$\begin{gathered} 14 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 33 \\ 1 \mathrm{~m} 37 \mathrm{~s} \end{gathered}$	$\begin{gathered} 34 \\ 2 \mathrm{~m} 34 \mathrm{~s} \end{gathered}$	$\begin{gathered} 46 \\ 3 \mathrm{~m} 11 \mathrm{~s} \end{gathered}$
$\begin{gathered} 8 / 3+9 / 2+11 / 2 \\ (9 / 3+11 / 3)+ \\ 63 / 2 \end{gathered}$	A5 Eastbound Lane 3	1900	Queue Aver Delay	$\begin{gathered} 11 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} 24 \\ 1 \mathrm{~m} 4 \mathrm{~s} \end{gathered}$	$\begin{gathered} 41 \\ 2 \mathrm{~m} 27 \mathrm{~s} \end{gathered}$	$\begin{gathered} 66 \\ 3 \mathrm{~m} 59 \mathrm{~s} \end{gathered}$
8/4	A5 Eastbound Lane 4	1900	Queue Aver Delay	$\begin{gathered} 5 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 21 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 30 \text { secs } \end{gathered}$
12/1	A5 Eastbound Circulating Lane 1	1846	Queue Aver Delay	$\begin{gathered} 10 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 22 \text { secs } \end{gathered}$
12/2	A5 Eastbound Circulating Lane 2	1878	Queue Aver Delay	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$
12/3	A5 Eastbound Circulating Lane 3	1878	Queue Aver Delay	$\begin{gathered} 6 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 37 \text { secs } \end{gathered}$
12/4	A5 Eastbound Circulating Lane 4	1878	Queue Aver Delay	$\begin{gathered} 12 \\ 43 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 47 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 40 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 46 \text { secs } \end{gathered}$
14/1	Green Lane Lane 1	1602	Queue Aver Delay	$\begin{gathered} 12 \\ 2 m 35 s \end{gathered}$	$\begin{gathered} 15 \\ 3 \mathrm{~m} 3 \mathrm{~s} \end{gathered}$	$\begin{gathered} 7 \\ 47 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 53 \text { secs } \end{gathered}$
14/2	Green Lane Lane 2	1602	Queue Aver Delay	$\begin{gathered} 18 \\ 3 \mathrm{~m} 54 \mathrm{~s} \end{gathered}$	$\begin{gathered} 18 \\ 4 \mathrm{~m} 5 \mathrm{~s} \end{gathered}$	$\begin{gathered} 19 \\ 2 \mathrm{~m} 47 \mathrm{~s} \end{gathered}$	$\begin{gathered} 26 \\ 4 \mathrm{~m} 6 \mathrm{~s} \end{gathered}$
15/1	Green Lane Circulating Lane 1	1950	Queue Aver Delay	$\begin{gathered} 3 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 9 \mathrm{secs} \end{gathered}$
15/2	Green Lane Circulating Lane 2	1745	Queue Aver Delay	$\begin{gathered} 7 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 11 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 19 \\ 16 \text { secs } \end{gathered}$
15/3	Green Lane Circulating Lane 3	1745	Queue Aver Delay	$\begin{gathered} 16 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 18 \\ 11 \text { secs } \end{gathered}$	$\begin{gathered} 18 \\ 16 \text { secs } \end{gathered}$	$\begin{gathered} 19 \\ 17 \text { secs } \end{gathered}$
15/4	Green Lane Circulating Lane 4	1745	Queue Aver Delay	$\begin{gathered} 1 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 5 \mathrm{secs} \end{gathered}$
13/1	Exit to Green Lane Toucan Crossing	2272	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$
18/1	M42 Southbound Offslip Lane 1	1804	Queue Aver Delay	$\begin{gathered} 2 \\ 43 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 41 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 47 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 28 \text { secs } \end{gathered}$
18/2	M42 Southbound Offslip Lane 2	1813	Queue Aver Delay	$\begin{gathered} 2 \\ 32 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 57 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 34 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 50 \text { secs } \end{gathered}$
18/3	M42 Southbound Offslip Lane 3	1813	Queue Aver Delay	$\begin{gathered} 3 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 35 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 25 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 26 \text { secs } \end{gathered}$
17/1	M42 Southbound Circulating Lane 1	1956	Queue Aver Delay	$\begin{gathered} 9 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 10 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 11 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 9 \\ 6 \mathrm{secs} \end{gathered}$
17/2	M42 Southbound Circulating Lane 2	1956	Queue Aver Delay	$\begin{gathered} 12 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 12 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 10 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 11 \\ 6 \mathrm{secs} \end{gathered}$
17/3	M42 Southbound Circulating Lane 3	1800	Queue Aver Delay	$\begin{gathered} 3 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 7 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 13 \text { secs } \end{gathered}$
17/4	M42 Southbound Circulating Lane 4	1800	Queue Aver Delay	$\begin{gathered} 2 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 7 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$
16/1	Exit to M42 Northbound Toucan Crossing	2200	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$
23/1	A5 Westbound Lane 1	1930	Queue Aver Delay	$\begin{gathered} 6 \\ 13 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 5 \\ 9 \text { secs } \end{gathered}$
$\begin{gathered} 23 / 2+24 / 1+ \\ 25 / 1 \end{gathered}$	A5 Westbound Lane 2	1851	Queue Aver Delay	$\begin{gathered} 13 \\ 36 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 28 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 15 \text { secs } \end{gathered}$
$\begin{gathered} 23 / 3+24 / 2+ \\ 25 / 2 \end{gathered}$	A5 Westbound Lane 3	1851	Queue Aver Delay	$\begin{gathered} 9 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 4 \\ 8 \mathrm{secs} \end{gathered}$

$\begin{gathered} 23 / 4+24 / 3+ \\ 25 / 3 \end{gathered}$	A5 Westbound Lane 4	1851	Queue Aver Delay	$\begin{gathered} 7 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 12 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 4 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 20 \text { secs } \end{gathered}$
22/1	A5 Westbound Circulating Lane 1	1797	Queue Aver Delay	$\begin{gathered} 14 \\ 59 \text { secs } \end{gathered}$	$\begin{gathered} 16 \\ 1 \mathrm{~m} 5 \mathrm{~s} \end{gathered}$	$\begin{gathered} 13 \\ 1 \mathrm{~m} 30 \mathrm{~s} \end{gathered}$	$\begin{gathered} 15 \\ 1 \mathrm{~m} 40 \mathrm{~s} \end{gathered}$
22/2	A5 Westbound Circulating Lane 2	1797	Queue Aver Delay	$\begin{gathered} 6 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 28 \text { secs } \end{gathered}$	$\begin{gathered} 13 \\ 1 \mathrm{~m} 22 \mathrm{~s} \end{gathered}$	$\begin{gathered} 6 \\ 50 \text { secs } \end{gathered}$
22/3	A5 Westbound Circulating Lane 3	1902	Queue Aver Delay	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 15 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 12 \text { secs } \end{gathered}$
22/4	A5 Westbound Circulating Lane 4	1902	Queue Aver Delay	$\begin{gathered} 1 \\ 1 \mathrm{sec} \end{gathered}$	$\begin{gathered} 1 \\ 1 \mathrm{sec} \end{gathered}$	$\begin{gathered} 3 \\ 14 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 11 \text { secs } \end{gathered}$
28/1 + 29/1	Trinity Road Lane 1	1669	Queue Aver Delay	$\begin{gathered} 1 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 28 \text { secs } \end{gathered}$
28/2	Trinity Road Lane 2	1669	Queue Aver Delay	$\begin{gathered} 1 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} \hline 1 \\ 28 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 28 \text { secs } \end{gathered}$
28/3	Trinity Road Lane 3	1669	Queue Aver Delay	$\begin{gathered} \hline 4 \\ 39 \text { secs } \end{gathered}$	$\begin{gathered} \hline 3 \\ 39 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 34 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 33 \text { secs } \end{gathered}$
27/1	Trinity Road Circulating Lane 1	1846	Queue Aver Delay	$\begin{gathered} 6 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 9 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 7 \text { secs } \end{gathered}$
27/2	Trinity Road Circulating Lane 2	1846	Queue Aver Delay	$\begin{gathered} 15 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 15 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 14 \\ 13 \mathrm{secs} \end{gathered}$	$\begin{gathered} 13 \\ 12 \text { secs } \end{gathered}$
27/3	Trinity Road Circulating Lane 3	1878	Queue Aver Delay	$\begin{gathered} 5 \\ 2 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 3 \mathrm{secs} \end{gathered}$	$\begin{gathered} 7 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 7 \mathrm{secs} \end{gathered}$
27/4	Trinity Road Circulating Lane 4	1878	Queue Aver Delay	$\begin{gathered} 6 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 9 \\ 4 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 10 \text { secs } \end{gathered}$
A5/ Proposed Site Access							
56/1	A5 Eastbound Lane 1	1751	Queue Aver Delay	N/A	$\begin{gathered} 20 \\ 26 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 15 \\ 24 \text { secs } \end{gathered}$
56/2 + 21/1	A5 Eastbound Lane 2	1814	Queue Aver Delay	N/A	$\begin{gathered} 23 \\ 24 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 13 \\ 15 \text { secs } \end{gathered}$
53/3 + 21/2	A5 Eastbound Lane 3	2082	Queue Aver Delay	N/A	$\begin{gathered} 6 \\ 9 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 5 \\ 9 \text { secs } \end{gathered}$
$\begin{gathered} 59 / 2+62 / 1+ \\ 61 / 1+39 / 1 \end{gathered}$	A5 Westbound Lane 1	2015	Queue Aver Delay	N/A	$\begin{gathered} 10 \\ 15 \text { secs } \end{gathered}$	N/A	$\begin{gathered} \hline 13 \\ 18 \text { secs } \end{gathered}$
$\begin{gathered} 59 / 3+62 / 2+ \\ 61 / 2+39 / 2 \end{gathered}$	A5 Westbound Lane 2	2015	Queue Aver Delay	N/A	$\begin{gathered} 11 \\ 16 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 11 \\ 19 \text { secs } \end{gathered}$
60/1	A5 Westbound Right Turn Lane 3	1667	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 1 \mathrm{~m} 2 \mathrm{~s} \end{gathered}$	N/A	$\begin{gathered} 1 \\ 1 \text { min } \end{gathered}$
54/1	Site Access Left Turn Lane 1	1695	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$
55/1	Site Access Right Turn Lane 2	1690	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 27 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 2 \\ 28 \text { secs } \end{gathered}$
55/2	Site Access Right Turn Lane 3	1690	Queue Aver Delay	N/A	$\begin{gathered} 1 \\ 29 \text { secs } \end{gathered}$	N/A	$\begin{gathered} 11 \\ 28 \text { secs } \end{gathered}$
A5/ Birch Coppice							
31/1	A5 Eastbound Ahead Lane 1	1814	Queue Aver Delay	$\begin{gathered} 7 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 10 \text { secs } \end{gathered}$	$\begin{gathered} 19 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 13 \text { secs } \end{gathered}$
31/2	A5 Eastbound Ahead Lane 2	2082	Queue Aver Delay	$\begin{gathered} 9 \\ 5 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 22 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 12 \text { secs } \end{gathered}$
32/1	A5 Eastbound Right Turn Lane 3	1960	Queue Aver Delay	$\begin{gathered} 6 \\ 1 \mathrm{~m} 8 \mathrm{~s} \end{gathered}$	$\begin{gathered} 7 \\ 56 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 53 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 40 \mathrm{secs} \end{gathered}$
32/2	A5 Eastbound Right Turn Lane 4	1667	Queue Aver Delay	$\begin{gathered} 5 \\ 1 \mathrm{~m} 3 \mathrm{~s} \end{gathered}$	$\begin{gathered} 5 \\ 55 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 50 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 37 \text { secs } \end{gathered}$
37/1	A5 Westbound Ahead Lane 1	1751	Queue Aver Delay	$\begin{gathered} 2 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 9 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 6 \text { secs } \end{gathered}$
$\begin{gathered} 37 / 2+38 / 1+ \\ 53 / 1 \end{gathered}$	A5 Westbound Ahead Lane 2	2015	Queue Aver Delay	$\begin{gathered} 10 \\ 24 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} 17 \\ 1 \mathrm{~m} 6 \mathrm{~s} \end{gathered}$	$\begin{gathered} 18 \\ 1 \mathrm{~m} 10 \mathrm{~s} \end{gathered}$
$\begin{gathered} 37 / 3+38 / 2+ \\ 53 / 2 \end{gathered}$	A5 Westbound Ahead Lane 3	2015	Queue Aver Delay	$\begin{gathered} 10 \\ 28 \mathrm{secs} \end{gathered}$	$\begin{gathered} 10 \\ 28 \mathrm{secs} \end{gathered}$	$\begin{gathered} 18 \\ 1 \mathrm{~m} 11 \mathrm{~s} \end{gathered}$	$\begin{gathered} 18 \\ 1 \mathrm{~m} 16 \mathrm{~s} \end{gathered}$
42/1	Birch Coppice Left Turn Lane 1	1695	Queue Aver Delay	$\begin{gathered} 3 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 31 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 27 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 27 \text { secs } \end{gathered}$
42/2	Birch Coppice Left Turn Lane 2	1983	Queue Aver Delay	$\begin{gathered} 2 \\ 29 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 39 \text { secs } \end{gathered}$	$\begin{gathered} 4 \\ 30 \text { secs } \end{gathered}$	$\begin{gathered} \hline 4 \\ 33 \text { secs } \end{gathered}$
$43 / 1+44 / 2$	Birch Coppice Right Turn Lane 3	1690	Queue Aver Delay	$\begin{gathered} 3 \\ 44 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 46 \text { secs } \end{gathered}$	$\begin{gathered} 11 \\ 1 \mathrm{~m} 34 \mathrm{~s} \end{gathered}$	$\begin{gathered} 14 \\ 1 \mathrm{~m} 28 \mathrm{~s} \end{gathered}$
A5/ Core 42							
46/1 + 45/1	A5 Eastbound Ahead Lane 1	1833	Queue Aver Delay	$\begin{gathered} 2 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 6 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 5 \text { secs } \end{gathered}$
$46 / 2+45 / 2$	A5 Eastbound Ahead Lane 2	2082	Queue Aver Delay	$\begin{gathered} 2 \\ 3 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 3 \text { secs } \end{gathered}$	$\begin{gathered} 7 \\ 7 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 6 \text { secs } \end{gathered}$
47/1	A5 Eastbound Right Turn Lane 3	1667	Queue Aver Delay	$\begin{gathered} 14 \\ 1 \mathrm{~m} 52 \mathrm{~s} \end{gathered}$	$\begin{gathered} 9 \\ 1 \mathrm{~m} 31 \mathrm{~s} \end{gathered}$	$\begin{gathered} 1 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 1 \\ 22 \text { secs } \end{gathered}$
49/1	A5 Westbound Ahead \& Left Turn Lane 1	1957	Queue Aver Delay	$\begin{gathered} 73 \\ 2 \mathrm{~m} 38 \mathrm{~s} \end{gathered}$	$\begin{gathered} 87 \\ 3 \mathrm{~m} 7 \mathrm{~s} \end{gathered}$	$\begin{gathered} 37 \\ 1 \mathrm{~m} 31 \mathrm{~s} \end{gathered}$	$\begin{gathered} 44 \\ 1 \mathrm{~m} 51 \mathrm{~s} \end{gathered}$
49/2	A5 Westbound Ahead Lane 2	1909	Queue Aver Delay	$\begin{gathered} 85 \\ 3 \mathrm{~m} 8 \mathrm{~s} \end{gathered}$	$\begin{gathered} 92 \\ 3 \mathrm{~m} 31 \mathrm{~s} \end{gathered}$	$\begin{gathered} \hline 39 \\ 1 \mathrm{~m} 47 \mathrm{~s} \end{gathered}$	$\begin{gathered} 46 \\ 2 m 5 s \end{gathered}$
51/1	Core 42 Left Turn Lane 1	1695	Queue Aver Delay	$\begin{gathered} 2 \\ 26 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 26 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 28 \text { secs } \end{gathered}$	$\begin{gathered} 3 \\ 26 \text { secs } \end{gathered}$
52/1	Core 42 Right Turn Lane 2	1690	Queue Aver Delay	$\begin{gathered} 3 \\ 3 \mathrm{~m} 20 \mathrm{~s} \end{gathered}$	$\begin{gathered} 4 \\ 3 \mathrm{~m} 33 \mathrm{~s} \end{gathered}$	$\begin{gathered} 3 \\ 1 \mathrm{~m} 40 \mathrm{~s} \end{gathered}$	$\begin{gathered} 4 \\ 1 \mathrm{~m} 45 \mathrm{~s} \end{gathered}$
			Network P	6888.43	8738.53	7152.69	8965.65

\# = new traffic streams as a result of the proposed development site access junction
\# = new traffic streams as a result of proposed off-site mitigation works
\# = new traffic streams as a result of potential Local Plan Improvements (Phil Jones Associates Drawing 02853-01 Rev A)

Land Northeast of M42 Junction 10
Pennine Way Roundabouts Modelling Note

1
 INTRODUCTION

1.1 Tetra Tech (TT) have been appointed by Hodgetts Estates to provide technical support for their outline planning application for a proposed development of up to 100,000 sqm of employment floorspace and 150 space overnight lorry park (including an associated 400sqm amenity block) on land north-east of M42 Junction 10. The application is also supported by a Transport Assessment (TA) prepared by Bancroft Consulting, Version C dated November 2021, which is currently being updated by TT.

This Pennine Way Roundabout Modelling Note follows discussions with highway officers at Staffordshire County Council (SCC). A meeting was held between TT and SCC on $9^{\text {th }}$ September 2022 and the following actions were agreed;

1. Arrange traffic survey for the two Pennine Way roundabout junctions, as shown below at image 1.1.

Image 1.1 - Pennine Way Roundabout Junctions

2. Prepare an assignment for the Development Generated trips into Tamworth, west of the M42 Junction 10 Interchange.
3. Assess the impact at the Pennine Way North and South roundabouts. SCC requested that the model files are submitted that these are in Junctions 9 format.

TRAFFIC SURVEYS

The two Pennine Way roundabouts were surveyed on Wednesday $5^{\text {th }}$ October 2022. The traffic flows were converted into Passenger Car Units (PCU) and the peak hour traffic flows derived. The AM peak hour was 07:45 to 08:45 and the PM peak hour was 16:00 to 17:00. The data can be provided as an excel file on request. TT Figure A shows the 2022 AM Peak surveyed flows and TT Figure B shows the PM peak equivalent, both attached in Appendix A.

At the same time of the traffic counts, queue observations per lane were recorded at minute intervals. The reported queues are attached at Appendix B. Junctions 9 reports the average queue in the busiest 15 -minute period, therefore the longest queue observed during a 15 minute period within the peak hours has been determined. The longest average 15 -minute queue has been highlighted yellow in Appendix B and the combined queues on each approach have been added together and are highlighted in cyan. Table 2.1 below summarises the average queue during the busiest 15 -minute period in each peak hour.

Table 2.1: Pennine Way Roundabout - Observed Queues (Busiest 15 minute period)

	Northern Roundabout AM Peak	
B05080 Pennine Way Northbound	0	0
B05080 Pennine Way Southbound	0	0
A5 Bypass On/ Off slip	0	0
Southern Roundabout		
	AM Peak	PM Peak
	0	1
B05080 Pennine Way Southbound	0	0
A5 Bypass On/ Off slip	1	0
Centurion Way	0	1

Following previous discussions with SCC, it was demonstrated and agreed with SCC to use the Atherstone A5 PARAMICS modelled flows immediately west of the M42 Junction 10 interchange (Note, the A5 PARAMICS model was developed by Vectos on behalf of

Warwickshire CC for the North Warwickshire BC Local Plan and was agreed by National Highways and Staffordshire CC). SCC confirmed that the volume of development generated traffic immediately west of the Junction 10 interchange is 102 pcu eastbound in the AM peak and 74 pcu westbound. In the PM peak the eastbound flow is 72 pcu and the westbound flow is 68 pcu . These agreed flows have then been assigned through the SCC network based on the assignment as shown at TT Figure D. TT Figure E attached in Appendix A shows the development generated traffic flows in the AM Peak hour and TT Figure F shows the PM Peak equivalent.

2031 Reference Case Flows

One option for calculating the final east to west, west to east flows (green cells) at the southern roundabout flows is to apply a TEMPRO growth factor to the surveyed data. The TEMPRO growth factor for 2022 to 2031 using the Tamworth MSOA 008 area is 5.13% in the AM peak.

IMPACT ASSESSMENT

Model Validation

The two Pennine Way roundabouts have been modelled in TRL's Junctions 9 software program. The junction parameters were taken from OS Mapping and video footage from the survey data was used to establish which lanes drivers used for their choice of exit. The lane simulation mode was then set up in the model to recreate the observed driver behaviour and to accurately model the effects of unequal lane usage and also model any blocking back which would affect the performance of either junction. One noticeable observation was that drivers from the A5 eastbound off-slip (approach to the northern

Land Northeast of M42 Junction 10
 Pennine Way Roundabouts Modelling Note

roundabout) predominantly use the nearside lane to travel ahead to Pennine Way. The offside lane is therefore used very infrequently for drivers heading north to Pennine Way, as such the lane is effectively redundant. In the model the offside lane has been allocated to enable 10% of drivers "consider" using the lane for journeys north to Pennine Way. This means that 10% of traffic wanting to travel to Pennine Way will only actually use that lane if the queue is shorter than the nearside lane.

Table 4.1 below shows the 2022 modelled results and the observed queues are reported alongside for validation purposes. Junction output files are attached at Appendix D. A positive intercept pcu/hr correction has been applied to the Pennine Way northbound approach to the northern roundabout to calibrate the modelled queues to those observed. No corrections were applied to the other approaches.

Table 4.1: Pennine Way Roundabout - 2022 Modelled v Observed Queues

		Northern Roundabout			
		AM Peak		PM Peak	
		Modelled Results	Observed Queue	Modelled Results	Observed Queue
B05080 Pennine Way Northbound	Queue Delay	$\begin{gathered} 1 \\ 4 \mathrm{secs} \end{gathered}$	0	$\begin{gathered} 2 \\ 5 \mathrm{secs} \end{gathered}$	0
B05080 Pennine Way Southbound	Queue Delay	$\begin{gathered} 3 \\ 9 \mathrm{secs} \end{gathered}$	0	$\begin{gathered} 1 \\ 6 \mathrm{secs} \end{gathered}$	0
A5 Bypass On/ Off slip	Queue Delay	$\begin{gathered} 3 \\ 9 \mathrm{secs} \end{gathered}$	0	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$	0
		Southern Roundabout			
		AM Peak		PM Peak	
B5404 Quarry Hill	Queue Delay	$\begin{gathered} 1 \\ 8 \mathrm{secs} \end{gathered}$	0	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$	1
B05080 Pennine Way Southbound	Queue Delay	$\begin{gathered} 1 \\ 6 \mathrm{secs} \end{gathered}$	0	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$	0
A5 Bypass On/ Off slip	Queue Delay	$\begin{gathered} 2 \\ 8 \mathrm{secs} \end{gathered}$	1	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$	0
Centurion Way	Queue Delay	$\begin{gathered} 0 \\ 6 \mathrm{secs} \end{gathered}$	0	$\begin{gathered} 1 \\ 7 \mathrm{secs} \end{gathered}$	1

Land Northeast of M42 Junction 10
 Pennine Way Roundabouts Modelling Note

4.3 The results show that in both the AM and PM peaks the junctions work well with minimal queues and delays in both peak hour periods. The modelled queues are generally 1 to 2 vehicles longer than those observed, therefore the model is considered to be validated and provides a good base for future projections.

2031 Reference Case

4.4 The validated model has been used to assess the performance of the two roundabouts in the 2031 Reference Case year, both with and without the proposed development traffic flows as discussed in Chapter 3. Table 4.2 below summarises the predicted results. Junction output files are attached at Appendix D.

Table 4.2: Pennine Way Roundabout - 2031 Reference Case

		Northern Roundabout			
		AM Peak		PM Peak	
		No Dev	With Dev	No Dev	With Dev
B05080 Pennine Way Northbound	Queue Delay	$\begin{gathered} 1 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 6 \\ 13 \mathrm{secs} \end{gathered}$	$\begin{gathered} 6 \\ 14 \text { secs } \end{gathered}$
B05080 Pennine Way Southbound	Queue Delay	$\begin{gathered} 7 \\ 23 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 32 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$
A5 Bypass On/ Off slip	Queue Delay	$\begin{gathered} 0 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 0 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 0 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 4 \mathrm{secs} \end{gathered}$
		Southern Roundabout			
		AM Peak		PM Peak	
B5404 Quarry Hill	Queue Delay	$\begin{gathered} 4 \\ 17 \text { secs } \end{gathered}$	$\begin{gathered} 5 \\ 20 \text { secs } \end{gathered}$	$\begin{gathered} 12 \\ 52 \text { secs } \end{gathered}$	$\begin{gathered} 14 \\ 1 \mathrm{~m} 3 \mathrm{~s} \end{gathered}$
B05080 Pennine Way Southbound	Queue Delay	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$			
A5 Bypass On/ Off slip	Queue Delay	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 8 \\ 24 \text { secs } \end{gathered}$	$\begin{gathered} 9 \\ 28 \mathrm{secs} \end{gathered}$
Centurion Way	Queue Delay	$\begin{gathered} 0 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 0 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 8 \mathrm{secs} \end{gathered}$

In the No Development AM peak scenario the junction is predicted to operate with low levels of queues and delays; a maximum queue of 7 pcu and average delay of 23 secs on the Pennine Way southbound approach to the northern roundabout is predicted. With the development generated traffic, the queue is predicted to increase by 3 pcu to 10 pcu and
delay increase by 9 secs to 32 seconds. The impact of the development traffic on the Pennine Way southbound approach is small and is negligible on all other approaches.
4.7 The residual cumulative impact of the proposed development in the AM and PM peaks on the two roundabouts in the 2031 Reference Case are not considered severe with reference to NPPF para 111 and mitigation is therefore not required.

2031 Local Plan

The validated model has been used to assess the performance of the two roundabouts in the 2031 Local Plan scenario, both with and without the proposed development traffic flows as discussed in Chapter 3. Table 4.3 below summarises the predicted results. Junction output files are attached at Appendix D.

Land Northeast of M42 Junction 10
 Pennine Way Roundabouts Modelling Note

Table 4.3: Pennine Way Roundabout - 2031 Local Plan

		Northern Roundabout			
		AM Peak		PM Peak	
		No Dev	With Dev	No Dev	With Dev
B05080 Pennine Way Northbound	Queue Delay	$\begin{gathered} 1 \\ 4 \text { secs } \end{gathered}$	$\begin{gathered} 2 \\ 4 \mathrm{secs} \end{gathered}$	$\begin{gathered} 6 \\ 13 \text { secs } \end{gathered}$	$\begin{gathered} 6 \\ 11 \mathrm{secs} \end{gathered}$
B05080 Pennine Way Southbound	Queue Delay	$\begin{gathered} 10 \\ 29 \mathrm{secs} \end{gathered}$	$\begin{gathered} 14 \\ 42 \text { secs } \end{gathered}$	$\begin{gathered} \hline 3 \\ 10 \mathrm{secs} \end{gathered}$	$\begin{gathered} 3 \\ 11 \mathrm{secs} \end{gathered}$
A5 Bypass On/ Off slip	Queue Delay	$\begin{gathered} 0 \\ 4 \mathrm{secs} \end{gathered}$			
		Southern Roundabout			
		AM Peak		PM Peak	
B5404 Quarry Hill	Queue Delay	$\begin{gathered} 4 \\ 16 \text { secs } \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 19 \text { secs } \end{gathered}$	$\begin{gathered} 10 \\ 51 \mathrm{secs} \end{gathered}$	$\begin{gathered} 14 \\ 1 \mathrm{~min} \\ \hline \end{gathered}$
B05080 Pennine Way Southbound	Queue Delay	$\begin{gathered} 1 \\ 5 \mathrm{secs} \end{gathered}$			
A5 Bypass On/ Off slip	Queue Delay	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 2 \\ 9 \mathrm{secs} \end{gathered}$	$\begin{gathered} 8 \\ 25 \text { secs } \end{gathered}$	$\begin{gathered} 8 \\ 23 \mathrm{secs} \end{gathered}$
Centurion Way	Queue Delay	$\begin{gathered} 0 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 0 \\ 6 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 8 \mathrm{secs} \end{gathered}$	$\begin{gathered} 1 \\ 8 \mathrm{secs} \end{gathered}$

In the No Development AM peak scenario the junction is predicted to operate with low levels of queues and delays; a maximum queue of 10 pcu and average delay of 29 secs on the Pennine Way southbound approach to the northern roundabout is predicted. With the development generated traffic, the queue is predicted to increase by 4 pcu to 14 pcu and delay increase by 13 secs to 42 seconds. The impact of the development traffic on the Pennine Way southbound approach is small and is negligible on all other approaches.
4.10 In the No Development PM peak scenario, the two roundabouts are predicted to operate low levels of queues and delays. The longest queues and delays occur on the Quarry Hill approach to the southern roundabout and a maximum queue of 10 pcu and average delay of 51 secs on the Quarry Hill approach to the southern roundabout. With the addition of development generated traffic, the Quarry Hill queue is predicted to increase by 4 vehicles to 14 pcu and delay increase by 9 secs to 1 minute. The impact of the development traffic the Quarry Hill approach is low and is negligible on all other approaches.
4.11 The residual cumulative impact of the proposed development in the AM and PM peaks on the two roundabouts in the 2031 Local Plan case are not considered severe with reference to NPPF para 111 and mitigation is therefore not required.

5 SUMMARY

The assessment has shown that the impact of the development generated traffic on the operation of the 2031 Reference and 2031 Local Plan cases is small on the Pennine Way southbound approach to the north roundabout in the AM peak, is small on the Quarry Hill approach to the south roundabout in the PM and is negligible on all other approaches. With reference to NPPF para 111, the cumulative residual impact is not severe, and no mitigation is required.

Land Northeast of M42 Junction 10
Pennine Way Roundabouts Modelling Note

APPENDIX A - FIGURES

Land Northeast of M42 Junction 10
Pennine Way Roundabouts Modelling Note

APPENDIX B - QUEUE OBSERVATIONS

Land Northeast of M42 Junction 10
Pennine Way Roundabouts Modelling Note

APPENDIX C - CORRESPONDENCE WITH SCC

From:	Mudhar, Amrit (E,I\&S) amrit.mudhar1@staffordshire.gov.uk
Sent:	16 November 2022 09:49
To:	Wakenshaw, Gareth; Bunn, Nick; dwh@hodgettsestates.co.uk
Cc:	Andrew Collinson; Jarvis, Jon (E,I\&S); Simm, Ben; Tony Burrows; Evans, Mark (E,I\&S)
Subject:	RE: RE: Land NE of M42 (PAP/2021/0663) [Filed 16 Nov 2022 09:56]

Hi all,
We have now reviewed the email and attachments sent on 14 October 2022. The distribution based on 2011 Census journey to work data is acceptable and we agree with the proposed approach to modelling the Pennine Way junctions, with no further assessment required for any of the other junctions on the Staffordshire network, based on the development flows which were submitted. 2011 Census data has also been used to inform the distribution in the Atherstone A5 model so this approach is consistent.

I am a bit surprised that the study area shown in the Atherstone A5 Model LMVR was not used to inform the junctions requiring assessment within Staffordshire as the reason for their inclusion was to assess cross boundary traffic impacts. Please see Figure 2 below which I have extracted from the LMVR.

Once the baseline model has been updated to include the Pennine Way junctions, please could we arrange to see a demonstration of the TRANSYT model working as we are unable to review TRANSYT models. As the model is a linked junction, depending on how the outputs are presented, there may not be a need for Junctions $9 / 10$ modelling of the Pennine Way junctions. It will be more helpful to see the operation of these junctions as part of the network that is being assessed.

Figure 2 - Junction Count Survey Locations

Kind regards,
Amrit

Staffordshire County Council

Miss Amrit Mudhar | Project Engineer
Sustainable Development Team - Highways and Built County
Third Floor, Staffordshire Place 1
Tipping Street, Stafford ST16 2DH
Mobile: 07813396146
Email: amrit.mudhar1@staffordshire.gov.uk www.staffordshire.gov.uk

From: Mudhar, Amrit (E,I\&S)
Sent: 09 November 2022 12:10
To: Wakenshaw, Gareth Gareth.Wakenshaw@tetratech.com; Evans, Mark (E,I\&S)
mark.evans@staffordshire.gov.uk
Cc: dwh@hodgettsestates.co.uk; Bunn, Nick Nick.Bunn@tetratech.com; Andrew Collinson
AndrewCollinson@NorthWarks.gov.uk; Jarvis, Jon (E,I\&S) jon.jarvis@staffordshire.gov.uk
Subject: CM: RE: Land NE of M42
Hi all,
Apologies for the delay responding to you. I have been out of the office a fair bit recently dealing with a personal matter. I will be returning to work full time next week and should be able to provide a response to the additional information that has been sent through.

David, I picked up your voicemail today and will give you a call once I have been through the additional information.

Kind regards,
Amrit

Staffordshire	Miss Amrit Mudhar I Project Engineer Sustainable Development Team-Highways and Built County Third Floor, Staffordshire Place 1 Tipping Street, Stafford ST16 2DH Mobile: 07813396146
Email: $\mathbf{\text { amrit.mudhar1@staffordshire.gov.uk }}$	
www.staffordshire.gov.uk	

From: Wakenshaw, Gareth Gareth.Wakenshaw@tetratech.com
Sent: 02 November 2022 10:03
To: Mudhar, Amrit (E,I\&S) amrit.mudhar1@staffordshire.gov.uk; Evans, Mark (E,I\&S)
mark.evans@staffordshire.gov.uk
Cc: dwh@hodgettsestates.co.uk; Bunn, Nick Nick.Bunn@tetratech.com; Andrew Collinson
AndrewCollinson@NorthWarks.gov.uk; Jarvis, Jon (E,I\&S) jon.jarvis@staffordshire.gov.uk
Subject: FW: Land NE of M42

CAUTION: This email originated from outside of Staffordshire County Council. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Amrit,

Hope you are well.

Just wondering if you have had chance to review the email and attached documents, do you think you would be able to provide a response by the end of the week?

We are progressing the modelling work of the South Pennine Way roundabouts and will soon be using the Vectos PARAMICS traffic flows to assess the future year scenarios (No Development) and then add on the development generated flows based on my email below to assess the impacts of the development. It would be great if we could have your acceptance of the development generated traffic flows to save any abortive work.

Kind Regards

Gareth Wakenshaw

Principal Transport Planner

Tetra Tech

4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY
Tel: +44 1912499817
Mob: +44 7342068031
tetratecheurope.com
Tetra Tech Limited. Registered in England number: 1959704
Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER
VAT No: 431-0326-08.

From: Wakenshaw, Gareth
Sent: 14 October 2022 09:00
To: Mudhar, Amrit (E,I\&S) amrit.mudhar1@staffordshire.gov.uk; Evans, Mark (E,I\&S)
mark.evans@staffordshire.gov.uk
Cc: dwh@hodgettsestates.co.uk; Bunn, Nick Nick.Bunn@tetratech.com; Andrew Collinson
AndrewCollinson@NorthWarks.gov.uk; Jarvis, Jon (E,I\&S) jon.jarvis@staffordshire.gov.uk
Subject: RE: Land NE of M42 [Filed 14 Oct 2022 09:00]
Hi Amrit,

Following my email last week a TT representative attended site on Tuesday $11^{\text {th }}$ at 8 am to observe the roadworks on Quarry Hill. The roadworks shown on the map further below were due to start on Monday $3{ }^{\text {rd }}$ October and end around $23^{\text {rd }}$ December. Our TT representative saw no sign of roadworks at these locations, see attached photos at Stoneydelph and near Wilnecote Fish Bar. I also contacted Western Power Distribution and they confirmed the roadworks have been delayed by two weeks, starting on Monday $17^{\text {th }}$ October, see attached email. I trust this gives you comfort the surveys undertaken are acceptable.

SCC Traffic Distribution \& Assignment Work

With regards to the traffic distribution and assignment work, please see attached our excel document. We chose North Warwickshire MSOA 002 as the place of work (the area the proposed development sits within) and sieved out all those areas where traffic would not travel through the SCC network. This filtering process left those areas where traffic would use the A5 Wilnecote Bypass. Below as a description of each tab in the excel document.

- $\quad 1^{\text {st }}$ tab - this shows the filtered MSOA's and the total number of car drivers. Six routes have been allocated (A to F) to assign the trips through the network.
- $\quad 2^{\text {nd }}$ tab - this shows the six routes, A to F diagrammatically on the network, focusing on the South Pennine Way roundabouts, the A5/ B5440 Marlborough Interchange and the A5/ Bitterscote Drive interchange.
- $\quad 3^{\text {rd }}$ tab- this shows the resultant traffic assignment \%age which links back to the $1^{\text {st }}$ tab.
- $\quad 4^{\text {th }}$ tab - this shows the AM Peak development generated traffic flows on the SCC network. As previously identified (see attached email) the AM and PM peak hour traffic flows at the A5 immediately west of Junction 10 and at Junction 10 have been agreed with National Highways. We have therefore applied the traffic assignment \% to these flows.
- $\quad 5^{\text {th }}$ tab - this shows the PM peak hour equivalent.

As you can see from the predicted traffic flows, the development has a small impact at the Pennine Way roundabouts in the AM peak with 33 trips on the westbound approach to the southern roundabout and 38 at the southern approach to the northern roundabout. The volumes are lower in the PM peak. The forthcoming junction assessment of the two roundabouts is therefore considered reasonable and will be assessed as agreed and included
in our TA. The junctions will be modelled as a linked model in Junctions 10 using lane simulation to model the effects of any blocking back effects.

At the B5440 Marlborough Way Interchange the highest approach flow on any approach is 22 in the AM peak. The flows are lower in the PM peak. No assessment is considered necessary.

At the Bitterscote Drive interchange the highest approach flow on any approach is 11 in the AM peak. The flows are lower in the PM peak. No assessment is considered necessary.

It would be appreciated if you could confirm the assignment is acceptable before we assess the future performance of the Pennine Way roundabouts.

Kind Regards

Gareth Wakenshaw

Principal Transport Planner

Gareth Wakenshaw

Principal Transport Planner

Tetra Tech

4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY
Tel: +441912499817
Mob: +44 7342068031

tetratecheurope.com

Tetra Tech Limited. Registered in England number: 1959704 Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER VAT No: 431-0326-08

From: Wakenshaw, Gareth
Sent: 06 October 2022 15:04
To: Mudhar, Amrit (E,I\&S) amrit.mudhar1@staffordshire.gov.uk; Evans, Mark (E,I\&S)
mark.evans@staffordshire.gov.uk
Cc: dwh@hodgettsestates.co.uk; Bunn, Nick Nick.Bunn@tetratech.com; Andrew Collinson
AndrewCollinson@NorthWarks.gov.uk; Jarvis, Jon (E,I\&S) jon.jarvis@staffordshire.gov.uk
Subject: RE: Land NE of M42 [Filed 06 Oct 2022 15:04]

Hi Ambit,

Thanks for your email. Time was of the essence for the order, we couldn't wait until next year to undertake the surveys (roadworks you refer to ending $23^{\text {rd }}$ December). Our survey firm say they checked for roadworks and it appears they missed them. I first emailed you of the forthcoming surveys on $26^{\text {th }}$ September and as we had no response it was assumed the surveys were acceptable.

Notwithstanding the above remember we are using the surveys to validate the junction models rather than use the data for future year assessments. We will be validating the 2 roundabouts in Junctions 10, using lane simulation to model any blocking back effects and unequal lane usage, to demonstrate for the traffic volumes surveyed the modelled queues reflect those recorded on the ground. Once the model is validated we will be replacing the 2022 surveyed flows with future year traffic flows, extracted from the Vectos Paramics A5 model (following the same methodology we have agreed with NH and WCC for the A5 TRANSYT model). To confirm we wont be using the surveys and manually adding on traffic growth, committed, Local Plan and development generated flows in the traditional way. They are being used for model validation purposes only.

For your info, we are obtaining the 2026 and 2031 No Development flows from Vectos, we will then manually add on the development generated traffic using the Census Journey to Work data as you have discussed with Nick Burn previously. We were going to send the assignment and distribution of development traffic to you for approval, but it sounds like you would like us to submit everything in one package, unless you are ok to review the assignment separately in advance?

Kind Regards

Gareth Wakenshaw

Principal Transport Planner

Tetra Tech

4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY
Tel: +44 1912499817
Mob: +44 7342068031
tetratecheurope.com
Tetra Tech Limited. Registered in England number: 1959704
Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER VAT No: 431-0326-08.

From: Mudhar, Amrit (E,I\&S) amrit.mudhar1@staffordshire.gov.uk
Sent: 05 October 2022 17:10
To: Wakenshaw, Gareth Gareth.Wakenshaw@tetratech.com; Evans, Mark (E,I\&S)
mark.evans@staffordshire.gov.uk
Cc: dwh@hodgettsestates.co.uk; Burn, Nick Nick.Bunn@tetratech.com; Andrew Collinson

Hi Gareth,
Many thanks for your email. It's a shame the surveys weren't undertaken slightly sooner as it appears that there are temporary traffic lights in place along the B5404 which were installed on Monday and are due to remain until the end of the year (according to one.network). This is something that should have been checked by your survey company or yourselves before commissioning/ confirming the date of traffic surveys.

If you have access to any existing data in this area it would be helpful to undertake a validation exercise to show that routeing has not been impacted significantly by the road works. If existing data is not available, then please include a justification in any future Technical Note/ updated Transport Assessment as to why the data collected is acceptable, especially as the survey day is towards the beginning of the temporary traffic light installation period. I am just trying to anticipate some of the feedback that may be received with regards to traffic impact. Unfortunately, we do not have any existing count data available which could be used as part of the validation exercise.

Could I also request that any further submission of data for review is packaged up rather than sent through ad-hoc as my case load is extremely high and I am struggling to get responses out. I will aim to respond in line with our 21-day response period.

Kind regards, Amrit

Staffordshire	Miss Amrit Mudhar \| Project Engineer Sustainable Development Team - Highways and Built County Third Floor, Staffordshire Place 1 Tipping Street, Stafford ST16 2DH Mobile: 07813396146
Email: amrit.mudhar1@staffordshire.gov.uk	
www.staffordshire.gov.uk	

From: Wakenshaw, Gareth Gareth.Wakenshaw@tetratech.com
Sent: 29 September 2022 15:11
To: Mudhar, Amrit (E,I\&S) amrit.mudhar1@staffordshire.gov.uk; Evans, Mark (E,I\&S)
mark.evans@staffordshire.gov.uk
Cc: dwh@hodgettsestates.co.uk; Bunn, Nick Nick.Bunn@tetratech.com
Subject: RE: Land NE of M42

CAUTION: This email originated from outside of Staffordshire County Council. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Amrit,

Just letting you know that the two Pennine Way roundabout junctions are being surveyed on Wednesday $5^{\text {th }}$ October. Trust this is ok.

Gareth Wakenshaw

Principal Transport Planner

Tetra Tech

4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY
Tel: +44 1912499817
Mob: +44 7342068031
tetratecheurope.com
Tetra Tech Limited. Registered in England number: 1959704
Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER
VAT No: 431-0326-08.

Fit TETRA TECH \square in (o)

From: Wakenshaw, Gareth
Sent: 26 September 2022 11:58
To: Mudhar, Amrit (E,I\&S) amrit.mudhar1@staffordshire.gov.uk; Evans, Mark (E,I\&S)
mark.evans@staffordshire.gov.uk
Cc: dwh@hodgettsestates.co.uk; Bunn, Nick Nick.Bunn@tetratech.com
Subject: RE: Land NE of M42 [Filed 26 Sep 2022 11:58]

Hi Amrit,

Just letting you know that we have instructed a firm to survey the two Pennine Way roundabout junctions on Wednesday $5^{\text {th }}$ October as per the following spec, trust this is acceptable.

Classified Turning Count and Queue Length Surveys

- The two junctions are to be captured by camera.
- The survey/report hours are to be for a neutral weekday 07:00-09:30 and 16:00-18:30 (5hrs).
- Vehicle count classifications to include pedal cycles, power two-wheelers, cars, LGVs, OGV1, OGV2, PSV, plus PCU values.
- Count data is to be tabulated on .xlsx and summarised in 15-minute and hourly periods.
- Snapshot queue lengths are to be provided by lane on each approach road at 1-minute intervals.
- Queue lengths will be recorded as the number of vehicles when vehicles are stationary, or close to stationary.

Kind Regards

Gareth Wakenshaw

Principal Transport Planner

Tetra Tech

4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY
Tel: +44 1912499817
Mob: +44 7342068031

tetratecheurope.com

[^2]TETRA TECH

From: Bunn, Nick
Sent: 09 September 2022 14:29
To: 'Mudhar, Amrit (E,I\&S)' amrit.mudhar1@staffordshire.gov.uk; 'Evans, Mark (E,I\&S)'
mark.evans@staffordshire.gov.uk
Cc: 'dwh@hodgettsestates.co.uk' dwh@hodgettsestates.co.uk
Subject: RE: Land NE of M42

HI Amrit and Mark

When discussing the meeting with david this afternoon - I realised that I had omitted a couple points.. amended notes below

- Prepare an assignment for the Dev Gen trips into Tamworth. At the meeting we did not expect the impacts elsewhere in Tamworth to require investigation - subject to the assignment process. As discussed we'll use Census journey to work data. Once done we'll forward to you for agreement.
- Assess the impact at the Pennine Way N and S roundabouts. Amrit requested that id model files are submitted that these are in Junctions 9 format
- Arrange traffic survey for the above two junctions
- Discuss the Jn10 improvement works with SCC - particularly the ped/ cycle connections into Tamworth
- There were no extant planning permission which would affect the traffic flows at the Pennine Way roundabouts

Dr Nick Bunn bsc(Hons) PhD MSc Mciht cmilt

Director
Pronouns: he, him, his

Tetra Tech

4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY
Tel: +441912499814
Mob: +44 07789653036

tetratecheurope.com

Tetra Tech Limited. Registered in England number: 1959704
Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER
VAT No: 431-0326-08

From: Bunn, Nick
Sent: 09 September 2022 12:53
To: Mudhar, Amrit (E,I\&S) amrit.mudhar1@staffordshire.gov.uk; Evans, Mark (E,I\&S)
mark.evans@staffordshire.gov.uk
Cc: dwh@hodgettsestates.co.uk
Subject: Land NE of M42

Hi Amrit and Mark

Thanks for meeting with me today. Brief notes below - do let me know if I have missed anything As agreed we will.

- Prepare an assignment for the Dev Gen trips into Tamworth. At the meeting we did not expect the impacts elsewhere in Tamworth to require investigation - subject to the assignment process. Once done we'll forward to you for agreement.
- Assess the impact at the Pennine Way N and S roundabouts. Amrit requested that id model files are submitted that these are in Jnctions 9 format
- Arrange traffic survey for the above two junctions
- Discuss the Jn10 improvement works with SCC - particularly the ped/ cycle connections into Tamworth

We will endeavour to keep you in the loop as things develop or if there are further site visits.

Dr Nick Bunn bsc(Hons) PhD MSc Mciht cmilt

Director
Pronouns: he, him, his

Tetra Tech

4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY
Tel: +44 1912499814
Mob: +44 07789653036
tetratecheurope.com

Tetra Tech Limited. Registered in England number: 1959704
Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER
VAT No: 431-0326-08.

This message contains confidential information and is intended only for the recipient. If you are not the recipient you should not disseminate, distribute or copy this email. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. E-mail transmission cannot be guaranteed to be secure or error-free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses. The sender therefore does not accept liability for any errors or omissions in the contents of this message, which arise as a result of e-mail transmission. If verification is required please request a hard-copy version. Tetra Tech is a trade name of the Tetra Tech Group, for our contracting entity company details please refer to our appointment documentation.

Disclaimer

This e-mail (including any attachments) is only for the person or organisation it is addressed to. If you are not the intended recipient you must let me know immediately and then delete this e-mail. If you use this e-mail without permission, or if you allow anyone else to see, copy or distribute the e-mail, or if you do, or don't do something because you have read this e-mail, you may be breaking the law.

Liability cannot be accepted for any loss or damage arising from this e-mail (or any attachments) or from incompatible scripts or any virus transmitted.

E-mails and attachments sent to or received from staff and elected Members may be monitored and read and the right is reserved to reject or return or delete any which are considered to be inappropriate or unsuitable.

Do you really need to print this email? It will use paper, add to your waste disposal costs and harm the environment.

[^3]Pennine Way Roundabouts Modelling Note

APPENDIX D - CENSUS 2011 JOURNEY TO WORK DATA

Table 1 - Census 2011 Journey to Work (North Warwickshire MSOA 002)

				Route					
Origin	Car Drivers	A	B	C	D	E	F		
E02006217 : Tamworth 001	91	68.25	22.75						
E02006218: Tamworth 002	90	45		90					
E02006219 : Tamworth 003	122		91.5	30.5					
E02006220 : Tamworth 004	107		53.5	53.5					
E02006221: Tamworth 005	108			54	54				
E02006222 : Tamworth 006	122			48.8		73.2			
E02006223 : Tamworth 007	122		61	61					
E02006224 : Tamworth 008	172		137.6		34.4				
E02006225 : Tamworth 009	133				133				
E02006226 : Tamworth 010	172				86				50\% via Trinity Way
E02006146 : Lichfield 001	10						10		
E02006147 : Lichfield 002	15						15		
E02006148: Lichfield 003	8						8		
E02006149 : Lichfield 004	13						13		
E02006150 : Lichfield 005	19	19							
E02006151 : Lichfield 006	19						19		
E02006152 : Lichfield 007	15						15		
E02006153 : Lichfield 008	30	30							
E02006154 : Lichfield 009	14						14		
E02006155 : Lichfield 010	8						8		
E02006156 : Lichfield 011	5						5		
E02006157 : Lichfield 012	58		11.6				46.4		
E02001827 : Birmingham 001	3						3		
E02001828 : Birmingham 002	9						9		
E02001829 : Birmingham 003	12						12		
E02001830 : Birmingham 004	3						3		
E02001831 : Birmingham 005	15				5		5		33% via M42
E02001832 : Birmingham 006	7						3.5		50\% via M42
E02006118 : Cannock Chase 001	4						4		
E02006119 : Cannock Chase 002	4						4		
E02006120 : Cannock Chase 003	11						11		
E02006121 : Cannock Chase 004	4						4		
E02006122 : Cannock Chase 005	4						4		
E02006123 : Cannock Chase 006	6						6		
E02006124 : Cannock Chase 007	5						5		
E02006125 : Cannock Chase 008	5						5		
E02006126 : Cannock Chase 009	11						11		
E02006127 : Cannock Chase 010	5						5		
E02006128 : Cannock Chase 011	8						8		
E02006129 : Cannock Chase 012	2						2		
E02006130 : Cannock Chase 013	7						7		
E02002110 : Walsall 001	9						9		
E02002111 : Walsall 002	9						9		
E02002112 : Walsall 003	3						3		
E02002113 : Walsall 004	5						5		
E02002116 : Walsall 007	5						5		
E02002119 : Walsall 010	10						10		
	1619	162.25	377.95	337.8	312.4	73.2	305.9	1570	revised total (exludes traffic not on SCC network)
Perecentages of development traffic		10.3\%	24.1\%	21.5\%	19.9\%	4.7\%	19.5\%		

Pennine Way Roundabouts Modelling Note

APPENDIX E - JUNCTIONS 9 OUTPUT FILES

Junctions 9

ARCADY 9 - Roundabout Module

Version: 9.5.1.7462
© Copyright TRL Limited, 2019
For sales and distribution information, program advice and maintenance, contact TRL:
+44 (0)1344379777 software@trl.co.uk www.trlsoftware.co.uk
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: m42 pennine way.j9
Path:
Ids-dc-vm-101\Data\Projects\784-B033920 Land NE of M42 Jn10\50 Project Input|52 Generated Data\Traffic ModelslSouth Pennine Way Roundabouts
Report generation date: 23/11/2022 10:28:09

«2031 Reference Case With Dev, PM
»Junction Network
»Arms
»Traffic Demand
»Origin-Destination Data
»Vehicle Mix
»Detailed Demand Data
»Results
»Lane Results

Summary of junction performance

	AM					PM				
	Set ID	Queue (PCU)	Delay (s)	RFC	LOS	Set ID	Queue (PCU)	Delay (s)	RFC	LOS
	[Lane Simulation] - 2022									
Junction 1 - Arm 1	D1	1.0	3.63		A	D2				
Junction 1 - Arm 2		2.4	9.22		A		1.2	6.21		A
Junction 1 - Arm 3		0.2	4.33		A		0.5	4.39		A
Junction 2 - Arm 1		1.3	7.40		A		1.5	9.41		A
Junction 2 - Arm 2		0.9	6.10		A		0.7	5.21		A
Junction 2 - Arm 3		1.9	8.51		A		2.1	9.41		A
Junction 2 - Arm 4		0.2	5.56		A		0.7	6.29		A
	[Lane Simulation] - 2031 Reference Case No Dev									
Junction 1 - Arm 1	D3	1.4	4.24		A	D4	5.9	12.94		B
Junction 1 - Arm 2		6.9	22.55		C		2.3	8.68		A
Junction 1 - Arm 3		0.1	3.80		A		0.4	4.38		A
Junction 2 - Arm 1		4.0	16.53		C		11.7	52.26		F
Junction 2 - Arm 2		0.5	5.15		A		0.5	5.06		A
Junction 2 - Arm 3		2.3	9.28		A		7.5	23.95		C
Junction 2 - Arm 4		0.2	5.59		A		0.7	8.08		A
	[Lane Simulation] - 2031 Reference Case With Dev									
Junction 1 - Arm 1	D5	1.7	4.42		A	D6	6.4	13.65		B
Junction 1 - Arm 2		10.4	32.23		D		2.4	9.48		A
Junction 1 - Arm 3		0.1	3.81		A		0.5	4.33		A
Junction 2 - Arm 1		5.2	20.07		C		13.8	62.72		F
Junction 2 - Arm 2		0.6	4.93		A		0.6	5.02		A
Junction 2 - Arm 3		2.4	8.93		A		9.1	27.59		D
Junction 2 - Arm 4		0.3	5.82		A		0.8	8.47		A
	[Lane Simulation] - 2031 Local Plan No Dev									
Junction 1 - Arm 1	D7	1.4	4.31		A	D8	5.5	13.46		B
Junction 1 - Arm 2		9.5	29.18		D		2.8	10.40		B
Junction 1 - Arm 3		0.1	3.81		A		0.4	4.42		A
Junction 2 - Arm 1		3.8	16.41		C		10.3	51.25		F
Junction 2 - Arm 2		0.5	5.12		A		0.5	5.10		A
Junction 2 - Arm 3		2.0	8.99		A		7.6	24.77		C
Junction 2 - Arm 4		0.2	5.59		A		0.7	7.89		A
	[Lane Simulation] - 2031 Local Plan With Dev									
Junction 1-Arm 1	D9	1.5	4.41		A	D10	5.5	11.11		B
Junction 1 - Arm 2		14.4	41.89		E		2.8	10.92		B
Junction 1 - Arm 3		0.2	3.87		A		0.2	3.78		A
Junction 2 - Arm 1		4.6	18.64		C		14.1	60.03		F
Junction 2 - Arm 2		0.5	5.10		A		0.5	5.00		A
Junction 2 - Arm 3		2.3	9.49		A		7.8	22.80		C
Junction 2 - Arm 4		0.2	5.76		A		0.7	8.19		A

[^4]
File summary

File Description

Title	
Location	
Site number	
Date	$28 / 10 / 2022$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	TT\JACK.HARDING
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

ane simulation visualisation time: 15:45:00
The junction diagram reflects the last run of Junctions

THE FUTURE

Analysis Options

Vehicle length (\mathbf{m})	Calculate Queue Percentiles	Calculate detailed queueing delay	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
5.75				0.85	36.00	20.00

Lane Simulation options

Criteria type	Stop criteria (\%)	Stop criteria time (s)	Stop criteria number of trials	Random seed	Results refresh speed (s)	Individual vehicle animation number of trials	Average animation capture interval (s)	Use quick response	Do flow sampling	Suppress automatic lane creation	Last run random seed	Last run number of trials	Last run time taken (s)
Delay	1.00	100000	100000	1	3	1	60	\checkmark			1	210	29.30

Analysis Set Details

ID	Use Lane Simulation	Include in report	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
A1	\checkmark	\checkmark	100.000	100.000

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D6	2031 Reference Case With Dev	PM	ONE HOUR	15:45	17:15	15	\checkmark

2031 Reference Case With Dev, PM

Data Errors and Warnings

Severity	Area	Item	
Warning	Lane Simulation	A1-[Lane Simulation]	This analysis set uses Lane Simulation mode. This is provided as an investigative tool and the user should apply judgement when interpreting the results.
Warning	Geometry	Junction 2-Arm 1- Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.
Warning	Geometry	Junction 2-Arm 3- Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
$\mathbf{1}$	untitled	Standard Roundabout		$1,2,3$	11.25	B
$\mathbf{2}$	untitled	Standard Roundabout		$1,2,3,4$	32.81	D

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Junction	Arm	Name	Description
1	$\mathbf{1}$	untitled	
	2	untitled	
	3	untitled	
	$\mathbf{1}$	untitled	
	2	untitled	
	3	untitled	
	4	untitled	

Roundabout Geometry

Junction	Arm	V - Approach road halfwidth (m)	E - Entry width (m)	I' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit only
1	1	4.82	7.69	25.8	42.2	53.0	15.5	
	2	3.90	7.90	28.9	44.5	53.0	25.0	
	3	4.68	9.04	20.1	25.1	53.0	20.5	
2	1	4.22	7.60	44.4	27.4	51.5	7.0	
	2	5.08	7.83	5.0	38.7	51.5	17.5	
	3	4.34	6.49	31.0	30.9	51.5	22.5	
	4	6.41	8.13	6.4	20.1	51.5	16.0	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Junction	Arm	Final slope	Final intercept (PCU/hr)
$\mathbf{1}$	$\mathbf{1}$	0.720	2261
	$\mathbf{2}$	0.683	2111
	$\mathbf{3}$	0.716	2292
	$\mathbf{1}$	0.740	2298
	$\mathbf{2}$	0.670	1963
	$\mathbf{3}$	0.657	1928
	$\mathbf{4}$	0.734	2331

The slope and intercept shown above include any corrections and adjustments.

Arm Capacity Adjustments

Junction	Arm	Type	Reason	Direct capacity adjustment (PCU/hr)
$\mathbf{1}$	$\mathbf{1}$	Direct	Queue Observations	475

Lane Simulation: Arm options

Junction	Arm	Lane capacity source	Traffic considering secondary lanes (\%)
$\mathbf{1}$	$\mathbf{1}$	Evenly split	10.00
	$\mathbf{2}$	Evenly split	10.00
	$\mathbf{3}$	Evenly split	10.00
	$\mathbf{1}$	Evenly split	10.00
	$\mathbf{2}$	Evenly split	10.00
	$\mathbf{3}$	Evenly split	10.00
	$\mathbf{4}$	Evenly split	10.00

Lanes

Junction	Arm	Side	Lane level	Lane	Destination arms	Has limited storage	Storage (PCU)	Has bottleneck	Minimum capacity (PCU/hr)	Maximum capacity (PCU/hr)	Signalised
1	1	Entry	1	1	2	\checkmark	4.00		0	99999	
				2	1, 3	\checkmark	4.00		0	99999	
			2	1	$(1,2,3)$	\checkmark	16.00				
		Exit	1	1		\checkmark	4.00				
	2	Entry	1	1	3	\checkmark	4.00		0	99999	
				2	1, 2	\checkmark	4.00		0	99999	
			2	1	(1, 2, 3)		Infinity				
		Exit	1	1			Infinity				
	3	Entry	1	1	1	\checkmark	3.00		0	99999	
				2	2, 3	\checkmark	3.00		0	99999	
			2	1	$(1,2,3)$		Infinity				
		Exit	1	1			Infinity				
2	1	Entry	1	1	2, 3	\checkmark	8.00		0	99999	
				2	1, 4	\checkmark	8.00		0	99999	
			2	1	(1, 2, 3, 4)		Infinity				
		Exit	1	1			Infinity				
	2	Entry	1	1	3, 4	\checkmark	2.00		0	99999	
				2	1, 2	\checkmark	3.00		0	99999	
			2	1	(1, 2, 3, 4)	\checkmark	17.00				
		Exit	1	1		\checkmark	3.00				
	3	Entry	1	1	1, 4	\checkmark	5.00		0	99999	
				2	2, 3	\checkmark	5.00		0	99999	
			2	1	(1, 2, 3, 4)		Infinity				
		Exit	1	1			Infinity				
	4	Entry	1	1	1, 2	\checkmark	1.00		0	99999	
				2	3, 4	\checkmark	1.00		0	99999	
			2	1	(1, 2, 3, 4)		Infinity				
		Exit	1	1			Infinity				

Entry Lane slope and intercept

Junction	Arm	Side	Lane level	Lane	Final slope	Final intercept (PCU/hr)
1	1	Entry	1	1	0.360	1131
				2	0.360	1131
	2	Entry	1	1	0.342	1056
				2	0.342	1056
	3	Entry	1	1	0.358	1146
				2	0.358	1146
2	1	Entry	1	1	0.370	1149
				2	0.370	1149
	2	Entry	1	1	0.335	981
				2	0.335	981
	3	Entry	1	1	0.328	964
				2	0.328	964
	4	Entry	1	1	0.367	1166
				2	0.367	1166

THE FUTURE

Summary of Entry Lane allowed movements

Junction	Arm	Lane	Lane		$\begin{aligned} & \text { tina } \\ & \text { arm } \end{aligned}$	
				1	2	3
1	1	1	1		\checkmark	
			2	\checkmark		\checkmark
		2	1	\checkmark	\checkmark	\checkmark
	2	1	1			\checkmark
			2	\checkmark	\checkmark	
		2	1	\checkmark	\checkmark	\checkmark
	3	1	1	\checkmark		
			2		\checkmark	\checkmark
		2	1	\checkmark	\checkmark	\checkmark

Summary of Entry Lane allowed movements

Junction	Arm	Lane	Lane		ar	natio	
				1	2	3	4
2	1	1	1		\checkmark	\checkmark	
			2	\checkmark			\checkmark
		2	1	\checkmark	\checkmark	\checkmark	\checkmark
	2	1	1			\checkmark	\checkmark
			2	\checkmark	\checkmark		
		2	1	\checkmark	\checkmark	\checkmark	\checkmark
	3	1	1	\checkmark			\checkmark
			2		\checkmark	\checkmark	
		2	1	\checkmark	\checkmark	\checkmark	\checkmark
	4	1	1	\checkmark	\checkmark		
			2			\checkmark	\checkmark
		2	1	\checkmark	\checkmark	\checkmark	\checkmark

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Linked Arm Data

Junction	Arm	Feeding Junction	Feeding Arm	Link Type	Flow source	Uniform flow (PCU/hr)	Flow multiplier (\%)	Internal storage space (PCU)
$\mathbf{1}$	$\mathbf{1}$	2	2	Simple (vertical queueing)	Normal	0	100.00	
$\mathbf{2}$	$\mathbf{2}$	1	1	Simple (vertical queueing)	Normal	0	100.00	

Demand overview (Traffic)

Junction	Arm	Linked arm	Profile type	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
$\mathbf{1}$	$\mathbf{1}$	\checkmark				
	$\mathbf{2}$		ONE HOUR	\checkmark	781	100.000
	$\mathbf{3}$		ONE HOUR	\checkmark	310	100.000
	$\mathbf{1}$		ONE HOUR	\checkmark	698	100.000
	$\mathbf{2}$	\checkmark				
	$\mathbf{3}$		ONE HOUR	\checkmark	1021	100.000
	$\mathbf{4}$		ONE HOUR	\checkmark	252	100.000

Origin-Destination Data

Demand (PCU/hr)

Junction 1

	To			
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	$\mathbf{1}$	0	1038	268
	$\mathbf{2}$	244	0	537
	$\mathbf{3}$	96	214	0

Proportions

	To			
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	$\mathbf{1}$	0.00	0.79	0.21
	$\mathbf{2}$	0.31	0.00	0.69
	$\mathbf{3}$	0.31	0.69	0.00

Demand (PCU/hr)

	To				
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	0	647	38	13
	$\mathbf{2}$	240	0	100	23
	$\mathbf{3}$	330	660	0	31
	$\mathbf{4}$	31	167	54	0

Proportions

	To				
From	\mathbf{y}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	0.00	0.93	0.05	0.02
	$\mathbf{2}$	0.66	0.00	0.28	0.06
	$\mathbf{3}$	0.32	0.65	0.00	0.03
	$\mathbf{4}$	0.12	0.66	0.21	0.00

Vehicle Mix

Junction 1

	To			
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	$\mathbf{1}$	0	2	4
	$\mathbf{2}$	1	0	2
	$\mathbf{3}$	4	1	0

Average PCU Per Veh

	To			
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	$\mathbf{1}$	1.000	1.020	1.040
	$\mathbf{2}$	1.010	1.000	1.020
	$\mathbf{3}$	1.040	1.010	1.000

Heavy Vehicle Percentages

	To				
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	0	0	0	8
	$\mathbf{2}$	0	0	1	13
	$\mathbf{3}$	2	3	0	19
	$\mathbf{4}$	0	7	$\mathbf{4}$	0

Average PCU Per Veh

	To				
From		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	$\mathbf{1}$	1.000	1.000	1.000	1.080
	$\mathbf{2}$	1.000	1.000	1.010	1.130
	$\mathbf{3}$	1.020	1.030	1.000	1.190
	$\mathbf{4}$	1.000	1.070	1.040	1.000

Detailed Demand Data

Demand for each time segment

Time Segment	Junction	Arm	Demand (PCU/hr)	Demand in PCU (PCU/hr)
15:45-16:00	1	1	983	983
		2	588	588
		3	233	233
	2	1	525	525
		2	273	273
		3	769	769
		4	190	190
16:00-16:15	1	1	1174	1174
		2	702	702
		3	279	279
	2	1	627	627
		2	326	326
		3	918	918
		4	227	227
16:15-16:30	1	1	1438	1438
		2	860	860
		3	341	341
	2	1	769	769
		2	400	400
		3	1124	1124
		4	277	277
16:30-16:45	1	1	1438	1438
		2	860	860
		3	341	341
	2	1	769	769
		2	400	400
		3	1124	1124
		4	277	277
16:45-17:00	1	1	1174	1174
		2	702	702
		3	279	279
	2	1	627	627
		2	326	326
		3	918	918
		4	227	227
17:00-17:15	1	1	983	983
		2	588	588
		3	233	233
	2	1	525	525
		2	273	273
		3	769	769
		4	190	190

Results

Results Summary for whole modelled period

Junction	Arm	Max Delay (s)	Max Queue (PCU)	Max LOS	Average Demand (PCU/hr)	Total Junction Arrivals (PCU)
$\mathbf{1}$	$\mathbf{1}$	13.65	6.4	B	1353	2030
	$\mathbf{2}$	9.48	2.4	A	714	1071
	$\mathbf{3}$	4.33	0.5	A	285	428
	$\mathbf{1}$	62.72	13.8	F	640	960
	$\mathbf{2}$	5.02	0.6	A	308	462
	$\mathbf{3}$	27.59	9.1	D	939	1408
	$\mathbf{4}$	8.47	0.8	A	233	349

Main Results for each time segment

15:45-16:00

Junction	Arm	Total Demand (PCU/hr)	Junction Arrivals (PCU)	Circulating flow (PCU/hr)	Throughput (PCU/hr)	Average throughput (PCU/hr)	Throughput (exit side) (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	1115	279	156	1120	1102	258	0.0	1.5	5.142	A
	2	597	149	227	598	586	1049	0.0	0.9	5.849	A
	3	229	57	185	228	233	639	0.0	0.3	3.901	A
2	1	529	132	663	530	526	441	0.0	1.2	9.155	A
	2	257	64	79	257	255	1115	0.0	0.3	4.472	A
	3	770	193	196	767	764	140	0.0	1.9	8.190	A
	4	193	48	913	192	192	51	0.0	0.3	5.646	A

16:00-16:15

Junction	Arm	Total Demand (PCU/hr)	Junction Arrivals (PCU)	Circulating flow (PCU/hr)	Throughput (PCU/hr)	Average throughput (PCU/hr)	Throughput (exit side) (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	1328	332	196	1320	1303	297	1.5	2.8	6.972	A
	2	692	173	267	696	698	1248	0.9	1.2	6.950	A
	3	283	71	212	281	280	751	0.3	0.3	4.143	A
2	1	618	154	799	620	618	521	1.2	2.6	14.007	B
	2	295	74	95	294	301	1324	0.3	0.4	4.674	A
	3	918	230	227	920	907	162	1.9	3.0	11.185	B
	4	229	57	1090	229	224	57	0.3	0.4	6.129	A

16:15-16:30

Junction	Arm	Total Demand (PCU/hr)	Junction Arrivals (PCU)	Circulating flow (PCU/hr)	Throughput (PCU/hr)	Average throughput (PCU/hr)	Throughput (exit side) (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	1599	400	232	1590	1557	373	2.8	6.4	11.727	B
	2	842	211	325	841	847	1497	1.2	2.2	8.970	A
	3	341	85	263	342	338	903	0.3	0.4	4.328	A
2	1	773	193	963	747	727	636	2.6	11.5	39.340	E
	2	370	93	115	369	368	1595	0.4	0.5	4.944	A
	3	1130	282	283	1117	1095	201	3.0	8.4	21.054	C
	4	275	69	1325	274	277	75	0.4	0.8	8.192	A

16:30-16:45

Junction	Arm	Total Demand (PCU/hr)	Junction Arrivals (PCU)	Circulating flow (PCU/hr)	Throughput (PCU/hr)	Average throughput (PCU/hr)	Throughput (exit side) (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	1615	404	238	1613	1614	370	6.4	6.2	13.647	B
	2	846	211	336	845	852	1516	2.2	2.4	9.481	A
	3	344	86	265	343	338	916	0.4	0.5	4.298	A
2	1	764	191	964	761	755	636	11.5	13.8	62.719	F
	2	367	92	115	365	368	1610	0.5	0.6	5.016	A
	3	1128	282	276	1119	1125	204	8.4	9.1	27.588	D
	4	275	69	1323	277	276	72	0.8	0.6	8.467	A

16:45-17:00

Junction	Arm	Total Demand (PCU/hr)	Junction Arrivals (PCU)	Circulating flow (PCU/hr)	Throughput (PCU/hr)	Average throughput (PCU/hr)	Throughput (exit side) (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	1351	338	192	1353	1403	307	6.2	2.9	8.513	A
	2	711	178	280	708	707	1265	2.4	1.6	7.216	A
	3	279	70	218	281	280	770	0.5	0.3	4.139	A
2	1	628	157	803	642	671	527	13.8	3.1	32.388	D
	2	304	76	100	303	304	1346	0.6	0.4	4.753	A
	3	921	230	232	926	945	170	9.1	2.7	13.866	B
	4	233	58	1098	233	229	61	0.6	0.4	6.568	A

17:00-17:15

Junction	Arm	Total Demand (PCU/hr)	Junction Arrivals (PCU)	Circulating flow (PCU/hr)	Throughput (PCU/hr)	Average throughput (PCU/hr)	Throughput (exit side) (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	1112	278	161	1113	1129	258	2.9	1.7	5.304	A
	2	597	149	227	597	592	1047	1.6	1.0	6.136	A
	3	237	59	184	235	234	640	0.3	0.3	3.890	A
2	1	525	131	666	523	533	433	3.1	1.4	9.897	A
	2	257	64	80	256	258	1109	0.4	0.4	4.491	A
	3	765	191	192	764	774	144	2.7	2.1	8.646	A
	4	191	48	908	191	190	48	0.4	0.3	5.708	A

Lane Results

Lane Level notation: Lane Level 1 is always closest to the junction.

Lanes: Main Results for each time segment

15:45-16:00

Junction	Arm	Side	Lane level	Lane	Destination arms	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	Average throughput (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	Entry	1	1	2	888	1550	0.573	893	876	0.0	1.1	4.911	A
				2	1, 3	227	1550	0.147	227	226	0.0	0.2	2.861	A
			2	1	(1, 2, 3)	1115			1115	1107	0.0	0.2	0.640	A
		Exit	1	1		258			258	258	0.0	0.0	0.000	A
	2	Entry	1	1	3	413	978	0.422	412	401	0.0	0.8	6.117	A
				2	1, 2	185	978	0.189	185	184	0.0	0.2	4.561	A
			2	1	(1, 2, 3)	597			598	589	0.0	0.0	0.223	A
		Exit	1	1		1049			1049	1036	0.0	0.0	0.000	A
	3	Entry	1	1	1	73	1080	0.067	72	73	0.0	0.1	3.741	A
				2	2, 3	156	1080	0.145	156	159	0.0	0.2	3.945	A
			2	1	$(1,2,3)$	229			229	234	0.0	0.0	0.019	A
		Exit	1	1		639			639	627	0.0	0.0	0.000	A
2	1	Entry	1	1	2, 3	518	903	0.573	519	516	0.0	1.2	9.139	A
				2	1, 4	12	903	0.013	12	10	0.0	0.0	4.100	A
			2	1	(1, 2, 3, 4)	529			530	531	0.0	0.0	0.107	A
		Exit	1	1		441			441	442	0.0	0.0	0.000	A
	2	Entry	1	1	3, 4	89	955	0.094	90	86	0.0	0.1	4.186	A
				2	1, 2	167	955	0.175	167	168	0.0	0.2	4.546	A
			2	1	(1, 2, 3, 4)	257			257	256	0.0	0.0	0.046	A
		Exit	1	1		1115			1115	1106	0.0	0.0	0.000	A
	3	Entry	1	1	1, 4	272	900	0.303	271	273	0.0	0.5	6.072	A
				2	2, 3	498	900	0.554	496	491	0.0	1.2	8.560	A
			2	1	(1, 2, 3, 4)	770			771	771	0.0	0.1	0.513	A
		Exit	1	1		140			140	138	0.0	0.0	0.000	A
	4	Entry	1	1	1, 2	152	831	0.183	151	152	0.0	0.2	4.661	A
				2	3, 4	41	831	0.049	40	40	0.0	0.0	4.593	A
			2	1	(1, 2, 3, 4)	193			192	193	0.0	0.1	1.002	A
		Exit	1	1		51			51	50	0.0	0.0	0.000	A

16:00-16:15

Junction	Arm	Side	Lane level	Lane	Destination arms	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	Average throughput (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	Entry	1	1	2	1057	1535	0.689	1052	1038	1.1	1.9	5.725	A
				2	1, 3	268	1535	0.174	267	264	0.2	0.3	2.979	A
			2	1	$(1,2,3)$	1328			1325	1306	0.2	0.6	1.792	A
		Exit	1	1		297			297	304	0.0	0.0	0.000	A
	2	Entry	1	1	3	482	964	0.500	484	482	0.8	0.9	7.118	A
				2	1, 2	211	964	0.219	212	216	0.2	0.3	4.876	A
			2	1	$(1,2,3)$	692			693	699	0.0	0.0	0.529	A
		Exit	1	1		1248			1248	1231	0.0	0.0	0.000	A
	3	Entry	1	1	1	86	1070	0.081	86	88	0.1	0.1	3.816	A
				2	2, 3	196	1070	0.184	196	193	0.2	0.2	4.233	A
			2	1	$(1,2,3)$	283			283	280	0.0	0.0	0.037	A
		Exit	1	1		751			751	747	0.0	0.0	0.000	A
2	1	Entry	1	1	2, 3	607	853	0.711	609	606	1.2	2.3	13.322	B
				2	1, 4	11	853	0.013	11	12	0.0	0.0	4.367	A
			2	1	(1, 2, 3, 4)	618			618	622	0.0	0.2	0.805	A
		Exit	1	1		521			521	523	0.0	0.0	0.000	A
	2	Entry	1	1	3, 4	97	950	0.102	96	100	0.1	0.2	4.331	A
				2	1, 2	198	950	0.208	198	201	0.2	0.2	4.725	A
			2	1	(1, 2, 3, 4)	295			295	301	0.0	0.0	0.077	A
		Exit	1	1		1324			1324	1304	0.0	0.0	0.005	A
	3	Entry	1	1	1, 4	322	889	0.361	322	322	0.5	0.6	6.922	A
				2	2, 3	598	889	0.673	598	584	1.2	1.9	10.721	B
			2	1	(1, 2, 3, 4)	918			920	910	0.1	0.5	1.798	A
		Exit	1	1		162			162	164	0.0	0.0	0.000	A
	4	Entry	1	1	1, 2	180	766	0.235	179	176	0.2	0.3	4.821	A
				2	3, 4	50	766	0.065	50	48	0.0	0.1	4.787	A
			2	1	(1, 2, 3, 4)	229			230	224	0.1	0.1	1.316	A
		Exit	1	1		57			57	58	0.0	0.0	0.000	A

16:15-16:30

Junction	Arm	Side	Lane level	Lane	Destination arms	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	Average throughput (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	Entry	1	1	2	1267	1522	0.832	1265	1237	1.9	2.7	7.092	A
				2	1, 3	325	1522	0.213	325	320	0.3	0.3	3.209	A
			2	1	(1, 2, 3)	1599			1591	1560	0.6	3.4	5.411	A
		Exit	1	1		373			373	371	0.0	0.0	0.000	A
	2	Entry	1	1	3	577	945	0.611	578	583	0.9	1.3	8.430	A
				2	1, 2	264	945	0.279	263	265	0.3	0.5	5.349	A
			2	1	(1, 2, 3)	842			841	850	0.0	0.4	1.502	A
		Exit	1	1		1497			1497	1468	0.0	0.0	0.000	A
	3	Entry	1	1	1	109	1052	0.104	110	107	0.1	0.1	4.041	A
				2	2, 3	232	1052	0.220	232	232	0.2	0.3	4.368	A
			2	1	(1, 2, 3)	341			341	338	0.0	0.0	0.060	A
		Exit	1	1		903			903	903	0.0	0.0	0.000	A
2	1	Entry	1	1	2, 3	739	793	0.932	732	714	2.3	6.0	24.842	C
				2	1, 4	15	793	0.019	15	14	0.0	0.0	4.930	A
			2	1	(1, 2, 3, 4)	773			754	742	0.2	5.5	14.522	B
		Exit	1	1		636			636	629	0.0	0.0	0.000	A
	2	Entry	1	1	3, 4	128	943	0.136	127	126	0.2	0.2	4.355	A
				2	1, 2	242	943	0.257	242	242	0.2	0.3	5.048	A
			2	1	(1, 2, 3, 4)	370			370	369	0.0	0.0	0.127	A
		Exit	1	1		1595			1595	1568	0.0	0.0	0.081	A
	3	Entry	1	1	1, 4	394	871	0.452	393	386	0.6	1.0	8.105	A
				2	2, 3	724	871	0.831	724	710	1.9	3.0	14.083	B
			2	1	(1, 2, 3, 4)	1130			1117	1101	0.5	4.5	9.013	A
		Exit	1	1		201			201	200	0.0	0.0	0.000	A
	4	Entry	1	1	1, 2	214	679	0.315	214	219	0.3	0.4	5.498	A
				2	3, 4	59	679	0.087	59	59	0.1	0.1	5.457	A
			2	1	(1, 2, 3, 4)	275			273	278	0.1	0.3	2.699	A
		Exit	1	1		75			75	71	0.0	0.0	0.000	A

16:30-16:45

Junction	Arm	Side	Lane level	Lane	Destination arms	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	Average throughput (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	Entry	1	1	2	1277	1520	0.840	1278	1280	2.7	2.7	7.403	A
				2	1, 3	337	1520	0.222	336	334	0.3	0.4	3.221	A
			2	1	(1, 2, 3)	1615			1614	1615	3.4	3.1	7.096	A
		Exit	1	1		370			370	371	0.0	0.0	0.000	A
	2	Entry	1	1	3	580	941	0.616	580	586	1.3	1.4	8.659	A
				2	1, 2	265	941	0.281	265	267	0.5	0.5	5.510	A
			2	1	(1, 2, 3)	846			844	853	0.4	0.5	1.806	A
		Exit	1	1		1516			1516	1514	0.0	0.0	0.000	A
	3	Entry	1	1	1	105	1051	0.100	105	104	0.1	0.1	3.905	A
				2	2, 3	238	1051	0.227	238	234	0.3	0.3	4.380	A
			2	1	(1, 2, 3)	344			344	338	0.0	0.0	0.060	A
		Exit	1	1		916			916	920	0.0	0.0	0.000	A
2	1	Entry	1	1	2, 3	747	792	0.943	746	741	6.0	6.2	29.920	D
				2	1, 4	14	792	0.018	15	14	0.0	0.0	5.066	A
			2	1	(1, 2, 3, 4)	764			761	756	5.5	7.6	33.179	D
		Exit	1	1		636			636	638	0.0	0.0	0.000	A
	2	Entry	1	1	3, 4	128	943	0.136	127	127	0.2	0.2	4.507	A
				2	1, 2	238	943	0.253	237	240	0.3	0.4	5.026	A
			2	1	(1, 2, 3, 4)	367			366	368	0.0	0.0	0.165	A
		Exit	1	1		1610			1610	1607	0.0	0.1	0.127	A
	3	Entry	1	1	1, 4	402	874	0.460	400	399	1.0	0.9	8.397	A
				2	2, 3	719	874	0.823	719	726	3.0	3.1	15.126	C
			2	1	(1, 2, 3, 4)	1128			1121	1125	4.5	5.1	14.843	B
		Exit	1	1		204			204	207	0.0	0.0	0.000	A
	4	Entry	1	1	1, 2	216	680	0.318	217	213	0.4	0.3	5.767	A
				2	3, 4	61	680	0.089	61	62	0.1	0.1	5.602	A
			2	1	(1, 2, 3, 4)	275			277	276	0.3	0.2	2.740	A
		Exit	1	1		72			72	72	0.0	0.0	0.000	A

16:45-17:00

Junction	Arm	Side	Lane level	Lane	Destination arms	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	Average throughput (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	Entry	1	1	2	1071	1536	0.697	1073	1114	2.7	1.7	6.200	A
				2	1, 3	281	1536	0.183	280	288	0.4	0.3	3.037	A
			2	1	$(1,2,3)$	1351			1352	1398	3.1	0.9	2.970	A
		Exit	1	1		307			307	306	0.0	0.0	0.000	A
	2	Entry	1	1	3	492	960	0.512	490	489	1.4	1.1	7.283	A
				2	1, 2	219	960	0.228	218	218	0.5	0.3	4.910	A
			2	1	(1, 2, 3)	711			711	706	0.5	0.2	0.682	A
		Exit	1	1		1265			1265	1307	0.0	0.0	0.000	A
	3	Entry	1	1	1	88	1068	0.082	88	88	0.1	0.1	3.850	A
				2	2, 3	192	1068	0.179	192	193	0.3	0.2	4.238	A
			2	1	$(1,2,3)$	279			280	280	0.0	0.0	0.023	A
		Exit	1	1		770			770	777	0.0	0.0	0.000	A
2	1	Entry	1	1	2, 3	627	852	0.737	631	659	6.2	2.6	19.440	C
				2	1, 4	12	852	0.014	12	12	0.0	0.0	4.576	A
			2	1	(1, 2, 3, 4)	628			639	657	7.6	0.5	13.932	B
		Exit	1	1		527			527	532	0.0	0.0	0.000	A
	2	Entry	1	1	3, 4	102	948	0.108	101	103	0.2	0.1	4.336	A
				2	1, 2	201	948	0.212	201	201	0.4	0.3	4.838	A
			2	1	(1, 2, 3, 4)	304			303	304	0.0	0.0	0.082	A
		Exit	1	1		1346			1346	1385	0.1	0.0	0.027	A
	3	Entry	1	1	1, 4	326	888	0.367	327	331	0.9	0.5	7.044	A
				2	2, 3	598	888	0.674	599	614	3.1	1.8	11.529	B
			2	1	(1, 2, 3, 4)	921			924	938	5.1	0.4	4.025	A
		Exit	1	1		170			170	171	0.0	0.0	0.000	A
	4	Entry	1	1	1, 2	180	763	0.236	180	178	0.3	0.3	5.039	A
				2	3, 4	53	763	0.069	53	51	0.1	0.1	5.084	A
			2	1	(1, 2, 3, 4)	233			233	228	0.2	0.1	1.516	A
		Exit	1	1		61			61	61	0.0	0.0	0.000	A

17:00-17:15

Junction	Arm	Side	Lane level	Lane	Destination arms	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	Average throughput (PCU/hr)	Start queue (PCU)	End queue (PCU)	Delay (s)	Unsignalised level of service
1	1	Entry	1	1	2	884	1548	0.571	885	899	1.7	1.2	4.957	A
				2	1, 3	227	1548	0.147	227	230	0.3	0.2	2.855	A
			2	1	$(1,2,3)$	1112			1111	1126	0.9	0.3	0.782	A
		Exit	1	1		258			258	260	0.0	0.0	0.000	A
	2	Entry	1	1	3	414	978	0.423	413	408	1.1	0.7	6.418	A
				2	1, 2	183	978	0.187	184	185	0.3	0.2	4.646	A
			2	1	$(1,2,3)$	597			597	590	0.2	0.0	0.289	A
		Exit	1	1		1047			1047	1058	0.0	0.0	0.000	A
	3	Entry	1	1	1	75	1080	0.069	74	75	0.1	0.1	3.686	A
				2	2, 3	162	1080	0.150	161	159	0.2	0.2	3.959	A
			2	1	(1, 2, 3)	237			236	234	0.0	0.0	0.017	A
		Exit	1	1		640			640	637	0.0	0.0	0.000	A
2	1	Entry	1	1	2, 3	516	902	0.571	513	523	2.6	1.4	9.624	A
				2	1, 4	10	902	0.011	10	9	0.0	0.0	4.547	A
			2	1	(1, 2, 3, 4)	525			526	528	0.5	0.0	0.443	A
		Exit	1	1		433			433	443	0.0	0.0	0.000	A
	2	Entry	1	1	3, 4	90	955	0.095	90	87	0.1	0.1	4.151	A
				2	1, 2	166	955	0.174	166	171	0.3	0.2	4.563	A
			2	1	$(1,2,3,4)$	257			257	258	0.0	0.0	0.065	A
		Exit	1	1		1109			1109	1120	0.0	0.0	0.000	A
	3	Entry	1	1	1, 4	268	901	0.297	267	273	0.5	0.5	5.875	A
				2	2, 3	498	901	0.552	498	501	1.8	1.4	8.956	A
			2	1	(1, 2, 3, 4)	765			765	772	0.4	0.2	0.798	A
		Exit	1	1		144			144	141	0.0	0.0	0.000	A
	4	Entry	1	1	1, 2	151	832	0.181	151	148	0.3	0.2	4.745	A
				2	3, 4	40	832	0.048	40	42	0.1	0.0	4.619	A
			2	1	(1, 2, 3, 4)	191			191	189	0.1	0.1	0.995	A
		Exit	1	1		48			48	50	0.0	0.0	0.000	A

APPENDIX E WCHAR

Proposed Employment Land North East of J10 M42, North Warwickshire

Walking, Cycling \& Horse-Riding Assessment

Report No. D000157 - WCHAR
4 Kempston Place
South Queensferry
Edinburgh, EH30 9QW

Date: $6^{\text {th }}$ October 2022

DOCUMENT CONTROL

Document: Walking, Cycling \& Horse-Riding Assessment

Project: Proposed Employment Land, North East of J10 M42, North Warwickshire

Client: Tetra Tech

Job Number:

File Origin:
D:\DBC Projects\D00157 - M42 WCHAR\Reports\Proposed Employment Land M42 J10 WCHAR (Final Report)4.docx

Document Checking:

Primary Author	Richard Pearson	Initialled: RP
Contributor	Initialled:	
Review By	Initialled:	

Issue	Date	Status	Checked for Issue
1	27 June 2022	Draft for Issue	RP
2	14 July 2022	Draft Report 2	RP
3	25 July 2022	Final Report	RP
4	$6^{\text {th }}$ October 2022	Revised Final Report	RP

Contents

1
Scheme Description \& Background 1
2
Walking, Cycling \& Horse-Riding Assessment. 8
3 User Opportunities 27
4
Walking, Cycling \& Horse-Riding Assessment Team Statement 31
Appendices
Appendix A - Preliminary Design Layouts
Appendix B - NMU Count Data
Appendix C - Collision DataAppendix D - Findings and Opportunities Location Plan

DRUMMOND BLACK CONSULTING LTD

1.1 Drummond Black Consulting have been commissioned by Tetra Tech to undertake the Walking, Cycling and Horse-Riding Assessment for up to 100,000 sqm of proposed employment uses on land to the north east of M42 Junction 10.

The report is prepared in accordance with Design Manual for Roads and Bridges (DMRB) GG142 Walking, Cycling and Horse-Riding Assessment and Review (WCHAR). A brief was supplied with detailed information including NMU traffic count information and the scope of the project was discussed over online calls with both the design team and Warwickshire County Council (WCC). This has been assessed as a large scheme. National Highways (NH) were contacted, however no comments were received.

This report assesses the existing facilities for pedestrians, cyclists and equestrian users in the local area, provides background information on the users and identifies opportunities for improvements for the users. The findings and opportunities identified in this report are not solely intended for the developer to address, but to inform discussion with the relevant authorities to enable co-ordination with the development of external schemes to achieve the objectives. A number of these are outlined in the Warwickshire Local Cycling and Walking Infrastructure Plan described in Section 2 (Table 2.1) of this report.

4 A site visit was carried out by the lead assessor on Friday $27^{\text {th }}$ May 2022 between 9 am and 2 pm where the full study area was examined. The weather was clear and sunny. Traffic flow was busy and a number of pedestrians and cyclists were observed.

Background

The proposed development is for up to 100,000 sqm of employment uses on land to the north east of M42 Junction 10. The proposals also include the removal of existing parking laybys at the A5 and replacing them with a new facility for up to 150 vehicles within the site. The final details of the internal layout, including access junctions and parking layouts, will be addressed at a later date so this assessment seeks to input into this creation of the design.

6 The proposed development would be served by a new signal controlled all-movements access junction at the A5. The proposed layout has been designed in accordance with published guidance from National Highways (formerly Highways England), acting as the Highway Authority responsible for the A5 carriageway.

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

1.7 The site is currently served by a reasonable level of infrastructure to accommodate predicted journeys by walking, cycling and public transport modes. The immediate surrounding area accommodates a substantial amount of employment development, with potentially up to 10,000 people working each day. The proposed development would deliver a range of improvements that should ensure substantial improvements in accessibility, particularly for walking and cycling journeys, that could benefit all users.
1.8 These improvements include upgrading the existing east and westbound bus stop facilitates at the A5, provision of signal controlled crossing facilities within the access as an alternative to the current priority controlled crossing on the A5, upgrading of existing footpaths within the site and adjacent land to provide much improved pedestrian and cyclist links that avoid the M42 Junction 10 and A5 corridor, and finally the delivery of a continuous shared footway/cycleway link that extends throughout the scheme connecting the A5 to Birchmoor and a series of designated route options for pedestrians and cyclists. Access by public transport is also achievable through local bus routes and two rail stations at Polesworth and Wilnecote.

The existing layout and facilities in the area are illustrated in Figure 1 and described below.
A footway extends along the southern edge of the A5 past the site, measuring approximately 1.8 metres wide. There is a section on the southern side between "The Cat Cottage" and the westbound layby that narrows to less than 1 metre as a result of poor maintenance. Along the northern edge of the carriageway, a 2 metres wide shared footway / cycleway exists, however, there are several points, particularly to the east, where width is constrained by street furniture and overgrown vegetation. The northern path was frequently used by pedestrians and cyclists, whilst the southern path was used less frequently. These connect to the M42/A5 roundabout

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

where all arms include dropped kerbs and tactile paving crossings, although crossings are uncontrolled. There are crossing facilities across the A5 to reach destinations to the south via either signalised crossings at Birch Coppice and Core 42 Business Park or via the overbridges further to the east at Dordon. The path link through to Browns Lane in Dordon is currently signed as "No Cycling". The streets in Dordon are low speed and traffic calmed. There is scope for improvement along this route with basic improvements in maintenance of overgrown vegetation. To the east, this will provide a link from the site to Dordon and onward to Grendon.
1.13 The residential areas of Birchmoor and Polesworth are within the catchment area of the site and include Polesworth Sports Centre and School. It is currently possible to walk through the site on a bridleway to access Birchmoor and onward destinations to the northwest including good standard cycle routes into Tamworth. Additional onward connections are available via the Coventry Canal off the B5000.
1.14 As mentioned above, there are good facilities to connect to Tamworth to the northwest with an off road path network to the west of Green Lane in Birchmoor. Also to the west of the M42, utilising the footway at the southern edge of the roundabout and then the A5, pedestrians can access the Centurion Business Park and its units via Centurion Way (this includes a Premier Inn Hotel, restaurant/pub, and various employment units (offices and industrial)). The adjacent residential area further west via Watling Street is also within accessible distance. Furthermore, using the footway at the northern edge of the roundabout and then Green Lane (south), pedestrians can access the Relay Park (including various offices and industrial units) and Tamworth Services (this includes M\&S Simply Food, Costa Coffee, Burger King and Esso).
1.15 To the south, while there is a footway only provide on the A5, this is used by cyclists and connects to facilities on Trinity Road that provide connections to the southeast of Tamworth and Hockley via Overwoods Road. While the path on the A5 is not signed as a shared facility, it is signed as such from the M42, south on Trinity Road. An alternative public footpath exists through the site of Tamworth Logistics Park (East).

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Figure 1 - Existing Cycle Facilities
1.16 Survey information for non-motorised users has been provided for the following locations:

- M42 J10 (Sept 2021 \& June 2022)
- A5 Watling Street (Sept 2021 \& June 2022)
- Green Lane (West) (June 2022)
- Green Lane/ Cockspur Street (June 2022)
- Path Interchange north of Tamworth Services (June 2022)
1.17 Initial survey data was provided from the Transport Assessment with additional targeted surveys carried out in June 2022. The summary below is from the most recent data.
1.18 On the A5 path passing the site, there were 11 pedestrians (2-way) over 12 hours on the north side and 13 on the south side. During this period there were 38 cyclists on the north side and 51 cyclists on the south side. The Green Lane route through Birchmoor over the M42 was a popular route for pedestrians and cycles as there was 290 (2-way) pedestrians over 12 hours and 71 cyclists.
1.19 On M42 J10, there were 11 pedestrians \& 38 cyclists around the north side (Same as A5 passing site above) with 10 pedestrians/ 54 cyclists around the south.

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Pedestrian flows would be considered generally low at all count locations. Full count data is included in Appendix B.

Information provided by the British Horse Society shows that there are 584 horse registrations in the B78 postcode area, although no horse riding was noted during the site visit or is present in the areas surveyed. Bridleway AE45/1 runs along the eastern site boundary in a north / south direction.

Proposed Access Arrangements

The proposed internal pedestrian and cycle connections and their links to the external network are shown on the initial site layout drawing in Appendix A.

Active travel proposals are to include the following:

- 3 metres wide dual use footway/cycleway to either side of the site road and access junction;
- 3 metres wide dual use footpath / cycle path linking north from the site road to Birchmoor;
- 3 metres wide footpath / cycleway linking east from the site road to the nexus of Public Bridleway AE45 and Public Footpath AE46 (Shown on Figure 23 in the Transport Assessment);
- A network and new and improved Public Footpaths, footpaths and cycleways crossing the broader area to promote sustainable modes of travel/commuting and local community health and fitness, particularly enhancing east-west routes. This will include tarmac footpaths and cycleways and appropriate surfaces for bridleways, all of which would be compliant with the Equalities Act 2010 providing "access for all";
- New off line cycleway connecting east from M42 J10 to Dordon;
- An on-site bus stop for A5 east \& westbound buses supported by Stagecoach and WCC;
- New enhanced fully signal controlled pedestrian crossing for the A5, compared to the existing junction staggered pedestrian crossing that passes through the central reserve;
- Cycle parking provided to all units at in excess of the North Warwickshire standards; incorporating a range of parking facilities to include indoor/outdoor parking, secure parking and covered parking, all located at or close to pedestrian entrances;
- Showers and changing facilities provided to all units;
- Communal cycle parking, showers and changing facilities for site occupiers located at the ancillary Hub Office; and
- Site wide Travel Plan to be applicable to all future occupiers.

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

1.24 For vehicular access, the development would be served by a single signal-controlled access junction at the northern edge of the A5 carriageway. The proposed site access layout is shown in Drawing Number F19123/07 in Appendix A. The proposed layout has been prepared in accordance with the requirements of CD123 'Geometric design of at-grade priority and signalcontrolled junctions'.
1.25 In addition to the site access, off site improvements are also proposed, including:

- Signal controlled crossings within the proposed site access helping to reduce usage of the existing priority-controlled facility nearby;
- Provision of an internal pedestrian and cycle link connecting the A5 to Birchmoor, thus offering a higher quality route for pedestrians and cyclists travelling between the A5 and areas to the north and west (particularly within Tamworth);
- Reduction in overall vehicle speeds due to the proximity of an additional signal controlled junction, thereby improving the overall environment for pedestrians and cyclists using the A5 corridor;
- The proposed scheme will increase the separation between pedestrians/cyclists and A5 to standard verge; and
- Removal of existing parking laybys that do not meet current design requirements, in favour of a high-quality lorry parking facility for up to 150 vehicles, to include supporting facilities for drivers.

Scheme Objectives

No specific objectives have been specified as part of the brief for this assessment, however it is stated that one of the aims of the proposals is to ensure the proposed development is accessible by all modes of transport.

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Study Area

The extent of the study area considered within this WCHAR assessment report has been established by the Lead Assessor following consultation with the cycling officer at WCC, illustrated in Figure 2. The Transport Assessment predicts that 80% of traffic will come from the west from the M42, however non-motorised user traffic would be expected to be more evenly spread from the residential areas surrounding the site. The assessment area broadly comprises of connections to the following:

- Dordon;
- Grendon;
- Polesworth;
- Wilnecote; and
- Tamworth.

Figure 2 - Study Area

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

2

2.1 This chapter summarises the findings of the assessment as set out in Section 4 of GG 142. The findings under each topic area are summarised under each heading and any potential opportunities for improvements are identified in Chapter 3 of this report.

Assessment of Walking, Cycling \& Horse-Riding Policies and Strategies

2.2 To prepare this WCHAR assessment report, the following local and national policy/advice notes have been considered. A policy review was carried out as part of the Transport Assessment and the relevant information from this has been extracted and summarised below. In addition to this, following discussions with the relevant local authorities, additional policy and strategic documents, including the Warwickshire Local Cycling and Walking Infrastructure Plan were provided for review that include potential schemes.

National Planning Policy Framework (NPPF)

Paragraph 110 goes on to set out key criteria that development sites should establish. It states: "In assessing sites that may be allocated for development in plans, or specific applications for development, it should be ensured that:

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

a) appropriate opportunities to promote sustainable transport modes can be - or have been taken up, given the type of development and its location;
b) safe and suitable access to the site can be achieved for all users;
c) the design of streets, parking areas, other transport elements and the content of associated standards reflects current national guidance, including the National Design Guide and the National Model Design Code;
and
d) any significant impacts from the development on the transport network (in terms of capacity and congestion), or on highway safety, can be cost effectively mitigated to an acceptable degree."
2.6 Paragraph 112 of the NPPF goes on to set out a list of preferred criteria for applications for development. It recommends that priority is given to pedestrian and cycle movements and minimising the scope for conflict with vehicles.

DfT Circular 02/2013: The Strategic Road Network and the delivery of sustainable development (10 September 2013)
2.7 In addressing the assessment of development impact, Paragraph 26 advises how the "Highways Agency expects the promoters of development to put forward initiatives that manage down the traffic impact of proposals to support the promotion of sustainable transport and the development of accessible sites. This is particularly necessary where the potential impact is on sections of the strategic road network that could experience capacity problems in the short or medium term".

North Warwickshire Borough Council Local Plan (Adopted September 2021)
2.8 Chapter 5 of the North Warwickshire Borough Council Local Plan (NWBCLP) sets out the following objectives for the Local Plan:

1. To secure a sustainable pattern of development reflecting the rural character of the Borough
2. To provide for the housing needs of the Borough
3. To develop and grow the local economy for the benefit of local residents
4. To maintain and improve the vitality of the Market Towns
5. To promote rural diversification
6. To deliver high quality developments based on sustainable and inclusive designs
7. To protect and enhance the quality of the natural environment and conserve and enhance the historic environment across the Borough

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

8. To establish and maintain a network of accessible good quality Green Infrastructure, open spaces, sports and recreational facilities
9. To ensure the satisfactory provision of social and cultural facilities
2.9 The document also notes Walking and Cycling (LP27) on the development of a walking and cycling strategy - "All developments should consider what improvements can be made to encourage safe and fully accessible walking and cycling".

The plan identifies two major housing sites in the area (sites H4 Land east of Polesworth \& Dordon and H5 Land to the west of Robey's Lane adjacent to Tamworth) that intend to deliver almost 3,000 homes that will be within the cycling catchment of this site, as well as several smaller housing sites.

Warwickshire Local Cycling and Walking Infrastructure Plan (LCWIP)

2.11 The Warwickshire LCWIP contains a number of proposed cycle schemes (NW10) to the east of the site in Polesworth and Dordon including:

Table 2.1 - Proposed cycle schemes in Polesworth and Dordon
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Ref } & \text { Potential Schemes } & \text { Type } \\
\hline \text { P01 } & \text { Alvecote development } & \text { New footway/ cycle track adjacent to road } \\
\hline \text { P02 } & \text { Polesworth and Dordon north-south links } & \text { On-carriageway cycle route } \\
\hline \text { P03 } & \begin{array}{l}\text { Bridleway and Green Lane (A5 Birch Coppice - } \\
\text { Birchmoor - Stonydelph) }\end{array} & \begin{array}{l}\text { Cycle track/ path on open space and on- } \\
\text { carriageway route }\end{array} \\
\hline \text { P04 } & \begin{array}{l}\text { Polesworth developments } \\
\text { P05 }\end{array} & \begin{array}{l}\text { St Helena Road/ Dordon Hall Lane (Polesworth } \\
\text { track/path }\end{array} \\
\hline \text { P06 } & \begin{array}{l}\text { On-carriageway cycle route } \\
\text { Church Road/ Dunns Lane, Dordon }\end{array} & \begin{array}{l}\text { On-carriageway cycle route } \\
\hline \text { P07 }\end{array} \\
\hline \text { Path (A5 Birch Coppice junction - Browns } \\
\text { Lane) }\end{array}
$$ \quad $$
\begin{array}{l}\text { Cycle track/ path on open space } \\
\hline \text { P08 } \\
\hline \text { P09 }\end{array}
$$ $$
\begin{array}{l}\text { Path (A5 Watling Street (M42 Junction 10) } \\
\text { Park) }\end{array}
$$ \quad \begin{array}{l}Widened/ upgraded footway adjacent to road and

crossing\end{array}\right]\)| Cycle track/ path on open space and cycle |
| :--- |
| Grendon) |

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

DMRB - CD 143 Designing for Walking, Cycling and Horse-Riding

- CD 143 should be used for the design of walking, cycling and horse-riding routes on and/or adjacent to the motorway and all-purpose trunk road network.
- Walking, cycling and horse-riding routes shall be free from unnecessary diversions, frequent obstacles and fragmented facilities
- The core design principles for walking, cycling and horse-riding are:
- Coherence: Link trip origins and destinations, including public transport access points. Routes are continuous and easy to navigate.
- Directness: Serve all the main destinations and seek to offer an advantage in terms of distance and journey time.
- Comfort: Infrastructure meets design standards and caters for all types of user, including children and disabled persons.
- Attractiveness: Aesthetics, noise reduction and integration with surrounding areas are important.
- Safety: Dedicated networks and facilities not only improve pedestrian, cyclist and equestrian safety, but also their feeling of how safe the environment is. This includes access to adjacent areas, sightlines, fencing, lighting, landscaping and surveillance. It also includes avoiding opportunities for assailants to conceal themselves.

Collision Data

A collision review was carried out as part of the Transport Assessment covering the M42 Junction, Dordon Roundabout, Long Street and Gypsy Lane. The study period covered the five years to 2020.

A total of 50 collisions were recorded during the study period, where none were classified as 'fatal', 10 were classified as 'serious', and the remaining 40 collisions all classified as 'slight'. Throughout the study area a total of 6 collisions involved cyclists, two involved pedestrians, and the remaining 42 incidents involved vehicles only. The collisions can be broken down by the following years:

- 2016-13 collisions (26%)
- 2017-12 collisions (24%)
- 2018-9 collisions (18\%)

drummondblack.co.uk

- 2019-9 collisions (18\%)
- 2020-7 collisions (14\%)
2.14 Full details of the assessment are included in the Transport Assessment.
2.15 For this assessment WCC have provided collision data for the same time period for the whole area isolating collisions involving pedestrians and cyclists. This plan is included in Appendix C. Specific collisions from this are detailed in Table 2.2 below.

Table 2.2 - Specific Pedestrian and Cycle Collisions

Refl Mode	Day/Date	Time	Road Surfacel Weather	Severity	Description
831674 Cycle	06.02.19	1750	Dry	Slight	Vehicle 2 (pedal cycle), travelling on A5 towards Junction 10 M42S, has been struck before the slip road by vehicle 1 (goods<3.5t)
815904 Cycle	06.02.19	1800	Wet/Fine	Slight	Vehicle 2 (pedal cycle) was cycling round the roundabout when vehicle 1 (goods vehicle) cut him up.
151799 Cycle	10.01.17	0625	Wet/Fine	Serious	Vehicle 2 (pedal cycle) entering the island on junction 10, M42S was cut up by vehicle 1 (goods >7.5t) moving from the inside lane to the middle lane causing a collision and the rider to come off his bike.
274607 Cycle	01.03.18	0549	Frost/ Fog	Slight	Vehicle 2 (pedal cycle) has crossed the road in front of vehicle 1 (car) who was travelling along the A5 through a green light, causing them to collide.
929343 Pedestrian	06.02.20	1730	Dry/ Fine	Serious	Casualty 1 ran out into the carriageway of Watling Street (A5) and was hit by vehicle 1 (car) travelling at low speed in slow moving traffic.
$\begin{aligned} & \hline 979503 \\ & \text { Pedestrian } \end{aligned}$	31.07 .20	1644	Dry/ fine	Serious	Pedestrian walking across A5 while looking down at their mobile phone was hit by vehicle 1 (motorcycle).
345459 Cycle	22.10 .18	1448	Dry/ Fine	Slight	Vehicle 1 (car) turned right at island into Roman Way when vehicle 2 (bicycle), who at own admittance was on his phone, cycled into path of vehicle 1 and was hit on the back wheel.
181855 Cycle	11.05.17	1027	Dry/ Fine	Slight	Vehicle 1 (goods vehicle)travelling up Long Street and turning right into Church Road collided with vehicle 2 (bicycle) travelling down Long Street going past junction of Church Road.

The above collision summary and the analysis carried out as part of the Transport Assessment shows three cycle collisions at J10 of the M42. Two slight injury collisions to the south and a serious collision to the north. Two cycle collisions were recorded on Long Street and 1 on the A5

drummondblack.co.uk

DRUMMMOND BLACK CONSULTING LTD

at Danny Morson Way. Two serious pedestrian collisions occurred on the A5 between Danny Morson Way and Long Street.

Public Transport Services and Interchange Information
2.17 Following a review of the existing public transport services available within the study area, the following bus services are accessible from the site.
2.18 The site is served by bus routes at the A5 and then at Birchmoor Road, which are each within 400 metres of the site boundary, providing access to a number of locations such as Atherstone, Grendon, Dordon, Polesworth, Amington, Austrey and Tamworth. Routes 766, 767, 785 and 786 operate a combined frequency of one service every hour in each direction, Monday to Saturday, with one bus every 2 hours on Sundays.
2.19 The closest bus stop is located at the northern edge of the A5, approximately 150 metres to the east of the existing access. This comprises a bus pull in layby with no flag and pole arrangement serving eastbound services for Routes 766 and 767. To access westbound services, the closest bus stop is located within the Birch Coppice Business Park, approximately 870 metres to the southeast of the existing site access. Further bus stops are located on Birchmoor Road, approximately 350 metres north of the site which comprise a flag and pole type arrangement for services in both direction for Routes 785 and 786. These services can be accessed from the north of the site via Cockspur Street and the existing bridleway.
2.20 The bus timings for each route indicates that an employee living in Polesworth (or arriving by train) could catch a bus at 0802 hours and arrive at the Birchmoor Road stop for around 0816 hours, meaning a journey time of circa 15 minutes that could connect with the conventional 0900 hours start time. Similarly, employees heading to Tamworth, either to home or the Train Station, could catch a bus at 1750 hours, which should then arrive at Tamworth Rail Station for around 1827. The current journey times provided by each of the route options are such that future employees at the site should be able to travel to work from each of the key local areas set out above.

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Table 2.3 - Bus Routes

Service	Route Description
$766 / 767$ $($ Stagecoach $)$	Atherstone - Grendon - Dordon - Tamworth Tamworth - Dordon - Grendon - Atherstone
$785 / 786$ Stagecoach	Tamworth - Amington - Polesworth - Dordon - Amington - Tamworth
$785 / 786$ $($ Arriva $)$	Tamworth - Amington - Polesworth - Dordon - Amington - Tamworth

2.21 The site is served locally by three train stations at Polesworth, Wilnecote, and Tamworth, which each operate separate lines to different destinations. Polesworth Station is located approximately 2.8 kilometres to the north and accommodates the London Northwestern and Avanti West Coast lines, which serve Lichfield Trent Valley, Tamworth, Nuneaton, Stoke on Trent and Rugby. However, there appear to be accessibility issues at this station and severely restricted services are currently being run through this point. Access to Birmingham can be achieved via connections at Tamworth and the Cross Country line. Tamworth Station is approximately 7 kilometres northwest of the proposed site access, whilst Wilnecote Train Station is approximately 5 kilometres to the west.

The proposed site layout includes access for non-motorised users to the north and east of the site as well as from the main access on the A5 with dedicated connecting facilities alongside the spine road. The existing bridleway will be diverted along the eastern boundary of the site.

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Site Visit

A site visit was carried out on $27^{\text {th }}$ May 2022 where the full study area was visited either on foot or by cycle to assess the connections from these access points to the local residential areas. The findings from the site visit are summarised below.

The findings are separated into the various route connections from the proposed development site based on the direction from the site, including:

- Connections to Tamworth (North \& West);
- Connections to Polesworth (North and East);
- Connections Dordon \& Grendon (East);
- Connections to Hockley \& Wood End (South \& West); and
- General Area Wide Findings;

Section 1 (Tamworth)

User travelling to and from Tamworth from the site will have the option of travelling to the north to Birchmoor and across the M42 overbridge to Green Lane, and then via an existing network of paths to reach their onward destinations. Alternatively, from the south of the site, users will pass through the main access, then head west on the A5 via a shared footway cycleway and across M42 J10 gyratory.

Finding 1: Green Lane Connection

Users travelling to Tamworth from the north of the site via Birchmoor would use/ exit via Cockspur Street and then cross the M42 on the Green Lane overbridge. While this is a relatively low traffic route, there are a number of obstacles to active travel. Pavement parking is an issue on Cockspur Street and parked vehicles on the north side of Green Lane enforce a one-way priority system that could be discouraging for cyclists using the carriageway. The footpath on the south side of green lane is relatively wide and could have potential for improvement.

drummondblack.co.uk

Figure 3 - Green Lane Connection

Finding 2: A5 Path width and maintenance (South)

All along the A5 in the vicinity of the site and around the M42 junction, vegetation is poorly maintained and reduces the effective width of the footpaths and shared footway/ cycleways. With the proposed development and an expected increase in walking and cycling trips, this could discourage these trips and also create a number of hazards.

Figure 4 - A5 Paths (Southern side)

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Finding 3: M42 J10 uncontrolled crossings

While the M42 junction is signalised, the pedestrian crossings are not included in the signal staging and operate as uncontrolled crossings. While users are able to judge crossing on the traffic signals when red, vulnerable users would be discouraged from using this as a route. A particular area where all users would have difficulty would be at the northbound off-slip where they are required to cross 5 lanes on an uncontrolled crossing.

Figure 5 - Uncontrolled crossings

Finding 4: Missing link to Centurion Park

Cyclists traveling from the site to the west towards Centurion Park reach a point on the A5 to the west of the M42 where the cycle facility ends on the diverge for Pennine Way/ Quarry Hill roundabout. Here they are instructed to dismount (or ride on the carriageway). The facility to the east is currently footway only but could potentially be upgraded.

Figure 6 - A5 Missing link

drummondblack.co.uk

D:\DBC Projects\D00157 - M42 WCHAR\Reports\Proposed Employment Land M42 J10 WCHAR (Final Report)4.docx

DRUMMOND BLACK CONSULTING LTD

If users were to choose to travel west around the north side of the M42 junction, there is a gap in provision of suitable connecting facilities on Green Lane - Relay Drive to link them to the path network to the north. The paths are footway only and do not offer a suitable facility for cyclists. The paths are also currently overgrown with reduced width. The path network access is to the north of Relay Drive with an additional access leading up to Green Lane to the east of the services. It appears as if there would be potential to provide improved links to the path network for onward journeys.

Figure 7 - Relay Drive/ Tamworth Services

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Section 2 (Polesworth)

Polesworth is a residential area to the north east of the site with a number of schools and a rail station. It is likely that residents in the area would walk or cycle to the site either via Birchmoor Road and Cockspur Street. With the train station to the north and the Coventry Canal, there is potential for onward cycle trips.

Finding 6: Birchmoor Road (inc. Bus Stops)

While Birchmoor Road has a footway on the south side and lighting, the road is rural in nature and straight which could encourage high speeds. If this link was to be used as a connection for cycles to and from the site, it could benefit from some form of traffic calming.

Figure 8 - Birchmoor Road

Section 3 (Dordon \& Grendon)

To the east of the site are the residential areas of Dordon and Grendon. The main routes to these areas will be via existing provision on the A5, although there is potential for quieter routes through the site to Dordon. The industrial areas at Birch Coppice are also accessible to the south of the A5.

Finding 7: Tie-in at Barn Close

There is potential to connect into the west of Dordon at Barn Close, where users could avoid the A5 with a quieter more direct route from the site.

drummondblack.co.uk

Figure 9 - Barn Close (Image from Google)
Finding 8: Browns Lane Link

There is an existing link from the A5 to the west side of Dordon at Browns Lane, however this is currently signed with "No Cycling" signs. It is expected that this is as result of a narrow pinch point at the eastern end of the lane. There is potential for this link to be upgraded to include cyclists.

Figure 10 - Browns Lane Link
2.41 Finding 9: Pinch Point at Birch Coppice junction

At the traffic signals for the Birch Coppice junction to the east the path narrows considerably and could result in conflicts between pedestrians and cyclists.

drummondblack.co.uk

Figure 9 - Pinch Point

Finding 10: A5 East of Quarry Close

For travel further east to Grendon, there is a gap in cycle provision ends (Quarry Close) and only footway provision continues further east. There is potential to improve this and provide for cycles further east. Where there are constraints, localised signing could be used to warn of any hazards.

Figure 10 - End of Cycle Facility

Section 4 (Hockley \& Wood End)

2.44

The main trip attractor to the southwest is the residential area at Hockley with onward destinations to the south of Tamworth. There is a good facility for cycles and pedestrians on Trinity Road and there are paths connecting through Tamworth Logistics Park.

drummondblack.co.uk

D:\DBC Projects\D00157 - M42 WCHAR\Reports\Proposed Employment Land M42 J10 WCHAR (Final Report)4.docx

Finding 11: Missing Link - Trinity Road (North)

While there is a cycle facility on Trinity Road, this does not extend all the way to the M42 junction. The section between the logistics park and the M42 is footway only and is also narrow and overgrown. There are alternative footpath links through the logistics park, although these are not signed and cyclists are prohibited.

Figure 11 - End of Cycle Facility

Finding 12: Overwoods Road

When cyclists leave the Trinity Road facility and continue west on Overwoods Road, they would be required to ride on road. The road is straight and rural in nature and with potential high vehicle speeds could be discouraging.

Figure 12 - Overwoods Road

2.47
 Section 5 (General Area Findings)

2.48 While the area generally has good provision of facilities for non-motorised users, there are a number of issues common across the area that could serve to discourage walking and cycling as a mode choice.

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Area wide, vegetation in particular was overgrown reducing effective widths of path and making access difficult for certain user groups. With adequate maintenance, much of the paths could be significantly widened.

Figure 13 - Maintenance Issues

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Finding 14: Pavement Parking

As also mentioned for the area to the north of the site, general observations throughout the area note that pavement parking is common practice and can be a barrier to walking, especially for those with visual and mobility impairments.

Figure 14 - Pavement Parking

Finding 15: Lack of tactile paving provision

While tactile paving is provided at some crossing points, particularly on the A5 and M42, there were many crossings noted throughout the area with no formal provision to assist visually impaired users.

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

Figure 15 - Absence of tactile paving

Consultation with Key Stakeholders

As the proposals are at a very preliminary stage, it is expected that consultation at this stage would offer little benefit to this assessment. Following discussion with WCC it was agreed that consultation as part of this WCHAR would concentrate on a few key stakeholder groups, including:

- National Highways
- Staffordshire Cycling Officers
- Warwickshire Cycling Officer
- Warwickshire Rights of Way Officer
- Dordon Parish Council
- Local Cycle Forum/ Tamworth Cycle Club
- British Horse Society
2.53 Contact was made with the above, although comments and responses were not received from all groups. Where relevant comments were made, these have been included in the report. If further comments are received after the submission of this report, the report will be updated accordingly.

Further consultation will be carried out as the scheme proposals develop. This may be carried out as part of a wider consultation on the full proposals as part of the planning process and incorporated in a later review of this assessment.

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

3 User Opportunities

3.1 The opportunities highlighted below are considered to be relevant to the introduction of a highway improvement scheme and should be considered by the wider design team throughout the progression of the scheme design in addition to any further opportunities that may arise through the ongoing development of the design phase(s). A number of the opportunities identified would not be within full control of the developer and should be discussed further with the relevant roads authorities.

General

Opportunity 1: Maintenance of existing paths.

With many of the main road paths overgrown with vegetation, the effective width of the paths is significantly reduced. By cutting back the vegetation on these paths and ensuring they are regularly maintained and swept, this can open up more useable and attractive routes for users at a relatively low cost. Where new facilities are created as part of this development, landscaping should be used that requires minimal maintenance. It is understood that much of the maintenance is out-with the control of the developer. Off site maintenance should be discussed with the relevant highway authorities and a maintenance plan put in place.

Opportunity 3: Route signing

It would not be considered feasible for the developer to improve all facilities in the neighbouring areas to ensure accessibility to the site. If a route signing strategy was developed, this would allow the improvements to be focused on main routes. It is recommended that signing of the key routes identified in Section 2 is provided.

drummondblack.co.uk

DRUMMOND BLACI CONSULTING LTD

Opportunity 4: Signalising M42 Ped Phases

The current uncontrolled crossings on M42 J10 are a deterrent for these routes being used by non-motorised users. There is an opportunity to provide signalised crossing facilities throughout this junction.

Strategic Opportunities

Opportunity 5: Green Lane

The proposals outlined in the Transport Assessment include the provision of a 3 m wide shared path to connect to Birchmoor. The current provision on Green Lane and over the M42 only has footway provision and requires cyclists to ride on the road. With the parked vehicles this could be discouraging for cyclists, particularly when faced with oncoming traffic. The footway on the south side is relatively wide and may have potential to be upgraded to a shared cycle facility. Alternatively, signing and on road markings could provide a safer facility for cyclists to reach the path network to the west over the M42.
$7 \quad$ Opportunity 6: Tamworth Services link

As well as Green Lane, mentioned above, an alternative route to the west for Tamworth would be for users to use the A5 and M42 junction, however there is a gap in provision between the M42 junction and the start of the path network to the north and west of Tamworth Services. There is an opportunity to provide a formal signed route to connect the M42 junction to the path network.

Pedestrian Specific Opportunities

Opportunity 7: Links to Dordon and Polesworth

Proposals for links to Dordon and Polesworth are mentioned both in the Transport Assessment and as part of LCWIP. There is an opportunity to provide good standard surfaced and lit paths to connect through to Dordon and Polesworth that can be used all year round.

drummondblack.co.uk

DRUMMOND BLACI CONSULTING LTD

Cycling Specific Opportunities

Opportunity 8: Trinity Road

With the gap in cycleway provision to the southeast of M42 J10, cyclists choosing this route would be required to cycle on road in an unfriendly environment with heavy traffic. There is an opportunity to upgrade this path to allow shared pedestrian / cycle use.

Opportunity 9: Overwoods Road

Cyclists travelling to the southwest would be required to ride on the road on Overwoods Road in a potentially hazardous environment. There is an opportunity to improve provision on this section either with road narrowing/ traffic calming and a shared facility.

Opportunity 10: Birchmoor Road
Cyclists travelling to the north and east could choose to go through Birchmoor and along Birchmoor Road. On this section, cyclists would be required to ride on the road in a potentially hazardous environment. There is an opportunity to improve provision on this section either with road narrowing/ traffic calming and a shared facility.

Opportunity 11: Signing of route to Canal and Train Station

Linked to opportunity 10, providing a signed route to the key destinations of the train station and the canal could allow focused route improvements either on Birchmoor Road (above) or on a route through Polesworth.

Opportunity 12: Browns Lane Link

The current provision on this link prevents use by cycles, either requiring them to dismount and walk through or ride on a longer route. There is an opportunity with maintenance and minor widening to upgrade this link to allow use by cyclists.

Opportunity 13: A5 Cycle provision
A number of gaps in cycle provision on the A5 have been identified where the shared facilities end and continue as footways. This included the links to Grendon to the east, Centurion Park to the west and potential areas of conflict, such as on the north side of the Birch Coppice access junction. Southern sections of the A5 are also for pedestrian use only. These areas have been

drummondblack.co.uk

DRUMMOND BLACK CONSULTING LTD

identified as potential improvements in the LCWIP document for upgrade to cycle standard facilities.

Equestrian Specific Opportunities

Opportunity 14: Bridleway Diversion - It is understood that the current bridleway that is being diverted is currently considered a cul-de-sac route by the BHS with the A5 acting as a barrier to onward travel. With the introduction of the signalised crossing facilities this BHS felt that it could open up further routes and connections to the south and suggested that the opportunity may exist at this stage is to ensure that the crossing facilities being provided as part of the access junction could be of a standard that would allow a future upgrade for equestrians. From an examination of the available routes it was thought that possibilities for future extension of equestrian routes south of the A5 would be very unlikely and to allow for future upgrading now at the developer's expense would not be reasonable.

drummondblack.co.uk

4
 Walking, Cycling \& Horse-Riding Assessment Team Statement

As Lead Assessor, I confirm that this Walking, Cycling \& Horse-Riding Assessment Report has been compiled in accordance with DMRB GG 142 and thus contains the appropriate information for the wider design team. The Walking, Cycling \& Horse-Riding Assessment was undertaken by the following Assessment and Review Team:

Walking, Cycling \& Horse-Riding Lead Assessor
Richard Pearson BSc (Hons) CMILT MCIHT MSoRSA
Director, Drummond Black Consulting Ltd.
Signed:

Date: $6^{\text {th }}$ October 2022

Drummond Black Consulting Ltd
4 Kempston Place
South Queensferry
EH30 9QW
Tel: +44(0) 7866851654

As design team leader I confirm that the assessment has been undertaken at the appropriate stage of scheme development and that the wider design team has been involved in the process.

I confirm that in my professional opinion the appointed Lead Assessor has the appropriate experience for the role making reference to the expected competencies contained in GG 142.

Design Team Leader

Nick Bunn
Tetra Tech

Signed:

Date: 6 ${ }^{\text {th }}$ October 2022

drummondblack.co.uk

Appendix A - Preliminary Design Layouts

drummondblack.co.uk

drummondblack.co.uk

D: \DBC Projects\D00157-M42 WCHAR\Reports\Proposed Employment Land M42 J10 WCHAR (Final Report)4.docx

Appendix B - NMU Count Data

Date: Wednesday 8th June 2022
Time: 07:00-19:00

	MOVEMENT TFROM GREEN LANE FFOOPATH (SOUTH)TRAVELING NORTHBOUND TO GREEN LANE FOOTPATH (NORTH)																																									
								FROM GREEN LANE FOOTPATH (SOUTH) RIGHT TURN TO ISLAND FOOTPATH							FROM ISLAND FOOTPATH LEFT TURN TO GREEN LANE FOOTPATH (SOUTH)							FROM ISLAND FOOTPATHRIGHT TURN TOGREE LANE FOOTPATH (NORTH)							FROM GREEN LANE FOOTPATH (NORTH) LEFT TURN TO ISLAND FOOTPATH							FROM GREEN LANE FOOTPATH (NORTH) TRAVELLING SOUTHBOUND TO GREEN LANE FOOTPATH (SOUTH)						
		$\begin{aligned} & \text { u} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$					total		$\begin{aligned} & \text { u } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$					тotal							Total							Total							total		$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{8}{4} \end{aligned}$				total
0700-0715	0	0	0	0		0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0715-0730	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0730-074	-	0	0	0	0	0	0	0		0	0	0	0	1	0	1	0		-	0	1	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0745-0800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
0800-0815	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0815-0830	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0
0830-0845	0	0	0	0	0	0	0	1	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0845-0900	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0900-0915	-	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-	0
0915-0930	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0930-0945	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0945-1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1000-1015	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1015-1030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1030-1045	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1045-1100	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1100-1115	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1115-1130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1130-1145	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1145-1200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
1200-1215	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1215-1230	0	0	0	0	-	-	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1230-1245	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1245-1300	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	2	0	0	0	0	0	2
1300-1315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
1315-1330	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1330-1345	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1345-1400	0	0	0	0		0	0	0	1	0	0	0	0	1	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0
1400-1415	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	1	0	0	0	0	1	0	1	0	0		0	1	0	0	0	0	0		0
1415-1430	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1430-1445	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-	0	0	1	0	0	0	0		0	0	0	0	0	0	0	0	0
1445-1500	0	0	0	0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1500-1515	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1515-1530	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	-	1	0	0	0	0	0	0	0	0	0	-	0	0	0	0
1530-1545	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
1545-1600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1600-1615	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	,	0
1615-1630	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	-	0	0	0	0	0	0	0	0	0	0	0
1630-1645	0	,	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	-	0	0	-	0	0	0	0	0	0
1645-1700	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1700-1715	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	,	0
1715-1730	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	-	0	0	0	0	0	0	-	0	-	0	0	-	0	0	0	0	0	0		0	0	0	-	0
1730-1745	0	0	0	0		0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	1	0	0	0	-	1	1	,	0	,	0	0	2	0	0	0	0	0	-	0
1745-1800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0
1800-1815	0	0	0	0	0	0	0	0	,	0	0	0	-	1	1	0		0	0	-	2	-	2	0	,	0	0	2	0	1		0	0		1	0	0	0	0	0		0
1815-1830	0	0	,	0	0	0	0	0	1		0	0	0	1		0	0	0	0	0	1	-	1	0	-	0	0	1	0	0	0	0	-		0	-	0	0		0		0
1830-1845	0	-	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	-		0
1845-1900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0700-1900	3	2	0	0	,	0	5	3	12	2	-	0	0	17	4	5	1	O	0	-	10	2	14	0	-	0	0	16	2	7	0	0	0	0	9	2	0	O	0	0	0	2

Location：Birchmoor，Tamworth B78 1AN
Date：Wednesday 8th June 2022
Time：07：00－19：00

	MOVEMENT 1FROM GREEN LANE FOOTPATH（SOUTH）TRAVELING NORTHBOUND TOGREE LANE FOOTPATH（NORTH）																																									
								FROM GREEN LANE FOOTPATH（SOUTH） RIGHT TURN TO ISLAND FOOTPATH							FROM ILLAND FOOTPATHLETTH Trin ToGREEN LANE Footpath（South）							FROM ISLAND FOOTPATHRIGHT TURN TOGREEN LANE FOOTPATH（NORTH）							FROM GREEN LANE FOOTPATH（NORTH） LEFT TURN TO ISLAND FOOTPATH							FROM GREEN LANE FOOTPATH（NORTH） TRAVELLING SOUTHBOUND TO GREEN LANE FOOTPATH（SOUTH）						
		$\begin{aligned} & \text { u} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	先 $\stackrel{+}{0}$				тотаL		$\begin{aligned} & \text { u } \\ & \text { 岂 } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{0}{0} \\ & \stackrel{8}{4} \end{aligned}$				otal							total							total		$\begin{aligned} & \text { u} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$					total		$\begin{aligned} & \text { 山己 } \\ & 0 \\ & 0 \end{aligned}$					total
0700－0800	0	0	0	0	0	0	0	0	1	${ }^{0}$	0	${ }^{0}$	0	1	0	1	0	0	0	0	1	0	${ }^{0}$	0	${ }^{\circ}$	0	0	0	0	1	0	${ }^{\circ}$	0		1	0	${ }^{0}$	0	0	0		0
0715－0815	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0		0
0730－0830	－	0	0	0	0	0	0	0		0	－	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	－	0	1	0	0	0		1	0	0	0	0	0		0
0745－0845	0	0	0	0	0	0	0	1	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
0800－0900	0	0	0	0	0	0	0	2	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0815－0915	0	0	0	0	0	0	0	3	0	1	0	0	0	4	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	，	0	0	0	0	0	0	0	0	0	0	0
0830－0930	0	0		0	0	0	0	3	0	1	0	0	0	4	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		
0845－0945	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0900－1000	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0915－1015	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0930－1030	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0		0	0	0	0	0	0		0
0945－1045	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0		0
1000－1100	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1015－1115	0	0	0	0	0	0	0	0	3	0	0	0	0	3	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	－	0	0	0	0	0	
1030－1130	0	0		0	0	0	0	0	3	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1045－1145	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
00－120	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
1115－1215	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0		－
1130－1230	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	－	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0		0
1145－1245	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	1	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
200－130	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	1	0	0	0	0	1	0	1	0	0	0	0	1	2	0	0	0	0	0	2
1215－1315	－	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	1	2	0	0	0	0		2
1230－1330	2	0	0	0	0	0	2	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	－	0	0	2
1245－134	2	0	0	0	0	0	2	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	2	0	0	0	0	2	，	0	0	0	0	0	2
1300－140	2	0	0	0	0	0	2	0	1	1	0	0	0	2	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0		0
1315－1415	2	0	0	0	0	0	2	0	1	1	0	0	0	2	0	1	0	0	0	0	1	0	2	0	0	0	0	2	0	2	0	0	0	0	2	0	0	0	0	0		0
1330－1430	0	1	0	0	0	0	1	0	1	1	0	0	0	2	0	0	0	0	0	0	0	0	3	0	0	0		3	0	2	0	0	0	0	2	0	0	0	0	0		0
1345－1445	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	－	0	3	0	0	0	0	3	0	2	0	0	0	0	2	0	0	0	0	0	0	0
1400－1500	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	0	2	0	0	0	0	2	0	0	0	0	0		0
1415－1515	－	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	－	0	2	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1430－1530	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	－	－	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	－	0	0
1445－1545	0	0	0	0	0	0	0	0	1	0	0	－	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	－	0	0	0	0	0	0	0
1500－1600	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0
1515－1615	0	0	0		0	0	0	0	1	0	0	0	0	1	0	0	－	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	－	0	0	0	0	0	0	0
1530－1630	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	－	0	．	－	0	1	0	．	－	0	0	1	－	0	0		0	－	0	0		0	－	0	0	0
1545－1645	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	－	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	－	0		0
1600－1700	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	－	0	0	0	0	0		0
1615－1715	0	1	0	0	0	0	1	0	2	0	0	0	－	2	0	－	0	．	0	0	0	1	2	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1630－1730	－	，		0	0	0	1	0	3	0	0	0	0	3	0	0	－	0	．	－	0	0	2	－	．	0	0	2	0	，		，	－	0	－	－	0	，	0	，	－	0
1645－1745	0	1	，	0	0	0	1	0	2	0	0	0	0	2	0	2	0	0	0	0	2	0	3	0	0	0	0	3	1	1	0	0		0	2	－	0	0	．	0		0
1700－1800	0	1		0	0	0	1	0	2	0	0	0	0	2	0	2	0	0	0	0	2	0	2	0		0	0	2	1	1	0	0	0	0	2	0	0	0	0	0	0	0
1715－1815	0	0	0	0	0	0	0	0	2	0	0	0	－	2	1	2	1	－	0	－	4	0	3	－	0	0	0	3	1	2	－	0	0		3	0	0	－	0	0	0	0
1730－1830	0	0	，		0	0	0	0	2	0	0	0	－	2		2	，	0	．		5	0	4	0	－			4	1	2	0	－	0		3	0	－	－		0		0
1745－1845	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	1	0	0	0	4	0	3	0	0	0	0	3	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1800－1900	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	1	0	0	0	4	0	3	0	0	0	0	3	0	1	0	0	0	0	1	0	0	0	0	0	0	0

	Movement 7							MOVEMENT 8							MOVEMENT 9FROM ISAND FOOTPATHLEFT UYRNTOUNNAMED ROAD FOOTPATH (NORTH)							MOVEMENT 10FROM ISLAND FOOTPATHRIGHA TURN ToUNNAMED RADD FOOTPATH (SOUTH)							FROM UNNAMED ROAD FOOTPATH (SOUTH) LEFT TURN TO ISLAND FOOTPATH							MOVEMENT 12 FROM UNNAMED ROAD FOOTPATH (SOUTH) TRAVELLNG NORTHBOUND TO UNNAMED ROAD FOOTPATH (NORTH)						
	ROM UNNAMED ROAD FOOTPATH (NORTH) TRAVELLING SOUTBOUND TO UNNAMED ROAD FOOTPATH (SOUTH)							FROM UNNAMED ROAD FOOTPATH (NORTH) RIGHT TURN TO ISLAND FOOTPATH																																		
							STAL							Otal							OTAL							Total	唇						Total			$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{4}{0} \\ & \stackrel{\ddot{Q}}{4} \end{aligned}$				Total
0700-0715	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0715-0730	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0730-0745	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0745-0800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0800-0815	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0815-0830	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0830-0845	-	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0
0845-0900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0900-0915	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0915-0930	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0
0930-0945	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0945-1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1000-1015	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15-103	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	
1030-1045	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1045-1100	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1100-1115	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0
1115-113	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1130-1145	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
1145-1200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1200-121	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
15-1230	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1230-1245	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1245-1300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1300-1315	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-		
1315-1330	0	0	0	0	0	0	0	0	1	0	0	0	0	1	,	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1330-1345	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1345-1400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	
1400-1415	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1415-1430	0		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	-	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1430-1445	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	2	,	0	0	0	3	0	0	0	0	0	0	0	0	0		0	-	0	0	0	0	0	0	0	0	0
1445-1500	2		0	0	0	0	2	0	4	0	0	0	0	4	0	1	0	0		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1500-1515	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
1515-1530	0	-	0	0	0	0	0	0	2		0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0
1530-1545	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	-	-	0	0	0	0	0	0	0	0	0	0
1545-1600	0	0	0	0		0	0	1		0	0		0	4	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1600-1615	0		0	0	0	0	0	0	2	0	0		0	2	0		0	0	0	-	1	0	0	0	-	-	0	0	0	0	0	0		0	0	0	0	0	0	0		0
1615-1630	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1630-1645	0	0	0	0	0	0	0	0	,	-	0	0	0	0	1	0	0	0	0	0	1	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
1645-1700	0	0	0	0	0	0	0	0	0		0	0	0	0	1			0	O	0	1	0		0	0		0	0	0	0		0		0	0	0	0	0	0	0	0	0
1700-1715	0	0	0	0	0	-	0	0	2	0		0	0	2	0		0	0		0	0	0	1	0	0	-	0	1	0	0	0	0	-	0	0	0	0	-		0		0
1715-1730	-	-	-	0	0	0	0	1	1	0	0	-	0	2	0	3	0	0	0	0	3	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1730-1745	0	0	0	0	0	0	0	0	1	-	0	0	,	1	0	2	0	0	-	0	2	0	-	0	0	,	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
1745-1800	0	0	0	0	0	,	0	0	1	0	0	0	0	1	0			0		0	0	0	0	0	0	0	0	0	0	0	-	0		0	0	0	0	0	0	0	0	0
1800-1815	-	0		O	0	0	0	0	1	0	0	0	0	1	0	3	0			0	3	0		0	0	-	0	0	0	0	0	0		0	0	0	-		0	0		0
1815-1830	0		0	0	0	0	0	0	1		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1830-1845	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1845-1900	0	0	0	0	0	0	0	0	1		0	0	0	1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0700-1900	3	0	0	0	0	0	3	6	27	0	0	0	0	33	3	23	2	0	0	0	28	1	4	0	0	0	0	5	0	O	0	0	0	0	0	1	1	0	0	0	0	2

Location：Birchmoor，Tamworth B78 1AN
Date：Wednesday 8th June 2022
Time：07：00－19：00
Site 2－M42 Junction 10 South－07：00－19：00－Hourly Totals

	MOVEMENT 7							MOVEMENT 8							Movement							MOVEMENT 10							MOVEMENT 11						MOVEMENT 12						
	FROM UNNAMED ROAD FOOTPATH（NORTH） TRAVELLING SOUTBOUND TO UNNAMED ROAD FOOTPATH（SOUTH）							FROM UNNAMED ROAD FOOTPATH（NORTH） RIGHT TURN TO ISLAND FOOTPATH							FROM ISLAND FOOTPATHLEFT TURN ToUNNAMED ROAD FOOTPATH（NORTH）							FROM ISLAND FOOTPATHRIGAT TURN ToUNNAMED ROAD FOOTPATH（SOUTH）							FROM UNNAMED ROAD FOOTPATH（SOUTH） LEFT TURN TO ISLAND FOOTPATH						FROM UNNAMED ROAD FOOTPATH（SOUTH） TRAVELLING NORTHBOUND TO UNNAMED ROAD FOOTPATH（NORTH）						
		$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{4} \\ & \stackrel{\substack{0 \\ 山 己 ~}}{ } \end{aligned}$			$\begin{aligned} & \text { z. } \\ & \stackrel{\text { en }}{E} \\ & \text { Ü } \\ & \underset{\sim}{u} \end{aligned}$	total		$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{4} \\ & \stackrel{\substack{0 \\ 山 己 ~}}{ } \end{aligned}$				то			$\begin{aligned} & \stackrel{\sim}{4} \\ & \stackrel{\substack{0 \\ 山 己 ~}}{ } \end{aligned}$				To							total						total							total
0700－0800	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	5	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
0715－08	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	0	0	0	0	0	0	0		0	00	0	0	0	0	0	0	0	0	0	0
0730－083	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0	0	6	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
0745－08	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	4	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
0800－0900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	4	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
0815－0915	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	3	0	0	0	0	0	0	0	0	0	0 0	0	0	0	1	0	0	0	0	0	1
0830－0930	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0 0	0	0	0	1	0	0	0	0	0	1
0845－094	0	0	0	0	0	0	0	1	0	0	－	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0 O	0	0	0	1	0	0	0	0	0	1
0900－1000	．	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0 0	0	0	0	1	0	0	0	0	0	1
0915－1015	0	0		0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0
0930－1030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	1	0	0	0	0	0	1	0	0	0 0	0	0	0	0	1	0	0	0	0	1
0945－1045	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	－	0	－	1	0	0	0	0	0	1	0	0	0 0	0	0	0	0	1	0	0	0	0	1
1000－1100	0	0	0	0	0	0	0		1	0	0	0	0	2	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0 0	0	0	0	0	1	0	0	0	0	1
1015－1115	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	0	1	2	0	0	0	0	3	0	0	0 0	0	0	－	0	1	0	0	0		1
1030－113	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0 0	0	0	0	0	0	0	0	0		0
1045－1	0	0	0	0	0	0	0	－		－	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
1100－1200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1		0	0	0	0	0	0	0	0	0	0	0	\bigcirc
1115－1215	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	－	0	0	0	0	0	0	0
1130－1230	0	0	－	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	－	0	0	0	0	0	0	－	0	0	0 0	0	0	－	0	0	0	0	0	0	0
－124	0	0	0	0	0	0	0	1	3	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	－	0	0	0	0	0	0	0
1200－1300	0	0	0	0	0	0	0	1	3	0	0	0	0	4	0	0	0	－	0	0	0	0	－	0	，	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0
1215－1315	0	0	0	0	0	0	0	0	3	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0		0	0	－	0	0	0 0	0	0	－	0	0	0	0	0	0	0
1230－1330	－	0	0	0	0	0	0	0	3	0	0	0	0	3	1	0	0	0	0	0	1	0	0	0	0	0	0	－	0	0	0 0	0	0	－	0	0	0	0	0	0	0
1245－1345	－	0	0	0	0	0	0	0	1	0	0	0	0	1		0	0	0	0	0	1	0	0	0	0	0	0	－	0	0	0	0	0	－	－	0	0	0	0		－
1300－1400	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	－	0	0	1	0	0	0	－	0	0	0	0	0	0 0	0	0	－	0	0	0	0	0	0	0
1315－1415	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	0	0	－	0	0	0	0	0	0	0 0	0	0	－	0	0	0	0	0	，	0
1330－1430	0	0	0	0	0	0	0	－	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	－	0	1	0	0	0 0	0	0	0	0	0	0	0	0	0	0
1345－1445	－	0	0	0	0	0	0	0	1	0	0	0	0	1	0	3	1	0	0	0	4	0	1	0	0	0	0	1	0	0	0 0	0	0	－	0	0	0	0	0	－	0
1400－1500	2	0	0	0	0	0	2	0	5	0	0	0	0	5	0	4	1	0	0	0	5	0	1	0	－	－	0	1	0	0	－	0	0	0	0	0	0	0	0	0	0
1415－1515	2	0	0	0	0	0	2	0	5	0	0	0	0	5	0	4	1	0	0	－	5	0	1	0	－	0	0	1	0	0	0 0	0	0	－	0	0	0	0	0	－	0
1430－1530	2	0	0	0	0	0	2	0	7	0	0	0	0	7	0	3	1	0	0	0	4	0	0	0	0	0	0	－	0	0	0	0	0	－	0	0	0	0	0	0	0
1445－1545	2	0	0	0	0	0	2	0	7	0	0	0	0	7	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0 O	0	0	0	0	0	0	0	0		0
1500－1600	－	0	0	0	0	0	0	，	6	0	0	0	0	7	0	0	0	0	0	－	0	0	0	0	0	0	0	－	0	0	－	0	0	－	0	0	0	0	0	－	0
1515－1615	0	0	0	0	0	0	0	1	${ }^{\circ}$	0	0	0	0	9	0	，	0	0		－	1	0	0	0	0	．	－	－	－	－	00	0	0	－	0	0	0	－	0	－	0
1530－1630	－	0	－	0	0	0	0	－	6		0	0	0	7	0	1	0	0	0	0	1	0	0	0	0	0	0	－	0	0	00	0	0	－	0	0	0	0	0	－	0
1545－1645	0	0	0	0	0	0	0	1	5	0	0	0	0	6	1	1	0	0	0	0	2	0	0	0	0	0	0	－	0	0	0	0	0	－	0	0	0	0	0	0	0
1600－1700	－	0	－	0	0	－	0	0	2	0	0	0	0	2	2	1	0	0	0	0	3	0	0	0	0	－	0	0	．	0	0	0	0	－	．	0	0	0	0	0	0
1615－1715	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	－	2	0	1	0	0	0	0	1	．	0	0	0	0	－	0	0	0	－	0	－	0
1630－1730	0	0	－	0	0	0	0	1	3	0	0	0	0	4	2	3	0	0		0	5	0	1		0	0	0	1		0	0 0			－	0	0	0	0	0		0
1645－1745	0	0	0	0	0	0	0	－	4	0	0	0	－	5	1	5	0	0	0	0	6	0	1	0	0	0	0	1	0	0	0	－	0	－	0	0	0	0	0	0	0
1700－1800	0	0	0		0	0	0	1	5	0	0	0	0	6	0	5	0	0	0	0	5	0	，	0	0	0	0	1	0	0	0 0	0	0	－	0	0	0	0	0	－	0
1715－1815	0	0	0		0	0	0	1	4	0	0	0	0	5	0	8	0	0	－	0	8	0	0	0	－	0	0	0	0	0	00	－		－	0	0	0	0	0	0	0
1730－1830	0	0	0	0	0	0	0	0	4	0	0	0	0	4	0	5	0	0	0	0	5	0	0	0	－	0	0	－	0	－	0	－		－	0	0	0	0		0	0
1745－1845	0	，	0	0	0	0	0	0	4	0	0	0	0	4	0	4	－	0	－	0	4	，	0	0	－	0	0	0	0	0	00	0	0	－	0	0	0	0	0	0	0
1800－1900	0	0		0	0	0	0	0	4	0	0	0	0	4	0	4	0	0	．	0	4	0	0	0	0	0	0	0	0		00	0		0	0	0		0	0		0

Location：Birchmoor，Tamworth B78 1AN
Date：Wednesday 8th June 2022

Time：07：00－19：00																																										
	MENT 13							Movement 14							NT 15							MOVEMENT 16FROM FOOTPATH（SOUTH）LEFT TURN TOFOOTPATH（WEST）							MOVEMENT 17RROM FOOTPATH（SOUTH）STRAIGHT AHEAD TOFOOTPATH（NORTH）							MOVEMENT 18ROM FOOTPATH（SOUTH）RIGHT TURNFOOTPATH（EAST）						
	FROM FOOTPATH（WEST） Left turn to FOOTPATH（NORTH）							FROM FOOTPATH（WEST） STRAIGHT AHEAD TO FOOTPATH（EAST）							FROM FOOTPATH（WEST） RIGHT TURN TO FOOTPATH（SOUTH）																											
		$\begin{aligned} & \stackrel{u}{0} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{\rightharpoonup}{\ddot{W}} \\ & \text { ن } \end{aligned}$				Total		$\begin{aligned} & \text { 山⿱丷⿹弔㇒} \\ & \text { ! } \end{aligned}$	$\begin{aligned} & \text { 岀 } \\ & \stackrel{0}{0} \\ & \stackrel{\leftrightarrow}{4} \\ & \hline \end{aligned}$				тоד		$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$					total		$\begin{aligned} & \text { 山⿱山己心 } \\ & \text { 0 } \end{aligned}$					TOTAL		$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{y}{0} \end{aligned}$					total							Total
0700－0715	0	0	－	0	0	0	0	1	0	0		0	0	－ 1	0	，	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0
0715－0730	－	0	0	0	0	0	0	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0730－0745	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0745－0800	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0800－0815	0	0	0	0	0	0	0	1	2	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	0	0	0	0	0	0	0
0815－0830	0	0	0	0	0	0	0	3	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0830－0845	1	0	0	0	0	0	1	3	0	－	0	0	0	3	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	0
0845－0900	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0900－0915	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	－	0	0	1
0915－0930	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
0930－0945	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0945－1000	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1000－1015	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	－	0	0	0	0	0	0	0
1015－1030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1
1030－1045	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1045－1100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1100－1115	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1115－1130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	0	0
1130－1145	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0		1	1	0	0	0	0	0	1
1145－1200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0
1200－1215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1215－1230	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0	0	2	0	0	0	0	0	0	0
1230－1245	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	0	0	0	0	0		0
1245－1300	0	0	0	0	0	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
1300－1315	0	0	0		0	0	0	0	0	0	0	－	0	0	0	0	0	0	0	0	0	1		0	0	0	0	1	0	0	0	0	0	0	0	5	0	0	0	0	0	5
1315－1330	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2
1330－1345	0	0	0	0	0	－	0	2	0	0	0	0	0	2	5	1	0	0	0	0	6	0	0	0	0	0	0	0	0	1	0	0	0	0	1	2	0	0	0	0	0	2
1345－1400	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	1	0	0	0	0	2	0	－	0	0	0	0	0	1	0	0	0	0	0	1
1400－1415	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0		0	－	0	0	2	4	8	0	0	0	0	12	1	0	0	0	0	0	1
1415－1430	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0		0	4	0	0	0	0	0	0	0
1430－1445	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	－	0	0	0	0	1	1	0	0	0	0	2	1	0	0	0	0	0	1
1445－1500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
1500－1515	0	0	0	0	0	0	0	2	0	0	0	0	0	2	2	1	0	0	0	0	3	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
1515－1530	0	0	0	－	0	0	0	1	0	0	0	0	0	1		－	0	0	0	0	2	0	0	0	0	0	－	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1530－1545	0	0	0	0	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1545－1600	0		0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1600－1615	2	0	0	0	0	0	2	0	1	0	0	0	0	1	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1615－1630	0	1	0	0	0	0	1	0	0	0	0	－	0	0	0	－	0	0	0	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1630－1645	0	0	0	0		0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	4	0	0	0	0	0	0	0
1645－1700	－	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2	1	1	0	0	0	0	2	0	0	0	0	0	0	0
1700－1715	0	0	0	0	0	－	0		0	－	0	0	0	0	，		0	0	－	0	0	1	0	0	－	0	－	1	0		0	0	0	0	0	1	1	0	0	0	0	2
1715－1730	0	0	0	0		0	0	0	0	0	0	0	0	0	－	0	0	0		－	1	0	0	－	－	0	－	0	1	0	0	0	0	0	1	1	0	0		0	0	1
1730－1745	0	0	0	0	0	0	0	4	3	0	0	0	0	7		0	0	0	0	0	0	1	0	0	0	0	0	1	2	1	0	0	0	0	3	1	0	0	0	0	0	1
1745－1800	0		0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	0
1800－1815	2	0	0		0	0	2	3	0		0	0		3	0	0	0			－	0	－	0	0	，	0	－	0	0		0	0	0	0	3	1	0	0				1
1815－1830	0	0	0	0	－	0	0	4	0	0	0	0	0	4	1	0	0	0	0	0	1	0	0	0	0	0	－	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1830－1845	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	0	0	0	3	0	0	0	0	0	3
1845－1900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0700－1900	6	1	0	0	0	0	7	38	11	0	0	0	0	49	19	4	0	0	1		24	11	5	O		0	0	16	23	21	0	0	0	0	44	24	3	0	0	0	－	27

Location：Birchmoor，Tamworth B78 1AN
Date：Wednesday 8th June 2022

	MOVEMENT 13FROM FOOPATH（WEST）LEFT TURNFOOTPATH（NORTH）							\qquad							MOVEMENT 15FROM FOOTPATH（ WEST）RIGHT TUUN TOFOOTPAHH（SOUTH）							MOVEMENT 16FROM FOOTPATH（SOUTH）LEFT TURN TOFOOTPATH（WEST）							MOVEMENT 17FROM FOOTPATH（SOUTH）STRAIGHT AHEAD TOFOOTPATH（NORTH）							MOVEMENT 18FROM FOOTPATH（SOUTH）RIGHH TVRN ToFOOTPATH（EAST）						
		$\begin{aligned} & \text { 岂 } \\ & \text { 落 } \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{\substack{0 \\ 山 己 ~}}{ } \end{aligned}$				Total		$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{4} \\ & \stackrel{\substack{0 \\ 山 己 ~}}{ } \end{aligned}$				Total		岂					rotal							total		$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$					total							Total
0700－0800	0	\bigcirc	0	0	0	0	0	5	${ }^{\circ}$	0	0	0	0	${ }^{5}$	0	0	0	－	－	0	\bigcirc	1	0	0	0	0	0	1	0	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	1	\bigcirc	\bigcirc	0	0	0	1
0715－081	0	0		0	0	0	0	5	2	0	0	0	0	7		0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0		0	1	0	0	0	0		
0730－0830	－	0	0	0	0	0	0	8	2	0	0	0	0	10	0	0	－	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0745－0845	1	0	，	0	0	0	1	9	2	0	0	0	0	11	1	0	0	0	0	0	1	0	0	0	0	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0800－0900	1	0	0	0	0	0	1	8	2	0	0	0	0	10		0	0	0	0	0	1	0	0	0	0	0	0	－	0	0	0	0	0	0	－	1	0	0	0	0	0	1
0815－0915	1	0	0	0	0	0	1	7	1	0	0	0	0	8	2	0	0	0	1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2
0830－0930	1	0	0	0	0	0	1	5	1	0	0	0	0	6	2	0	0	0	1	0	3	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2
0845－0945	1	0	0	0	0	0	1	3	1	0	0	0	0	4	1	1	0	0	1	0	3	0	1	0	0	0	0	1	1	0	0	0	0	0	1	2	0	0	0	0	0	2
0900－1000	1	0	0	0	0	0	1	4	1	0	0	0	0	5	1	1	0	0	1	0	3	0	1	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1
0915－1015	1	0	0	0	0	0	1	4	0	0	0	0	0	4	0	1	0	0	0	0	1	0	2	0	0	0	0	2	1	0	0	0	0	0	1	0	0	0	0	0	0	0
0930－1030	1	0	0	0	0	0	1	3	0	0	0	0	0	3	0	1	0	0	0	0	1	1	2	0	0	0	0	3	0	0	0	0	0	0	0	0	1	0	0	0	0	1
0945－1045	0	0	0	0	0	0	0	3	0	0	0	0	0	3	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	－	0	1	0	0	0	0	1
1000－1100	0	0	0	0	0	0	0	1	0	0	0	0	0	，	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	－	0	1	0	0	0	0	1
1015－1115	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	0	1
1030－1130	0	0	0	0	0	0	0	2	0	0	0	0	0	2	1	0	0	0	0	0	1	1	0	0	0	0	－	1	0	0	0	0	0	0	－	0	0	0	0	0	0	0
1045－1145	－	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1
1100－1200	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	3	0	0	0	0	0	3	1	0	0	0	0	0	1
1115－1215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	3	0	0	0	0	0	3	1	0	0	0	0		1
1130－123	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	0	0	1	0	0	0	0	0	1	4	1	0	0	0	0	5	1	0	0	0	0	0	1
1145－1245	－	0	0	0	0	0	0	0	0	0	0	－		－	－	0	0	0	0	0	－	1	0	0	0	0	－	1	3	1	0	0	0	0	4	0	0	0	0	0	0	0
1200－1300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	1	0	0	0	0	0	1	1	1	0	0	0	0	2	1	0	0	0	0	0	1
1215－1315	－	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	1	1	0	0	0	0	2	6	0	0	0	0	0	6
1230－1330	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	8	0	0	0	0	0	8
1245－1345	0	0	0	0	0	0	0	2	0	0	0	0	0	2	6	1	0	0	0	0	7	1	0	0	0	0	0	1	1	1	．	0	0	0	2	10	0	0	0	0	0	10
1300－1400	0	0	0	0	－	－	0	3	0	0	0	0	0	${ }^{3}$	7	1	0	0	0	－	8	2	1	0	0	0	0	3	1	1	0	0	0	0	2	10	0	0	0	0	0	10
1315－1415	－	0	0	0	0	0	0	3	0	0	0	0	0	${ }^{3}$	7	1	0	0	0	0	－	1	3	0	0	0	－	4	5	9	0	0	0	0	14	6	0	0	0	0	0	6
1330－1430	－	0	0	0	0	0	0	3	0	0	0	0	0	3	6	1	0	0	0	0	7	1	3	0	0	0	0	4	－	11	0	0	0	0	17	4	0	0	0	0	0	4
1345－1445	0	0	－	0	0	0	0	1	1	0	0	－	0	2	1	0	0	0	0	0	1	1	3	0	0	0	0	4	7	11	0	0	0	0	18	3	0	0	0	0	0	3
1400－1500	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	－	0	0	0	－	0	0	2	0	0	0	0	2	7	11	－	，	0	0	18	2	1	0	0	0	－	3
1415－1515	0	0	0	0	0	0	0	2	1	0	0	0	0	5	－	1	0	0	0	0	，	，	0	0	0	0	0	1	4	3	0	0	0	0	7	1	1	0	0	0	－	2
1430－1530	0	0	0	0	0	0	0	3	1	0	0		0	4	4	1	0	0	0	0	5	1	0	0	0	0	0	1	2	2	0	0	0	0	4	1	1	0	0	0	0	2
1445－1545	－	0	0	0	0	0	0	${ }^{3}$	2	0	0	0	0	5	4	1	0	0	0	0	5	1	0	0	0	0	0	1	1	1	0	0	0	0	2	0	1	0	0	0	0	1
1500－1600	0	0	0	0	0	0	0	4	3	0	0	0	0	7	4	1	0	0	0	－	5	1	0	0	0	－	－	1	1	1	0	0	0	0	2	0	0		0	－	0	0
1515－1615	2	0	0	0	0	0	2	2	4	0	0	0	0	6	2	0	0	0	0	0	2	0	0	0	0	0	0	－	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1530－1630	2	，		0		0	3	1	4	0	0		0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	－	0	0	0	0	－	0
1545－1645	2	1	－		0	－	${ }^{3}$	2	${ }^{2}$	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	4	0	－		0	0	0	0
1600－1700	2	，	0	0	0	0	3	1	1	0	0	0	0	2	1	0	0	0	0	0	－	2	0	0	0	0	－	2	5	1	0	0	0	0	6	0	0	0	0	0	0	0
1615－1715	0	1	－	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	3	0	0	0	0	0	3	5	1	0	0	0	0	\checkmark	1	1	0	0	0	－	2
1630－1730	－	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2	3	0	0	0	0	－	3	6	1	0	0	0	0	7	2	1		0	0	0	3
1645－1745	0	0	0		0	0	0	4	3	0	0	0	0	7	2	0	0	0	0	0	2	4	0	0	0	0	－	4	4	2	0	0	0	0	6	3	1		0	0	0	4
1700－1800	－	0	0	0	－	0	0	4	3	0	0	0	0	7	2	1	0	0		0	${ }^{2}$	2	0	0	0	0	－	2	4	2	0	－	0	0	6	3		0	0	0	0	4
1715－1815		0	0	0	0	0	2	，	3	0	0	0	0	10		1	0	0	0	0	3	1	0	0	0	0	0	1	4	5	0	0	－	0	－	3	0	0	0	－	0	3
1730－1830	2	0	－	0	0	0	2	11	3	0	0	0	0	14	2	1	0	0	0	0	3	1	0	0	0	0	0	1	3		．	0		0	9	2	0		0	0	－	2
1745－1845	2	0	0	0	0	0	2	7	0	0	0	0		7	2	1	0	0	0	0	3	0	0	0	0	0	0	－	1	5	－	0	0	0	6	4	0	－	0	0	0	4
1800－1900	2	0	0	0	0	0	2	7	0	0	0	0	0	7	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	0	0	0	4

Time：07：00－19：00 Site 3－Footpath Crossroads off Wensleydale－07：00－19：00－15 Minut																																										
	MOVEMENT 19							MOVEMENT 20							MOVEMENT 21							MOVEMENT 22							MOVEMENT 23							MOVEMENT 24						
	FROM FOOTPATH（EAST） LEFT TURN TO FOOTPATH（SOUTH）							FROM FOOTPATH（EAST） STRAIGHT AHEAD TO FOOTPATH（WEST）							RIGHT TURN TO FOOTPATH（NORTH）							FROM FOOTPATH（NORTH） LEFT TURN TO FOOTPATH（EAST）							FROM FOOTPATH（NORTH） STRAIGHT AHEAD TO FOOTPATH（SOUTH）							FROM FOOTPATH（NORTH）RIGHT TURN ToFOOTPATH（WEST）						
		$\begin{aligned} & \text { u } \\ & \text { D } \\ & 0 \end{aligned}$				$\begin{aligned} & \text { z. } \\ & \stackrel{\text { en }}{E} \\ & \text { Ü } \\ & \text { ت} \end{aligned}$	TOTAL		$\begin{aligned} & \stackrel{u}{0} \\ & \text { 己 } \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\ddot{Q}}{山} \end{aligned}$				Total	$\begin{array}{\|l\|l} \text { z} \\ \text { 关 } \\ \stackrel{y y y y}{w} \\ \text { un } \end{array}$	$\begin{aligned} & \text { u } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{4} \\ & \stackrel{0}{0} \\ & \stackrel{y}{4} \\ & \hline \end{aligned}$				Total		$\begin{aligned} & \text { 岂 } \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{4} \\ & \stackrel{0}{0} \\ & \stackrel{\ddot{W}}{4} \end{aligned}$				OTAL							TAL		$\begin{aligned} & \text { 山⿱山己心 } \\ & \text { O} \end{aligned}$					Total
0700－0715	0	0	0	0	0	0	0	1	0	0	0	0	0	｜ 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2	0	0	0	0	0	0	0
0715－0730	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0730－0745	0	0	0	0	－	0	0	－	1	0	0	0	0	1	1	0	0	0	0	0	1	1	2	0	0	0	0	3	1	2	0	0	0	0	3	0	0	0	0	0	0	0
0745－0800	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2	5	0	0	0	0	0	5	0	1	0	0	0	0	1	0	0	0	0	0	0	0
0800－0815	0	0		0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	－	0	0	0	0
0815－0830	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0	0	2	0	0	0	0	0	0	0
0830－0845	1	0	0	0	0	0	1	1	0		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		0	0	0	0	2	0	0	0	0	0	0	0
0845－0900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0900－0915	0	0	0	0	0	0	－ 0	0	－	0	0	0	0	0	1	0	0	0	0	0	－ 1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0
0915－0930	2	0	0	0	0	0	2	1	0	0	0	0	0	1	1	0	0	0	0	0	1	2	0	0	0	0	0	2	1	0	0	0	0	0	1	0	0	0	0	0	0	0
0930－0945	0	0	0	0	0	0	0	0	0	，	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0
0945－1000	0	0	0	0	0	0	0	2	0	0	0	1	0	3	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1000－1015	0	0	0	0	0	0	－ 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1015－1030	0	0	0	0	0	0	0	1	0	－ 0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1030－1045	0	0	0	0	0	0	0	3	0	，	0	1	0	4	1	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1045－1100	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1100－1115	0	0	0	0	0	0	－ 0	1	0	0	0	0	0	－ 1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1115－1130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	，	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1130－1145	0	0	0	0	0	0	0	2	1	0	0	0	0	3	5	0	0	0	0	0	5	1	0	0	0	0	0	1	2	0	0	0	0	0	2	0	0	0	0	0	0	0
1145－1200	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1200－1215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1215－1230	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0
1230－1245	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1245－1300	0	0	0	0	0		0	0	0	0	0	0	0	0	2	0	0	0	0	0	－	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
1300－1315	1	0	0	0	0	0	－ 1	－	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		0	0	0	0	1	0	0	0	0	0	0	0
1315－1330	2	1	0	0	0	0	3	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0	0	2	1	0	0	0	0	0	1	0	0	0	0	0	0	0
1330－1345	3	0	0	0		0	3	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	0	4	0	0	0	0	0	0	0
1345－1400	3	0	0	0	0	，	3	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0
1400－1415	1	0	0	0	－	0	1	4	1	0	0	0	0	5	0	0	0	0	0		0	0	0	－	－	0		0	0		0	0	0	0	1	－	0	0	0	0	0	0
1415－1430	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0
1430－1445	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
1445－1500	1	0	0	0	0	0	1	0	1	0	0	0	0	1	2	0	0	0	0	0	2	0		0	0	0	，	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1500－1515	0	0	0	0	－	0	－ 0	8	2	－	－	0	0	10	5		0	0	0	－	5	0	，	0	－	0	－	1	0	－		0	0	0	－	－	1	0	－	0	0	1
1515－1530	1	0	0	0	0	0	1	2	0	0	0	1	0	3	2	1	0	0	0	0	3	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0
1530－1545	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
1545－1600	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0				0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
1600－1615	0	0	0	0	－	0	－ 0	1	0		－	0	0	－ 1	0	0	0	0	0		－ 0	3	0	－		0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1615－1630	0	0	0	0	0	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0
1630－1645	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1645－1700	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0		0	0	0	0	－	0	0			0	，	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1700－1715	0	0	0	0	－	0	－ 0	0	0	0	－	－	0	0	3	－	0	－	0	0	－ 3	0	0		－	0	－	0	2			0	0	0	3	－	0	0	0	0	0	0
1715－1730	0	－	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	2		2	0	0	0	4	0	0	0	0	0	0	0
1730－1745	0	0	0	0	－	0	0	5	0	0	0	0	0	5	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1745－1800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	－	0	0	2	0	1	1	0		0	2	0	0	0	0	0	0	0
1800－1815	0	0		0	－	0	－		0	0	0	0	0	3	0		0	0	－	0	0	0	0	－	－	0	－	0	0		－	0		0	－	0	0	0	0	0	－	0
1815－1830	1	0	0	0	0	0	1	4	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
1830－1845	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	4	0	0	0	0	0	4	0	0		0	0	0	0
1845－1900	0	0	0	0	0	0	0	4	0	0	0	0	0	4	0	0	0	0	0	0	0	1	0	0	－	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0700－1900	20	2	0	0	0	0	22	53	6	1	0	3	0	63	32	4	0	2	0	0	38	26	6	0	1	0	0	33	32	18	4	0	0	0	54	0	1	0	0	0	0	1

Date：Wednesday 8th June 2022
Time：07：00－19：00

	MOVEMENT 19ROM FOOTPATH（EAST）LEFT TURN TOFOOTPATH（SOUTH）							MOVEMENT 20 Straight ahead to FOOTPATH（WEST）							MOVEMENT 21FROM FOOOPATH（EAST）RIIGHT TUNN TOFOOTPAHH（NORTH）							MOVEMENT 22FROM FOOTPATH（NORTH）LEFT TURN TOFOOTPATH（EAST）							MOVEMENT 23RROM FOOTPATH（NORTH）STRAIGHT AHEAD TOFOOTPATH（SOUTH）							MOVEMENT 24FROM FOOTPATH（NORTH）RIGHT TuNN TOFOOTPATH（WEST）						
		$\begin{aligned} & \text { 山⿱山己心 } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\stackrel{y}{0}} \\ & \stackrel{0}{4} \\ & \stackrel{y}{4} \end{aligned}$				total		$\begin{aligned} & \text { u } \\ & \text { 仓ٍ } \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{4} \\ & \stackrel{\substack{0 \\ 山 己 ~}}{ } \end{aligned}$				otal		$\begin{aligned} & \underset{0}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{0}{0} \\ & \stackrel{4}{4} \\ & \hline \end{aligned}$				OTA		$\begin{aligned} & \text { 山⿱山己心 } \\ & \text { O} \end{aligned}$					total		$\begin{aligned} & \text { 山⿱山己几 } \\ & \text { 范 } \end{aligned}$					Total							Total
0700－0800	1	0	，	0	0	0	1	${ }^{2}$	，	0	0	0	0	3	${ }^{3}$	0	0	0	0	0	${ }^{3}$	7	${ }^{2}$	0	0	0	0	${ }^{9}$	${ }^{2}$	4	0	0	0		${ }^{6}$	0	0	0	0	0	0	0
0715－0815	1	0	0	0	0	0	1	2	1	0	0	0	0	3		0	0	0	0	0	5	8	2	0	0	0	0	10	1	4	0	0	0	0	5	0	0	0	0	0		－
0730－0830	1	0	0	0	0	0	1	3	1	0	0	0	0	4	5	0	0	0	0	0	5	8	2	0	0	0	0	10	2	5	0	0	0	0	7	0	0	0	0	0	0	－
0745－0845	2	0	0	0	0	0	2	4	0	0	0	0	0	4	4	0	0	0	0	0	4	7	0	0	0	0	0	7	2	4	0	0	0	0	6	0	0	0	0	0	0	0
0800－0900	2	0	0	0	0	0	2	3	0	0	0	0	0	3	3	0	0	0	0	0	3	2	0	0	0	0	0	2	2	3	0	0	0	0	5	0	0	0	0	0	0	－
0815－0915	2	0	0	0	0	0	2	2	0	0	0	0	0	2	2	0	0	0	0	0	2	2	0	0	0	0	0	2	3	2	0	0	0	0	5	0	0	0	0	0	0	－
0830－0930	3	0	0	0	0	0	3	2	0	0	0	0	0	2	3	0	0	0	0	0	${ }^{3}$	3	0	0	0	0	0	3	3	1	0	0	0	0	4	0	0	0	0	0	0	0
0845－0945	2	0	0	0	0	0	2	1	0	0	0	0	0	1	5	0	0	0	0	0	5	3	0	0	0	0	0	3	4	0	0	0	0	0	4	0	0	0	0	0	0	－
0900－1000	2	0	0	0	0	0	2	3	0	0	0	1	0	4	4	0	0	0	0	0	4	4	0	0	0	0	0	4	4	0	0	0	0	0	4	0	0	0	0	0	0	－
0915－1015	2	0	0	0	0	，	2	3	0	0	0		0	4	3	0	0	0	0	0	3	4	0	0	1	0	0	5	3	0	0	0	0		3	0	0	0	0	0		－
0930－1030	0	0	0	0	0	－	0	3	0	0	0	1	0	4	2	0	0	0	0	0	2	3	0	0	1	0	0	4	2	0	0	0	0	0	2	0	0	0	0	0	0	－
0945－1045	0	0	0	0	0	0	0	6	0	．	0	2	0	8	1	1	0	0	0	0	2	3	0	0	1	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1000－1100	0	0	0	0	0	0	0	5	0	0	0	1	0	6	1	2	0	0	0	0	3	2	0	0	1	0	0	3	0	0	0	0	0	0	－	0	0	0	0	0	0	－
1015－1115	0	0	0	0	0	0	0	6	0	0	0	1	0	7	1	2	0	0	0	0	3	2	0	0	0	0	－	2	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1030－1130	0	0	0	0	0	0	0	5	0	0	0	1	0	6	1	3	0	0	0	0		1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1045－1145	0	0	0	0	0	0	0	4	1	0	0	0	0	5	5	2	0	0	0	0	7	2	0	0	0	0	0	2	2	1	0	0	0	0	3	0	0	0	0	0	0	0
1100－1200	0	0	0	0	0	0	0	4	1	0	0	0	0	5	5	1	0	0	0	0	6	2	0	0	0	0	0	2	2	1	0	－	0		3	0	0	0	0	0	0	－
1115－1215	0	0	0	0	0	0	0	3	1	0	0	0	0	4	5	1	0	2	0	0	8	1	0	0	0	0	0	1	2	0	0	0	0	0	2	0	0	0	0	0	0	－
1130－1230	2	0	0	0	0	0	2	${ }^{3}$	1	0	0	0	0	4	5	0	0	${ }^{2}$	0	0	7	，	0	0	0	0	0	1	4	0	0	0	0	0	4	0	0	0	0	0	0	0
1145－1245	2	0	0	0	0	0	2	1	0	0	0	0	0	1	0	0	0	2	0	0	2	1	0	0	0	0	0	1	2	1	0	0	0	0	3	0	0	0	0	0	0	－
1200－1300	2	0	0	0	0	0	2	0	0	0	0		0	0	2	0	0	2	0	－	4	1	0	0	0		0	1	3	1	0	0	0	0	4	0	0	0	0	0		0
1215－1315	3	0	0	0	0	0	3	1	0	0	0	0	0	1	2	0	0	0	0	0	2	1	0	0	0	0	0	1	4	1	0	0	0	0	5	0	0	0	0	0	0	0
1230－1330	3	1	0	0	0	0	4	1	0	0	0	0	0	1	${ }^{3}$	0	0	0	0	－	3	2	1	0	0	0	0	3	3	1	0	0	0	0	4	0	0	0	0	0	0	0
1245－1345	6	1	0	0	0	0	7	2	0	0	0	0	0	2		0	0	0	0	0	3	1	1	0	0	0	0	2	6	1	0	0	0	，	7	0	0	0	0	0		－
1300－1400	9	1	0	0	0	0	10	2	0	0	0	0	0	2	1	0	0	0	0	－	1	1	1	0	0	－	0	2	6	2	0	0	0	，	8	0	0	0	0	0	0	－
1315－1415	9	1	0	0	0	0	10	5	1	0	0	0	0	6	1	0	0	0	0	0	1	1	1	0	0	0	0	2	5	${ }^{3}$	0	0	0	0	8	0	0	0		0	0	0
1330－1430	7	1	0	0	0	0	8	5	1	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	${ }^{3}$	0	0	0	0	9	0	0	0	0	0	0	－
1345－1445	4	1	0	0	0	0	5	4	1	0	0	0	0	5		0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	1	0	0	0	6	0	0	0	0	0		－
1400－1500	2	1	0	0	0	0	3	4	2	0	0	0	0	6	2	0	0	0	0	0	2	0	0	0	0	0	0	0	2	1	1	0	0	0	4	0	0	0	0	0	0	0
1415－1515	1	1	0	0	0	0	2	8	3	0	0	0	0	11	7	0	0	0		－	\％	0	1	0	0	0	0	1	2	0	1	0	0	0	3	0	1	0	0	0	0	1
1430－1530	2	0	0	0	－	0	2	10	3	0	0	1	0	14	9	1	0	0	0	0	10	0	2	0	0	0	0	2	0	0	1	0	0	0	1	0	1	0	0	0	0	1
1445－1545	2	0	0	0	0	0	2	12	3	0	0	1	0	16	9	1	0	0	0	0	10	0	2	0	0	0	0	2	1	0	0	0	0	0	1	0	1	0	0	0	0	1
1500－1600	1	0	0	0	0	0	1	12	2	1	0	1	0	16	7	1	0	0	0	0	－	，	2	0	0	0	0	2	1	0	0	0	0	0	1	0	1	0	0	0	0	1
1515－1615	1	0	0	0	0	0	1	5	0	1	0	，	0	7	2	1	0	0	0	－	${ }^{3}$	3	1	．	－	0	0	4	1	0	0	0	0	．	1	0		0	0	0	0	0
1530－1630	0	0	0	0		0	0		0	1	0	0	0	4	0	0	0	0	0	0	0	3	0	0	0	0	0	3	3	0	0	0	0	，	3	0	0	0	0	0	0	－
1545－1645	0	0	0	0	0	0	0	1	0	1	0	0	0	2	0	0	0	0	0	0	0	3	0	0	0	0	－	3	2	0	0	0	0	0	2	0	0	0	0	0	0	0
1600－1700	0	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	3	0	0	－	－	－	3	2	0	0	0	0	0	2	0	0	0	0	0	0	0
1615－1715	0	0	0	0	0	0	0	，	0	0	0	．	0	，		0	0	0	－	0	3	0	0	0	0	0	－	0	4	1	0	0	0	0	5	0		0	0	0	0	0
1630－1730	－	0	0	0		0	0	1	0	0	0	0	0	1	3	0	0	0	0	0	3	2	0	0	－	0	0	2	4	1	2	0	0	0	7	0	0	0	0	0	0	－
1645－1745	0	0	0	0		0	0	6	0	0	0	0	0	，		0	0	0	0	0		，	0	0	0	0	0	2	4	2	2	0	0	0	8	0	0		0	0	0	0
1700－1800	0	0	0	0	0	0	0		0	0	0	0	0	5	4	0	－	0	－	0	4	，	1	0	0	0	0	4	4	3	3	0	0	0	10	0	0	0	0	0	0	0
1715－1815	－	0	0	0	0	0	0	\％	0	0	0	．	0	8	1	0	0	0	，	－	－	，	1	0	0	0	0	4	2	5	3	0	0	0	10	－		0	0	0	0	－
1730－1830	，	－		0	0	0	1	12	0	0	0	0	0	12	1	0	0	0	0	0	1	1	1	0	0	0	0	2	0	5	1	，	0	0	6	0	0	－		0	0	－
1745－1845	1	0	0	0	0	0	1	7	0	0	0	0	0	7	0	0	0	0	0	0	0	1	1	0	0	0	0	2	4	4	1	0	0	0	9	0	0	0	0	0	0	0
1800－1900	1		0	0	0	0	1	11	0	0	－	0	0	11	0	0	0	－	0	0	0	1	－	0	0	0	${ }^{0}$	1	4	3	0	－	0	0	7	0	0	0	0	0		0

Time：07：00－19：00 Site 4 －Footpaths \＆Green Lane－07：00－19：00－15 Minute Interval																																										
	USER TRAVELLING NORTH－EASTBOUND ON FOOTPATH							USER TRAVELLING SOUTH－WESTBOUND ON FOOTPATH							USER TRAVELLING NORTH－WESTBOUND ON FOOTPATH							USER TRAVELLING SOUTH－EASTBOUND ON FOOTPATH							user traveling northbound on green lane							USER TRAVELIING SOUTHBOUND On Green lane						
		$\begin{aligned} & \stackrel{u}{\partial} \\ & \stackrel{y}{0} \end{aligned}$					total		$\begin{aligned} & \text { u } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$					total							Total		$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$					Total							TOTAL		$\begin{aligned} & \text { 山⿱山己几 } \\ & \text { 0 } \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{\rightharpoonup}{\dot{O}} \\ & \stackrel{4}{4} \end{aligned}$				Tota
0700－0715	2	1	0	－	0	0	${ }^{3}$	1		0	0	0	0	${ }^{1}$	0	0	0	0	0	0	0	${ }^{2}$	0	0	0	0	0	${ }^{2}$	${ }^{2}$	0	0	0	0	0	${ }^{2}$	1	0	0	0	0	0	1
0715－0730	1	0	0	0	0	0	1	3	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2
0730－0745	4	2	0	0	0	0	6	7	2	0	0	0	0	9	3	0	0	0	0	0	3	0	0	0	0	0	0	0	1	0	0	0	0	0	1	11	1	0	0	0	0	12
0745－0800	10	2	0	0	0	0	12	3	0	0	0	0	0	3	0	0	0	0	0	0	0	5	1	0	0	0	0	6	3	0	0	0	0	0	3	6	5	1	0	0	0	12
0800－0815	9	3	0	0	0	0	12	1	2	0	0	0	0	3	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0	0	2	0	2	0	0	0	0	2
0815－0830	2	0	1	0	0	0	3	3	0	0	0	0	0	3	1	0	0	0	0	0	1	2	0	0	－	0	0	2	1	0	0	0	0	0	1	3	0	0	0	0	0	3
0830－0845	1	1	0	0	0	0	2	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0845－0900	3	0	0	0	0	0	3	1	1	0	0	0	0	2	0	0	0	0	－	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2	2	0	0	0	0	0	2
0900－0915	5	2	0	0	0	0	7	6	1	0	0	0	0	7	1	0	0	0	0	0	1	1	0	0	0	0	0	1	4	0	0	0	0	0	4	5	0	0	0	0	0	5
0915－0930	4	0	0	0	0	0	4		0	0	0	0	0	3	3	0	0	0	0	0	3	1	0	0	0	0	0	1	2	0	0	0	0	0	2	4	0	0	0	0	0	4
0930－0945	2	0	0	0	0	0	2	2	0	0	0	1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	－	0	0	3	2	0	0	0	1	0	3
0945－1000	4	1	0	0	1	0	6	3	0	0	0	0	0	3	0	0	0	0	1	0	1	2	0	0	0	0	0	2	2	0	0	0	0	0	2	3	0	0	0	0	0	3
1000－1015	1	0	0	1	0	0	2	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	2	0		0	0	0	0	1
1015－1030	0	2	0	0	0	0	2	4	0	0	0	1	0	5	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2
1030－1045	1	1	0	0	0	0	2	3	1	0	0	0	0	4	0	0		0	0	0	0	1	．	0	0	0	0	1	1	1	0	0	0	0	2	2	1	0	0	0	－	3
1045－1100	2	0	0	0	0	0	2	3	1	0	0	0	0	4	1	0	0	0	0	0	1	2	0	0	0	0	0	2	2	0	0	0	0	0	2	3	1	0	0	0		4
1100－1115	3	0	0	0	0	0	－ 3	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	1	0	0	0	0	5	0	0	0	－	0	0	0
1115－1130	0	0	0	0	0	0	0		2	0	0	0	0	13	2	0	0	0	0	0	2	0	0	0	0	0	0	0	4	0	0	0	0	0	4	1	0	0	0	0	0	1
1130－1145	0	1	0	0	0	0	1		1	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2	2	0	0	0	0	0	2
1145－1200	1	0	0	0	0	0	1	2	0	0	2	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	2	0	0	5
1200－1215	3	0	0	0	0	0	－ 3	2	0	0	0	0	0	2	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	4	0	0	0	0	0	4
1215－1230	2	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0		0
1230－1245	1	0	0	0	0	0	1	1	1	0	0	1	0	3	1	0	0	0	0	0	1	1	0	0	0	0	0	1	3	0	0	0	0	0	3	0	1	0	0	0	0	1
1245－1300	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	3	0	0	0	0	0	3
1300－1315	1	0	0	0	0	0	1	4	0	0	0	0	0	4	0	0	0	0	0	0	0	1	0	0	0	0	0	1	3	0		0	0	0	3	2	0	0		1	0	3
1315－1330	8	1	0	0	0	0	9	1	0	0	0	0	0	1	0	0	0	－	0	－	0	0	0	0		0	0	0	2	0	0	0		0	2	0	0	0	0	0		0
1330－1345	3	0	0	0	0	0	3		0	0	0	0	，	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0	0	0	0	0	2	3	0	0	0	0	0	3
1345－1400	3	0	0	0	0	0	3	3	1	0	0	0	0	4	2	1	0	0	0	0	3	0	0	0	0	0	0	0	6	1		0	0	0	7	4	0	0	0	0	0	4
1400－1415	4	0	0	0	0	0	－ 4	10	2	0	0	0	0	12	1	1	0	0	0	0	2	1	0	0	0	0	0	1	1	0	0	0	0	0	1	4	0	0	0	0	0	4
1415－1430	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	1	0	0		0	3	1	0	0	0	0		1
1430－1445	3	1	0	0	0	0	4		0	0	0	0	0	1	2	0	0	0		0	2	2	0	0		0	0	2	2		0	0	0	0	2	0	0	0	0	0	0	0
1445－1500	1	1	0	0	0	0	2	5	3	1	0	0	0	9	1	0	0	0	0	0	1	1	0	0	0	0	0	1	4	2	1	0	0	0	7	2	0	0	0	0	0	2
1500－1515		1		0	0	0	2	25	${ }^{2}$	0	0	1	0	28	8	0	0	0	0	0	8	0	0	0	0	0	0	0	24	0	0	0	0	0	24	3	0	0	－	1	0	4
1515－1530	3	1	0	0	0	0	4	6	1	0	0		0	7	5	0	0	0	0	0	5	1	0	－	0	0	0	1	4	0	0	0	0	0	4	0	1	0	0	0	0	1
1530－1545	1	2	0		0	0	3		3	0	0	0	0	6	1	2	0	0	0	－	3	，	1	0	0	0	0	2	1	，	0	0	0	0	2	1	，	0	0	0	0	2
1545－1600	2	1	0	0	0	0	3	5	0	1	0	0	0	6	1	0	0	0	0	0	1	1	0	0	0	0	0	1	2	0	0	0	0	0	2	3	0	0	0	0	0	3
1600－1615	2	2	0	0	0	0	－ 4	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0		0	2	7	0	0	0	0	0	7	0	1	0	0	0	0	1
1615－1630	6	0	0	0	0	0	6	1	1	0	0	0	0	2	1	0			0	0	1	1	－	0		0	－	1	0	1	0	0	0	0	1	2	0	0	0	0	－	2
1630－1645	4	1	0	0	0	0	5	2		0	0	0	0	2	2	0	0	0	0	－	2	2	0	0	0	0	0	2	4	，	0	0		0	4	6		0	0	0	0	6
1645－1700	5	1	0	0		0	6	2	0	0		0	0	2	2	0	0	0	0	0	2	3	0	0	0	0	0	3	3	1	0	0		0	4	3	0	0	0	0	0	3
1700－1715	1	1	0	0	0	0	2	5	1	0	0	0	0	6	1	1	0	0	0	0	2	1	0	0	0	0	0	1	5	4	0	0	0	0	9	6		0	0	0	0	6
1715－1730	4	0	0		0	0	4		0		0	0	0	3	，	0	0	0	0	0	1	0	0		0			0	\％		0	0	0	0	8	1		0	0	0		1
1730－1745	0	0	0	0	0	0	0	6	0	0	0	－	0	6	4	0	0	0	0	－	4	0	0	0	0	0	－	0	1	0	0	0	－	0	1	5	0	0	0	0	0	5
1745－1800	0	3		0	0	0	3	7	0	0	0	0	0	7	1	0	0	0	0	0	1	3	0	0	0	0	0	3	1		0	0	0	0	3	4	1	1	0	0	0	6
1800－1815	4	0	0	0	0	－	－ 4	0	0	0	0	0	0	0	3	0	－	0	0	0	3	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1		0	0	0	0	1
1815－1830	3	0	－	0	0	0	3		0	0	0	0	0	3	1	0	0	0	0	－	1	2	0	－	0	－		2	5	2	0	0		0	7	3		0	0	0	－	3
1830－1845	1	0	0	0	0	0	1	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	－	0	3	0	0	0	0	0	3	3	1	0	0	0	0	4
1845－1900	1	0	0	0	0	0	1	6	0	0	0	0	0	－ 6	0	0	0	0	0	0	0	2	0	－	0	－		2	0	1	0	0	0	0	1	4	6	0	0	0	0	10
0700－1900	123	32	1	1	1	0	158	171	26	2	2	4	0	205	53	5	0	0	1	0	59	46	3	0	0	0	0	49	133	20	1	1	0	0	155	120	23	2	2	3	0	150

Location：Birchmoor，Tamworth B78 1AN
Date：Wednesday 8th June 2022

	MOVEMENT 25							OVEN							MOVEMENT 27							MOVEMENT 28							MOVEMENT 29							MOVEMENT 30						
	USER TRAVELLING NORTH－EASTBOUND ON FOOTPATH							USER TRAVELLING SOUTH－WESTBOUND ON FOOTPATH							USER TRAVELLING NORTH－WESTBOUND ON FOOTPATH							USER TRAVELLING SOUTH－EASTBOUND ON FOOTPATH							user traveling northbound on green lane							USER Traveluing southbound on green lane						
		$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$					total		$\begin{aligned} & \text { u } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{4} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{8}{山} \\ & \hline \end{aligned}$				total		$\begin{aligned} & \text { 山⿱山己几 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{4}{4} \end{aligned}$				total		$\begin{aligned} & \underset{0}{山 己} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$					Total		$\begin{aligned} & \text { 山⿱山己几 } \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\ddot{W}}{4} \\ & \hline \end{aligned}$				total		$\begin{aligned} & \text { 山⿱丷⿱⿻⿴囗丨丷日心 } \\ & 0 \end{aligned}$					Total
0700－0800	17	5	0	0	0	0	22	14	${ }^{2}$	${ }^{\circ}$	0	0	0	${ }^{16}$	${ }^{3}$	0	0	0	0	0	${ }^{3}$	7	1	0	0	0	0	${ }^{8}$	7	${ }^{\circ}$	0	0	0	0	7	${ }^{20}$	${ }^{6}$	1	0	0		27
0715－0815		7	0	0	0	0	31	14	4	0	0	0	0	18		0	0	0	0	0	3	6	1	0	0	0	0	7	6	1	0	0	0		7	19	8	1	0	0		28
0730－0830		7	1	0	0	0	${ }^{33}$	14	4	0	0	0	0	18		0	0	0	0	0	4	8	1	0	0	0	0	9	6	1	0	0	0	0	7	20	8	1	0	0		29
0745－0845	22	6	1	0	0	0	29	8	2	0	0	0	0	10	2	0	0	0	0	0	2	8	1	0	－	0	0	，	5	1	0	0	0	0	6	9	7	1	0	0		17
0800－0900		4	1	0	0	0	20	6	3	0	0	0	0	9	2	0	0	0	0	0	2	4	0	0	0	0	0	4	4	1	0	0	0	0	5	5	2	0	0	0		7
0815－0915	11	3	1	0	0	0	15	11	2	0	0	0	0	${ }^{13}$		0	0	0	0	0	3	4	0	0	0	0	0	4	7	0	0	0	0	0	7	10	0	0	0	0	0	10
0830－0930	13	3	0	0	0	0	16	11	2	0	0	0	0	${ }^{13}$		0	0	0	0	0	5	3	0	0	0	0	0	3	8	0	0	0	0	0	8	11	0	0	0	0		11
0845－0945	14	2	0	0	0	0	16	12	2	0	0	1	0	15	4	0	0	0	0	0	4	3	0	0	0	0	0	3	${ }^{11}$	0	0	0	－	0	11	13	0	0	0	1	0	14
0900－1000	15	3	0	0	1	0	19	14	1	0	0	1	0	16		0	0	0	1	0	5	4	0	0	0	0	0	4	11	0	0	0	0	0	11	14	0	0	0	1	0	15
0915－1015	11	1	0	1	1	0	14	10	0	0	0	1	0	11		0	0	0	1	0	4	3	0	0	0	0	0	3	8	0	0	1	0	0	9	9	1	0	0	1	0	11
0930－1030	7	3	－	1	1	0	12	11	0	0	0	2	0	${ }^{13}$		0	0	0	1	0	2	2	0	0	0	0	0	2	7	0	0	1	0	0	8	7	1	0	0	1		9
0945－1045	6	4	0	1	1	0	12	12	1	0	0	1	0	14	1	0	0	0	1	0	2	3	0	0	0	0	0	3	5	1	0	1	0	0	7	7	2	0	0	0		9
1000－11	4	3	0	1	0	0	8	12	2	0	0	1	0	15		0	0	0	0	0	2	3	0	0	0	0	0	3	5	1	0	1	0	0	7	7	3	0	0	0	0	10
1015－1115	－	3	0	0	0	0	9	${ }^{11}$	2	0	0	1	0	14	2	0	0	0	0	0	2	3	0	0	0	0	0	3	8	2	0	0	0	0	10	7	2	0	0	0	0	9
1030－1130		1	0	0	0	0	7	18	4	0	0	0	0	22		0	0	0	0	0	3	3		0	0	0	0	3	11	2	0	0			${ }^{13}$	6	2	0	0	0		8
1045－1145		1	0	0	0	0	6	19	4	0	0	0	0	${ }^{23}$		0	0	0	0	0	3		0	0	0	0	0	2	11	2	0	0	0	0	${ }^{13}$	6	1	0	0	0		7
1100－1200	4	1	0	0	0	0	5	18	3	0	2	0	0	23		0	0	0	0	0	2	0	0	0	0	0	0	0	9	2	0	0	0	0	11	6	0	0	2	0	0	8
1115－1215	4	1	0	0	0	0	5	19	3	0	2	0	0	24	3	0	0	0	0	0	3	1	0	0	0	0	0	1	6	1	0	0	0	0	7	10	0	0	2	0	0	12
1130－1230	6	1	0	0	0	0	7	8	1	0	2	0	0	11	2	0	0	0	0	0	2	2	0	0		0	0	2	3	1	0	0	，	0	4	9	0	0	2	0		11
1145－1245		0	0	0	0	0	7	5	1	0	2	1	0	9	3	0	0	0	0	0	${ }^{2}$	3	0	0	0	0	0	3	5	0	0	0	0	0	5	7	1	0	2	0	－	10
1200－1300	7	0	0	0	0	0	7	4	1	0	0	1	0	6	3	0	0	0	0	0	3	3	0	0	0	0	0	3	6	－	－	0	0	0	6	7	1	0	0	0	－	8
1215－1315	5	0	0	0	0	0	5	6	1	0	0	1	0	8	2	0	0	0	0	0	2	3	0	0	0	0	0	3	8	0	0	0	0	0	8	5	1	0	0	1		7
1230－1330	11	1	0	0	0	0	12	7	1	0	0	1	0	9	1	0	0	0	0	0	1	2	0	0	0	0	0	2	9	0	0	0	0	0	9	5	1	0	0	1	0	7
1245－1345	13	1	0	0	0	0	14	7	0	0	0	0	0	7	0	0	0	0	0	0	0	2	0	0	0	0	0	2	8	0	0	0	0	0	－	8	0	0	0	1	0	${ }^{7}$
1300－1400	15	1	0	0	0	0	16	9	1	0	0	0	0	10	2	1	0	0	0	0	3	2	0	0	0	0	－	2	${ }^{13}$	1	0	0	0	0	14	9	0	0	0	1	0	10
1315－1415	18	1	0	0	0	0	19	15	3	0	0	0	0	18	3	2	0	0	0	0	5	2	0	0	0	0	0	2	11	1	0	0	0	0	12	11	0	0	0	0		11
1330－1430	10	0	0	0	0	0	10	15	3	0	0	0	0	18		2	0	0	0	0	5	3	0	0	0	0	0	3	11	2	0	0	0		13	12	0	0	0	0	0	12
1345－1445	10	1	0	0	0	0	11	15	3	0	0	0	0	18	5	2	0	0	0	0	，	4	0	0	0	0	0	，	11	2	0	0	0	0	${ }^{13}$	9	0	0	0	0	0	9
1400－1500	8	2	0	0	0	0	10	17	5	1	0	0	0	${ }^{23}$		1	0	0	0	0	5	5	0	0	0	0	0	5	9	3	1	0	0	0	${ }^{13}$	7	0	0	0	0	0	7
1415－1515	5	3	0	0	0	0	8	32	5	1	0	1	0	39	11	0	0	0	0	0	11	4	0	0	0	0	0	4	32	3	1	0	0	0	${ }^{36}$	6	0	0	0	1	0	7
1430－1530	8	4	0	0	0	0	12	37	6	1	0	1	0	45	16	0	0	0	0	－	16	4	0	0	0	0	－	4	34	2	，	0	－	0	${ }^{37}$	5	1	0	0	1	0	7
1445－1545	6	5	0	0	0	0	11	39	9	1	0	1	0	50	15	2	0	0	0	0	17	3	1	0	0	0	0	4	${ }^{3}$	3	1	0	0	0	${ }^{37}$	6	2	0	0	1	0	9
1500－1600	7	5	0	0	0	0	12	39	6	1	0	1	0	${ }^{47}$		2	0	0	0	0	17	3	1	0	0	0	0	4	${ }^{31}$	1	0	0	0	0	32	7	2	0	0	1		10
1515－1615	8	6	0		0	0	14	15	4	1	0	0	0	20	7	2	0	0	0	－	9	4	2	0	0	0	－	6	14	1	－	0	0	0	15	4	3	0	0	0	0	7
1530－1630	11	5	0	0	0	0	16	10	4	1	0	0	0	15		2	0	0	0	－	5	4	2	－	0	－	－	6	10	2	0	0	0	0	12	6	2	0	0	0	0	${ }^{2}$
1545－1645	14	4		0	0	0	18	9	1	1	0	0	0	11		0	0	0	0	0	4		1	0	0	0	0	6	13	1	0	0		0	14	11	1	0	0	0	0	12
1600－1700	17	4	0	0	0	0	21	6	1	0	0	0	0	7	5	0	0	0	0	0	5	7	1	0	0	0	0	8	14	2	0	0	0	0	16	11	1	0	0	0	0	12
1615－1715	16	3	0	0	0	0	19	10	2	0	0	0	0	12	6	，	0		0	0	7	7	0	0	0	0	0	7	12	6	0	0	0	0	18	17	0	0	0	0	0	17
1630－1730	14	3	0	0	0	0	17	12	1	0	0	0	0	13	－	1	0	0	0	－	7	8	0	－	0		－	6	20	5	－	，	－		25	16	0	0	0		0	16
1645－1745	10	2	0	0	0	0	12	16	1	0	0	0	－	17		1	0	0	0	0	，		0	0	0	0	0	4	17	5	0	0	0	－	22	15	0	0	0	0	－	15
1700－1800	5	4	0	0	0	0	9	21	1	0	0	0	0	22	7	1	0	0	0	0	8	4	0	0	0	0	－	4	15	6	0	0	0	0	21	16	1	1	0	0	0	18
1715－1815	8	3	0	0	0	0	11	16		0	0	0	0	16	9	0	0	0	0	－	$\stackrel{ }{ }$	3	0	0	0	0	0	3	11	2	0	0	0	0	13	11	1	1	0	0	0	13
1730－1830	7	3	，		0		10	16	0	0	0	0	0	16		0	－	0			9	5	0	0	－		－	5	－	4	－		－		12	13	1	＋	0	0	0	15
1745－1845	8	3	－	0	0	0	11	12	0	0	0	0	0	${ }^{12}$	5	0	0	0	0	0	5	5	0	0	0	0	－	5	10	4	0	0	0	0	14	11	2	1	0	0	0	14
1800－1900	9	0	0	0	0	0	9	11	0	0	0	0	0	11	4	0	0	0	0	0	4	4	0	0	0	0	0	4	9	3	0	0	0	0	12	11	7	0	0	0	0	18

 Sect foconimbs crean

Location: Birchmoor, Tamworth B78 1AN
Date: Wednesday 8th June 2022
Time: 07:00-19:00

	Lovement 35							MOVEMENT 36							MOVEMENT 37FROM GREEN LANELEFT TURN ToCOCKSPUR STRETT (NORTHEAST)							MOVEMENT 38FROM GREEN LANERISHT TuRN ToCOCKSPRR SREET (SOUTHWEST)							MOVEMENT 39						Movement 40													
	FROM COCKSPUR STREET (NORTHEAST) STRAIGHT AHEAD TO COCKSPUR STREET (SOUTHWEST)							FROM COCKSPUR STREET (NORTHEAST) RIGHT TURN TO green lane																KSPUR STRE Left turn green la																								
		$\begin{aligned} & \text { u} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{\substack{0 \\ 山 己 ~}}{ } \end{aligned}$				total										$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{0}{0} \\ & \stackrel{8}{4} \end{aligned}$			\qquad	Total								¢												total							TOTAL
0700-0800	${ }^{2}$	0	0	0	0	0	2	${ }^{3}$	1	0	0	0	0	4	${ }^{12}$	4	0	0	0	0	16	${ }^{2}$	1	0	0	0	0	3	1	0	0 0	0	0	1	${ }^{3}$	0	0	0	0		3							
0715-0815		0	0	0	0	0	2	3	2	0	0	0	0	5	17	9	1	0	0	0	27	2	1	0	0	0		3	1	0	00	0		1	${ }^{8}$	0	0	0	0		8							
0730-0830	2	0	0	0	0	0	2	1	${ }^{2}$	0	0	0	0	3	21	9	2	0	0	0	32	2	0	0	0	0	0	2	0	0	0 0	0	0	0	8	0	0	0	0	0	8							
0745-0845		0	0	0	0	0	2		1	0	0	0	0	2	20	8	2	0	0	0	30	2	0	0	0	0	0	2	2	0	0 0	0	0	2	8	0	0	0	0	0	8							
0800-0900		0	0	0	0	0	3	2	2	0	0	0	0	4	10	6	2	0	0	0	18	3	0	0	0	0	0	3	2	0	0 0	0	0	2	7	0	0	0	0	0	7							
0815-0915	2	0	0	0	0	0	2	3	2	0	0	0	0	5	6	2	1	0	0	0	9	1	0	0	0	0	0	1	3	0	0 0	0	0	3	0	0	0	0	0	0	0							
0830-0930	3	0	0	0	0	0	3	4	2	0	0	0	0	6	5	2	0	0	0	0	7	1	0	0	0	0	0	1	3	0	0 0	0	0	3	0	0	0	0	0	0	0							
0845-0945		0	0	0	0	0	3	5	2	0	0	0	0	7	7	2	0	0	0	0	9	1	0	0	0	0	0	1	1	0	0 0	-	0	1	1	0	0	0	0		1							
0900-1000		0	0	0	0	0	2	3	1	0	0	0	0	4	9	2	0	0	0	0	11	0	0	0	0	0	0	0	1	0	0 0	0	0	1	2	0	0	0	0		2							
0915-10		0	0	0	0	0	3	2	0	0	0	1	0	3	9	2	0	0	0	0	11	1	0	0	0	0	0	1	0	0	0 0	0	0	0	2	0	0	0	0	0	2							
0930-1030	2	0	0	0	0	0	2	2	0	0	0	1	0	3	8	2	0	0	1	0	11	2	0	0	0	0	0	2	0	0	0	0	0	0	3	0	0	0	0	0	3							
0945-1045		0	0	0	0	0	2	1	0	0	0	1	0	2	6	3	0	0	1	0	10	2	1	0	0	0	0	3	0	0	0	0	0	0	2	0	0	0	0	0	2							
1000-1100		0	0	0	0	0	2	2	1	0	0	1	0	4	5	2	0	0	1	0	8	2	1	0	0	0	0	3	1	0	00	0	0	1	1	0	0	0	0		1							
1015-11	0	0	0	0	0	0	0	3	1	0		0	0	4	4	1	0	0	1	0	6	1	1	0	0	0	0	2	3	0	0 0	0	0	3	1	0	0	0	0	0	1							
1030-1130	0	0	0	0	0	0	0	14	2	0	0	0	0	16	3	1	0	0	0	0	4	0	1	0	0	0	0	1	5	1	0 0	0		6	0	0	0	0	0		0							
1045-1145	0	0	0	0	0	0	0	14	3	0	0	0	0	17	2	0	0	0	0	0	2	1	0	0	0	0	0	1	5	1	0 0	0	0	6	0	0	0	0	0		0							
1100-12		0	0	0	0	0	3	14	2	0	0	0	0	16	1	0	0	0	0	0	1	1	0	0	0	0	0	1	4	1	0	0	0	5	2	0	0	0	0	0	2							
1115-12	3	0	0	0	0	0	3	13	2	0	0	0	0	15	1	0	0	0	0	0	1	2	0	0	0	0	0	2	2	1	0	0	0	3	4	0	0	0	0	0	4							
1130-1230	3	0	0	0	0	0	3	2	1	0	0	0	0	3	2	0	0	0	0	0	2	2	0	0	0	0	0	2	1	0	0 0	0		1	4	1	0	0	0		5							
1145-1245		0	0	0	0	0	4	2	0	0	0	0	0	2	2	0	0	0	0	0	2	1	0	0		0		1	1	0	0 0	0	0	1	5	1	0	0	0									
1200-13		0	0	0	0	0	1	2	0	0	0	0	0	2	5	0	0	0	-	0	5	1	0	0	0	0	0	1	1	0	0	0	0	1		1	0	0	0	0	4							
1215-1315		0	0	0	0	0	3	5	0	0	0	0	0	5	7	0	0	0	0	0	7	0	0	0	0	0	0	0	2	0	0	0	0	2	3	1	0	0	0		4							
1230-1330		1	0	0	0	0	4	6	0	0	0	0	0	6	7	1	0	0	0	0	8	0	0	0	0	0	0	0	2	0	0	0	0	2	3	0	0	0	0	0	3							
1245-1345		1	0	0	0	0	3	6	1	0	0	0	0	7	8	1	0	0	0	0	9	0	0	0	0	0	0	0	2	0	0 0	0	0	2	3	0	0	0	0		3							
1300-1400	3	1	0	0	0	-	4	9	2	0	0	0	0	11	5	1	0	0	0	0	6	0	0	0	0	0	0	0	2	0	0	0	0	2	5	0	0	0	0		5							
1315-1415	1	1	0	,	0	0	2	11	2	0	0	0	0	${ }^{13}$	4	1	0	0	0	0	5	0	.	0	0	0	0	0	1	0	0 0	0		1	3	0	0	0	0		3							
1330-1430	1	0	0	0	0	0	1	10	2	0	0	0	0	12	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0		.	0	0	3	0	0	0	0		3							
1345-1445	1	0	0	0	0	0	1	10	1	0	0	0	0	11	3	1	0	0	0	0	4	0	0	0	0	0	-	0	0	0	0	0	-	-	2	0	0	0	0	0	2							
1400-1500	3	0	0	0	0	0	3	32	4	2	0	0	0	38	5	2	0	0	0	0	7	1	0	0	0	0	0	1	0	0	00	0	0	-	0	0	0	-	0		0							
1415-1515	,	0	0	0	0	0	3	27	4	2	0	0	0	${ }^{33}$	5	2	0	0	0	0	7	3	0	-	-	-	0	3	0	0	0 0	0	0	0	-	-	-	0	0		0							
1430-1530	7	0	0	0	0	0	7	34	5	2	0	0	0	${ }^{41}$	5	5	0	0	0	0	10	3	0	0	0	0	0	3	0	1	0 0	0	0	1	1	0	0	0	0	0	1							
1445-1545		0	0	0	0	0	7	35	7	2	0	0	0	44	4	5	0	0	0	-	9	3	0	0	0	0	0	3	0	1	00	0	0	1	1	,	0	0	0	0	1							
1500-1600		0	,	0	0	0	4	11	3	0	0	0	0	14	3	5	0	0	0	0	8	2	0	0	-	0	0	2	1	1	00	,	0	2	2	1	0	0	0		3							
1515-1615	5	0	-	0	0	0	5	13	3	0	0	0	0	16	2	6	0	0	0	0	8	0	2	0	0	0	0	2	1	1	00	0	0	2	3	2	-	-	0	-	5							
1530-1630	1	0	-	-	0	0	1	10	3	0	0	0	0	${ }^{13}$	3	${ }^{3}$	-	-	0	0	6	1	2	-	0	-	0	3	1	1	-	0	0	2	2	2	0	0	0	0	4							
1545-1645	1	0	0	0	0	0	1	9	2	0	0	0	0	11	5	2	0	0	0	0	7	1	3	-	-	0	0	4	1	,	0	0	0	2	3	2	0	0	0		5							
1600-1700	,	0		0	0	0	1	7	2	0	0	0	0	9	6	2	0	0	0	0	8	1	${ }^{3}$	0	0	0	0	4	0	1	0 0	.	0	1	2	1	,	0	0		3							
1615-1715	-	0	-	0	0	0	0	5	2	-	0	0	0	7	8	1	-	0	0	0	-	2	,	-	0	-	0	3	0	,	0	0	0	1	1	0	0	0	0	0	1							
1630-1730	0	0	0	-	0	0	0	2	1	0	0	0	0	3	9	1	0	-	0	-	10	1		0	0	0	0	2	0	0	-	-	0	-	1	0	0	0	-	0	1							
1645-1745		,	0	0	0	0	0	2	0	0	0	0	0	2	6	1	0	0	-	0	7	1	0	0	0	0	0	1	0	-	00	.	0	0	.	-	-	0	0		0							
1700-1800	0	1	-	0	0	0	1	2	0	0	0	0	0	2	5	0	0	0	0	0	5	2	1	0	0	0	0	3	-	0	0	0	0	-	0	0	0	0	0	0	0							
1715-1815	1	1	0		0	0	2		1	0		0	0	3	5	0	0	-	0	0	5	1	1	0	0	0	0	2	0	0	00	0	0	0	3	0	0	0	0	0	3							
1730-1830	1	,	0	0	0	0	2	${ }^{2}$	2	0	0	0	0	5	3	0	0	-	0	0	3	1		0	-	0		2	0		0	-		-	3	0	0	0	0		3							
1745-1845	1	1	0	0	0	0	2	3	2	0	0	-	0	5	5	0	0	0	0	0	5	1	1	0	0	0	0	2	0	0	00	0	0	-	3	0	0	0	0	0	3							
1800-1900	2	0	0	0	0	0	2	3	3	0	0	0	0	6	4	0	0	0	0	0	4	0	1	0	0	0	0	1	0	0	0	0	0	0	3	0	0	0	0		3							

Appendix C - Collision Data

DRUMMOND BLACK CONSULTING LTD

drummondblack.co.uk

Appendix D - Findings and Opportunities Location Plan

DRAFT LCWIP

Polesworth cycle network and Rights of Way
Date:25/05/2022 Contact: 01926413950 alisonkennedy@warwickshire.gov.uk

drummondblack.co.uk

D: \DBC Projects\D00157-M42 WCHAR\Reports\Proposed Employment Land M42 J10 WCHAR (Final Report)4.docx Date: $6^{\text {th }}$ October 2022

Land Northeast of M42 Junction 10, North Warwickshire

Public Transport Strategy

Project Number: 784-B033920

Hodgetts Estates

October 2022

Document Control

Document:	Public Transport Strategy
Project:	Land Northeast of M42 Junction 10
Client:	Hodgetts Estates
Job Number:	$784-$ B033920
File Origin:	-

Document Checking:

Primary Author	David Groves	Initialled:

Checked By	Nick Bunn	Initialled:	NB

Review By Nick Bunn Initialled: NB

Issue	Date	Status	Checked for Issue
1	18.08 .22	Draft to client	DG
2	25.09 .22	Revised draft to client	DG
3	12.10 .22	Final for Planning	DG

4

5

Contents

INTRODUCTION 1
2
PROPOSED DEVELOPMENT. 234
LOCAL POLICY 3
ACCESSIBILITY 4
5
EXISTING PUBLIC TRANSPORT PROVISION 5
6
PUBLIC TRANSPORT DESTINATION ESTIMATES 7
7
M42 JUNCTION 10 EMPLOYMENT SITE BUS PROPOSALS 1012

Appendices

Appendix A FIGURES

Appendix B DRAWINGS
Appendix C PUBLICATIONS
Appendix D CORRESPONDENCE

1 INTRODUCTION

1.1 Tetra Tech (TT) have been appointed by Hodgetts Estates to produce this public transport strategy in support of their outline planning application for a proposed development of upto 100,000sqm of mixed employment uses and 150 space overnight lorry park (including an associated 400sqm amenity block) on land to the northeast of M42 Junction 10.
1.3 The public transport strategy follows discussions with officers at WCC and with Stagecoach.

This report will appraise the current public transport provision, identify where improvements to the existing provision is required or where new public transport services are required, and then outline a public transport proposal for land to the northeast of M42 Junction 10.

This report has been prepared solely in connection with the land to the northeast of M42 Junction 10 site. Whilst every reasonable effort has been made to ensure its accuracy, use of the information contained in the report by a third party for any other purpose is entirely at their own risk.

2 PROPOSED DEVELOPMENT

2.1 The application site is located to the north of the A5 Watling Street and northeast of M42 Junction 10 shown at Figure 1 at Appendix A.
2.2 The development proposal includes up to 100,000 sqm of mixed employment uses and a 150 spaces overnight lorry park (including an associated 400sqm amenity block) as illustrated at the indicative masterplan at Chetwoods Drawing Number 00078 Rev P10 at Appendix B. Planning is sought in outline with all matters other than 'Access' reserved for consideration in due course. As such, this layout in only indicative at this stage.
2.3 The application site is to be accessed via a new signalised junction arrangement off the A5 Watling Street which is approximately 300 m east of the M42 Junction 10.
2.4 The indicative layout shows the access road serving two large units on Plot A1 and 5 smaller units at its north end on Plot A2. The southern unit, as shown, is approximately 30,650sqm and is served by a priority access junction which is located approximately 200 m north of the site access junction from the A5. The large northern unit, as shown, is approximately 59,000sqm and is served by two vehicular accesses at the southern and northern extents of the building. The ultimate layout of the development would be confirmed through reserved matters planning applications. It is intended that the site access road would be built to adoptable standards.
2.5 The proposals include a large lorry park which comprises 150 lorry spaces and has a separate access in and out of the car park. A small ancillary office is proposed to the south of the lorry park.

3

 LOCAL POLICY3.1 Warwickshire County Council and North Warwickshire Borough Council have a range of policy and guidance criteria for public transport at new development sites, which is outlined below.

Warwickshire Local Transport Plan 2011-2026 (Adopted April 2011)

The Warwickshire Local Transport Plan includes Policy PTB4: New Developments which is set out below:
"The County Council will encourage measures to enable good accessibility by bus services to and from new developments and, where appropriate, secure funding from developers towards the costs, consistent with the Land Use \& Transportation Strategy." which relates to public transport: "Improve the connectivity by public transport to enable business journeys to take place and to maximise accessibility of labour markets to jobs."

The Warwickshire Local Transport Plan also specifies that all occupiers within a new development should be no further than 400 metres away from the nearest bus stop, in line with policy stated in respect to connectivity between ne development and local bus services.

The Local Transport Plan sets out the County Council's policies in respect of delivering the LTP which includes Policy LUT3 Sustainable Developments which is set out below:
"The County Council will promote sustainable development and seek developer contributions, where appropriate, to provide for public transport, community transport, pedestrian and cycling facilities, traffic management measures and travel packs to serve new developments."

North Warwickshire Borough Council Local Plan (Adopted September 2022)

The North Warwickshire Borough Council Local Plan includes Policy LP23 Transport Assessments and Travel Plans which states the following:
"Widening opportunities to access new developments for all sections of the community will need also to be addressed through the provision and enhancement of public transport services and facilities together with walking and cycling facilities."

4

ACCESSIBILITY

Bus
4.1 Institute of Highways \& Transport's (IHT) Planning for Public Transport in Developments (March 1999) states, "the maximum walking distance to a bus stop should not exceed 400 m ", however it also makes it clear that these walking distances are not fixed, stating "these distances are quoted for guidance, and should not be followed slavishly......it is important to provide services that are easy for passengers to understand and attractive to use rather than to achieve slavish adherence to some arbitrary criteria for walking distance", and "bus stops should, ideally, be located to minimise walking distances, yet maximise the potential catchment areas".
4.2 The WCC Local Transport Plan is discussed in Chapter 3.0 above and specifies that new development should be within 400 metres walking distance of a bus stop.
4.5 The report on walking distances to bus produced by Tetra Tech can be viewed in Appendix C.

5 EXISTING PUBLIC TRANSPORT PROVISION

Bus Services

5.1 The nearest bus stop to the M42 junction 10 site is located on the A5 Watling Street and is an approximate 650 m walk from centre of the application site. The bus stop has a lay-by but no flag/ pole arrangement, seating, timetable information or segregated pavement for pedestrians using the pavement on the A5. The stop provides eastbound services but there is not a corresponding stop for westbound services on the south side of the A5 Watling Street. Table 5.1 below lists the services which call at the A5 Watling Street eastbound bus stop.

Table 5.1: Bus Routes - A5 Watling Street

Route No.	Route Description	Monday to Friday		Saturday Daytime	Sunday		
	Tamworth to Nuneaton Stagecoach $766 / 767$	Via Birch Coppice, Dordon, Baddesley Ensor, Grendon, Atherstone, Mancetter, Hartshill	Every 1-2 hours	No Service	Every 1-2 hours		Every 1-2
:---:							
hours							

The 766/ 767 provide direct journey opportunities to a range of large residential areas, where employees may live including Tamworth, Atherstone and Nuneaton.

There are a pair of bus stops served by the 766 and 767 services at Birch Coppice Business Park, which are approximately $1,300 \mathrm{~m}$ from the centre of the application site. These stops can be reached by footway along the northside of Watling Street, the controlled pedestrian crossing facility on the A5 and footway through the business park.

There are two bus stops on Birchmoor Road to the north of the application site which can be reached within an approximate 800 m walk from the centre of the proposed development. The stops can be reached via a proposed footway connection to Cockspur Street / Public Bridleway AE45 and then continuous footway on Cockspur Street and Birchmoor Road. The eastbound stop provides a flag/ pole arrangement and the westbound stop provides a flag/ pole arrangement and timetable information. Table 5.2 below lists the services which call at the Birchmoor Road stops.

Table 5.2: Bus Routes - Birchmoor Road

Route No.	Route Description	Monday to Friday		Saturday Daytime	Sunday
		Daytime	Evening		
Arriva 785/ 786	Tamworth to Austrey Via Arrington, Shuttington, Newton Regis, Wartyon, Polesworth	5 morning services then every 2 hours approx	No Service	5 morning services then every 2 hours approx	7 services

5.5 The 785/ 786 services provide direct journey opportunities to Tamworth and other residential areas where employees may live, including Polesworth and Shuttington.
5.6 The location of surrounding bus stops is shown at Figure 2 at Appendix A.

Rail Services

5.7 The nearest rail station to the application site is Polesworth rail station which is approximately 3 km to the north. The rail station provides interchange opportunities with the Arriva 785/786 bus services. Wilnecote rail station is approximately 3.5 km to the west of the application site.

Summary

The 766 and 767 bus services provide connections to large surrounding residential areas where employees may live including Tamworth and Nuneaton and there are Arriva bus services available to other surrounding residential areas. The bus stops surrounding the application site are not within an easy accessible walk of the whole of the site and improvements to existing bus service provision are therefore proposed.

6

 PUBLIC TRANSPORT DESTINATION ESTIMATES6.1 The levels of mode share that can be expected to be achieved at the M42 Junction 10 employment site can be estimated using Census data from the Middle Super Output areas (MSOAs) in which it lies; namely MSOA E02006469. The location of MSOA North Warwickshire E02006469 is presented below.

Location of MSOAs E02006469

6.2

The mode share for journey to work trips the MSOA is presented in Table 6.1 below:

Table 6.1 Mode Share for Journey to Work Trips - MSOA E02006469

Mode	MSOA E02006469 Trips	Mode Share Percentages				
Train	10	0.2%	$	$	Bus	101
:---	:---:					
Taxi	41					
Motorcycle	73					
Car/Van driver	4324					
Passenger	585					
Bicycle	147					
Pedestrian	260					

6.3 The MSOA does not include a passenger railway station and therefore generates a small number of rail trips. The MSOA does not include large destinations with high frequency bus routes and the generation of bus trips is low.

Assignment

6.4 The assignment for public transport users has been initially estimated from journey to work by car information for North Warwickshire E02006469 Middle Super Output Area (MSOA).
6.5 It is acknowledged that the distribution is based on car trips and that the characteristics of bus travel are different to car travel as car offers greater convenience and flexibility to reach a wider range of destinations. It does, however, ensure that possible public transport trips are not constrained by the existing bus routes. The majority of people working within the MSOA travel to work by car and therefore the assignment shows where the majority of people in the MSOA live which is helpful in building a picture of where people want to travel from. The Census data shows the 5 most popular residential areas where employees are drawn from who travel by car, which are as follows:
i. Dordon/ Wood End -9\%
ii. Polesworth - 6\%
iii. Belgrave/ Wilnecote/ Hockley (East Tamworth) - 4\%
iv. Stoneydelph (East Tamworth) - 4\%
v. Atherstone - 3\%
6.6 The car travel data for the MSOA in which the application site lies, shows that the majority of employees in the MSOA are drawn from Dordon and Wood End, which is the MSOA in which the site lies, with Dordon being the larger of the two settlements. The Stagecoach 766/767 service calls at Dordon and also serves Belgrave, Wilnecote, Stoneydelph and Atherstone, which draw employees to employment areas within MSOA E02006469. The Arriva 785/ 786 service also provides a connection to Polesworth.
6.7 The Census data also shows the 5 most popular residential areas where employees are drawn from who travel by bus, which are as follows:
i. Dordon/ Wood End - 8\%
ii. Atherstone - 6\%
iii. Bolehall - 5\%
iv. Glascote Heath (East Tamworth) - 4\%
v. Birmingham (Central) - 4\%
6.8 The bus travel data for North Warwickshire E02006469 shows that the majority of employees in the MSOA are again drawn from Dordon and Wood End. The Stagecoach 766/ 767 service calls at Dordon and also serves Atherstone and Glascote Heath which draw employees to employment areas within MSOA E02006469.

Summary

6.9 The data available for the ward in which the application site is located, shows that the majority of people working within the ward travel from Dordon and Wood End (both within the ward itself) for travel by both car and by bus. The data shows that the Stagecoach 766/ 767 service calls at a number of destinations on its route which draw employees who work within in the MSOA.

7 M42 JUNCTION 10 EMPLOYMENT SITE BUS PROPOSALS

7.1 Chapter 5 demonstrates that the current public transport provision is restricted for the M42 Junction 10 site in terms of the walking distances to existing bus stops. Improvements are therefore proposed to make the site more sustainable.
7.2 The public transport strategy for the site is to be predicated on the extension of the Stagecoach 766/ 767 services into the proposed development. Figure 3 at Appendix A shows the proposed route of the service extension.

The 766/ 767 bus service will continue to run on its existing frequency and provides a connection between large surrounding residential areas and the proposed employment site. The journey time to Tamworth town centre would be approximately 18 minutes, the journey time to Atherstone would be approximately 25 minutes and the journey time to Nuneaton town centre would be approximately 45 minutes.
7.4 As described above in Chapter 6.0, the 766/ 767 bus service provides connections to a number of residential areas which draw employees by both car and bus to the ward in which the application site lies. These areas include Tamworth, Dordon and Atherstone.
7.5 The 766/ 767 service provides a direct bus connection into Birch Coppice Business Park on its route along the A 5 and would undertake a similar arrangement at the proposed development.
7.6 TT Drawing Number 00001 Rev P01 at Appendix B shows a possible arrangement for the bus turning area within the application site, indicatively located approximately 200 m from the A5/ Site Access junction. The bus turning area is deliberately located close to the site access junction to reduce the length of the diversion and thereby reduce the impact on existing passengers. The length of the diversion from the site access junction and out onto the A5 is approximately 400 m . The site access junction layout has been designed to include a designated left-turn and rightturn lane in and designated left-turn lane out with the predicted delay at the junction to be around 10 seconds in and 30 seconds out.
7.7 The drawing includes the requisite signage and road markings at the access and exit from the bus turning area. The possible arrangement includes an area of hard-standing at the south of the layout for a bus shelter where passengers will be able to board and alight. Footway is provided which connects to footway along the access road. The drawing also demonstrates that an 11.9 m bus is able to turn around in the bus turning area and straighten up to the pick-up/ drop-off area before egressing. Stagecoach have confirmed that an 11.9 m long bus is the correct
specification of vehicle used on the 766/ 767 service. Its access and egress can be performed without the bus using the opposing carriageway. The second track also shows that an articulated lorry could access and egress the warehouse service yard without conflicting with the bus. It should be noted that the location of the access points into the warehouses is indicative at this stage but nevertheless, it is demonstrated there would be not conflict assuming a worst case scenario (i.e., the access to the warehouse service yard is opposite the bus turning area).
7.8 The whole of the application site is within a 400 m walk of the proposed bus stop at the bus turning area, which accords with local policy requirements for new developments.
7.9 WCC's Transport Operations team have requested that pump priming is provided for a 5 year period to subside the Stagecoach 766/ 767 service. The developer and Stagecoach have agreed an annual contribution over a 5 year period.
7.10 WCC's Transport Operations team have also requested that a shelter and associated equipment be provided at the proposed bus turning area. The developer is committed to the provision of quality bus infrastructure at the application site.
7.11 Pedestrian connections are to be provided to the north of the application site to connect to Cockspur Street which facilitates pedestrian movement to the bus stops on Birchmoor Road. This allows employees who may live at Polesworth and Shuttington to access the proposed development by public transport.
7.12 WCC have confirmed their support of the public transport strategy for the proposed development. Correspondence from WCC can be viewed at Appendix D.
7.13 A letter of support from Stagecoach for the proposed service extension is attached at Appendix D. Stagecoach have stated in the letter that "The funding is necessary for the route to be sustainable and continue to operate, in an environment where the covid-19 pandemic has reduced overall bus patronage, and would come from developer contributions."

8 CONCLUSION

8.1 Tetra Tech have been engaged by Hodgetts Estates to produce this public transport strategy to support a planning application for a proposed development of upto 100,000 sqm of mixed employment uses and 150 space overnight lorry park (including an associated 400sqm amenity block) on land to the northeast of M42 Junction 10.
8.2 The Stagecoach 766 and 767 bus services provide connections to large surrounding residential areas where employees may live including Tamworth, Dordon, Atherstone and Nuneaton and there are Arriva bus services available to other surrounding residential areas, including Polesworth. The bus stops surrounding the application site are not within easy accessible walking distance of the whole of the site and improvements to existing bus service provision are therefore proposed.
8.3 Tetra Tech have interrogated Nomis Census 2011 data for journeys to work by bus to predict where employees will be drawn from at the proposed development. The data available for the ward in which the application site is located, shows that the majority of people working within the ward travel from Dordon and Wood End (both within the ward itself) for travel by both car and by bus. The data shows that the Stagecoach $766 / 767$ service calls at a number of destinations on its route which draw employees who work within in the MSOA.
8.4 The public transport strategy for the site is to be predicated on the extension of the Stagecoach 766/ 767 services into the proposed development. The 766/ 767 bus service provides connections to a number of residential areas which draw employees by both car and bus to the ward in which the application site lies. These areas include Tamworth, Dordon and Atherstone.
8.5 A bus turning area is proposed within the M42 employment site, which would be located approximately 200 m from the A5/ Site Access junction. The proposed bus turning area would be deliberately located close to the site access junction to reduce the length of the diversion and thereby reduce the impact on existing passengers. The length of the diversion from the site access junction and out onto the A5 would be approximately 400 m .
8.6 The whole of the application site would be within a 400 m walk of the proposed bus stop at the bus turning area, which accords with local policy requirements for new developments.
8.7 The bus extension and proposed bus turning area has been agreed in principle with Warwickshire County Council's Transport Operations team and with Stagecoach.
8.8 The proposals for the site at M42 Junction 10 comply with local and national standards and, if approved, would provide attractive sustainable public transport travel options for employees travelling to and from the site.

APPENDIX A - FIGURES

M42 Junction 10, Tamworth
Site Location Plan

Figure 1
TETRA TECH

M42 Junction 10, Tamworth
Figure 2
Local Bus Stops

M42 Junction 10, Tamworth

Figure 3
Stagecoach 766/ 767 Extension Route

APPENDIX B - DRAWINGS

APPENDIX C - PUBLICATIONS

Road traffic
Tracking

Recent research from WYG transport planners reveals that people will walk further to catch a bus than current guidance suggests: \rightarrow

\rightarrow (hy is this finding of interest? Distance from bus services is important in transport planning, particularly when assessing the sustainability credentials of development sites or neighbourhoods. It determines whether new homes and businesses need additional or diverted bus services to ensure that people can use public transport for their daily journeys.
The WYG team analysed the National Travel Survey (NTS) data to assess the distances that people actually walk to access bus services. We compared this with current policy guidance and have then provided a sound evidential basis on which new guidance can be based.

Current guidance lacks evidence

Planning for Public Transport in New Development ${ }^{1}$ and Planning for Walking ${ }^{2}$ provide current guidance on acceptable walking distances to public transport.

Planning for Public Transport states that, in new development, the walk distance to a bus stop should not exceed 400 m , but it says this should not be treated as some arbitrary cut-off distance. Instead it is preferable to provide sensible bus routes, rather than follow a slavish adherence to a walking distance. The document references the 400 m walk distance from a Department of Environment circular ${ }^{3}$ that advised: 'Estates should be designed so that the walking distance along the footpath system to the bus stops should not be more than 400 m from the furthest houses and work places that they serve.' However, the circular provided no evidence to support this walking distance and no analysis was provided to justify the continued use of 400m.

Despite this, Planning for Walking sets the 400m maximum distance in stone, losing the flexibility of the earlier guidance: 'The

In London, the median distance from bus services for people is 400 m
power of a destination determines how far people will walk to get to it. For bus stops in residential areas, 400 m has traditionally been regarded as a cut-off point, in town centres, 200m.' The document provides no evidence to support this advice; the 400 m distance is simply seen as traditional. However, it recognises that more work is needed and welcomes new research for inclusion in further guidance.

National Travel Survey

The National Travel Survey (NTS) is a UK-wide survey by the Department for Transport (DfT) of some 15,000 households. Normally around half fully co-operate. This is some 7,700 to 8,200 households and over 18,000 individuals.

We used the 2002 to 2012 NTS dataset ${ }^{4}$, which provides nearly 8,000 records for walking from home to a bus stop. The data has been used to report the median, average and 85 th percentile walking distances for regional, journey purpose and sociodemographic reasons.

The mean walking distance for the rest of the UK is 580 m

Results

Figure 1 summarises the reported distances for regional and journey purposes. It shows that people walk a range of distances to reach a bus stop, with shorter distances in London than the rest of the UK. In London, the median distance is 400 m , with 480 m in the rest of the UK. The mean walking distance is 490 m in London and 580 m in the rest of the UK; in all areas, the 85 th percentile distance is 810 m . There is no cut-off at 400 m ; instead this distance represents a point on a distribution.

Figure 1 also shows the different walking distances for urban/rural areas and also for a range of journey purposes outside London. In each case, median and mean walking distances are greater than 400 m , at 480 m and 580 m respectively.

Figure 2 shows the recorded distances for a range of sociodemographic factors, including gender, age, walking ability and access to a car. It also shows the walking distances outside London for several

Region and journey purpose

Figure 1

Socio-demographics
Figure 2

People walk shorter distances to reach bus stops in London than the rest of the UK
socioeconomic factors. In each case, the mean and median walking distances are greater than 400 m . Interestingly, 480 m median and 580 m mean walk distances are not significantly affected by age, gender, disability or access to a car.

Increasing the catchment

The evidence indicates that the effective catchment of a bus stop should be increased to either the median distance or the mean distance: 400 m or 490 m in London and 480 m or 580 m outside of London. Direct and easy-to-understand bus services are surely more important than a slavish adherence to a walk distance. A rigid application of a maximum
walk distance could result in bus services being diverted to cater for a small number of people, increasing travel times for all, and decreasing the attractiveness of the bus service. Instead, there needs to be a balanced approach, considering the likely passenger benefits and disadvantages.

It is our view that the best guide to an acceptable walk distance is what bus-users already do. Figure 2 shows that people with access to a car have similar mean and median walk distances to other users, so it is reasonable to expect that the median or mean walk distance would not be unacceptable to drivers. The effect of other factors such as route frequency, waiting facilities, cost, quality of services on the uptake of bus travel are unknown and require further research.
> 'The power of a destination determines how far people will walk to get to it.'

Recommendations

From our study we recommend that there should be separate guideline walk distances for London from the rest of the UK. Current guidance on walk distance to a bus stop should be based on a sound evidential basis using either the median distance of 480 m or mean distance of 580 m outside London. The revised guideline walking distance should remain flexible to allow for the practicalities of operating bus services.

Nick Bunn
Director,
WYG.
Q nick.bunn@wyg.co
© www.wyg.com

Gareth Wakenshaw
Principle Consultant,
WYG.
O 01912557320
@ gareth.wakenshaw@wyg.com

References

1. Institute of Highways \& Transportation (1999), Guidelines for Planning for Public Transport in Developments, Institution of Highways \& Transportation
2. Chartered Institute of Highways \& Transportation (2015), Planning for Walking, Chartered Institution of Highways \& Transportation
3. Department of the Environment (1973), Circular 82/73, Bus Operation in Residential and Industrial Areas, Her Majesty's Stationery Office
4. Department for Transport, National Travel Survey: England, 2010, 2011 and 2012; and Department for Transport (2013) National Travel Survey: England 2013, Notes and Definitions, Department for Transport

A rigid application of a maximum walk distance could result in services being diverted

APPENDIX D - CORRESPONDENCE

From:	Clive Jones clivejones@warwickshire.gov.uk
Sent:	11 August 2022 10:58
To:	Groves, David
Cc:	Dan Jeanes; Nigel Whyte
Subject:	RE: M42 Junction 10 employment site - public transport strategy

OFFICIAL

Hi David

Many apologies for the delay in replying.

Looking at your diagrams, the proposed turning point is in a good location for the development vis-à-vis the A5 trunk road (for the convenience of users and without undue inconvenience to through passengers), subject to the design being such that all types of buses are able to make the turn into the bus turning circle and align to the bus stop, it appears would be acceptable to Warwickshire County Council. It will be expected that a shelter and associated equipment will be provided by the developer for the convenience of intending passengers.

The 'pump priming' s106 bus service provision is normally requested for a 5 year period, to ensure that best possible use is made to sustain the bus service into the future.

Regards

Clive Jones
Network Planning Officer
Warwickshire County Council
Transport Operations
Communities
Tel. 01926412112

From: Groves, David David.Groves@tetratech.com
Sent: 11 August 2022 10:31
To: Clive Jones clivejones@warwickshire.gov.uk
Subject: FW: M42 Junction 10 employment site - public transport strategy

Hi Clive,

This is the email with all the information for the M42 employment site.
I look forward to hearing from you.
Kind regards,

David

David Groves

Tetra Tech

4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY

Tel: +44 1912499816
Mob: +44 7966298053
tetratecheurope.com
Tetra Tech Limited. Registered in England number: 1959704
Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER VAT No: 431-0326-08.
This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.
f 9 in (回 Please consider the environment before printing. Read more

re TETRA TECH

From: Groves, David
Sent: 12 July 2022 14:57
To: 'clivejones@warwickshire.gov.uk' clivejones@warwickshire.gov.uk; 'stuartkocanpayne@warwickshire.gov.uk' stuartkocanpayne@warwickshire.gov.uk; 'danjeans@warwickshire.gov' danjeans@warwickshire.gov
Subject: FW: M42 Junction 10 employment site - public transport strategy

Hi Clive,

Good to discuss this scheme with you before.
Along with the original email below and attachments above, I have attached a site masterplan which shows the location of the proposed bus turning area. As stated below, the diversion distance to the turning area and back to the A5 for the 766 and 767 services is 400 m and will have a minimal impact on existing patronage which has allowed us to reach agreement with Stagecoach on our strategy.

It would be great to get WCC's formal approval of the strategy as we discussed on the phone and I look forward to hearing from you.

Kind regards,

David

David Groves

Principal Transport Planner

Tetra Tech

4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY
Tel: +44 1912499816
Mob: +44 7966298053
tetratecheurope.com

[^5]This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

Please consider the environment before printing. Read more

TETRA TECH

From: Groves, David
Sent: 06 June 2022 17:24
To: 'stuartkocanpayne@warwickshire.gov.uk' stuartkocanpayne@warwickshire.gov.uk;
'clivejones@warwickshire.gov.uk' clivejones@warwickshire.gov.uk; 'danjeans@warwickshire.gov.uk' danjeans@warwickshire.gov.uk
Subject: M42 Junction 10 employment site - public transport strategy
Hi Stuart,
Good to speak to you before.
As discussed we are providing the transportation input into the planning application for a large employment site near the M42 Junction 10 and I have been investigating public transport provision for the site. The location of the site is shown in the first attachment and the location of the nearest bus stops and services are shown in the second attachment. The eastbound stop for the Stagecoach 766 and 767 services which run along the A5 is approximately 650 m from the centre of the development site and the nearest westbound stop is in Birch Coppice Business Park. The bus stops on Birchmoor Road are slightly further away from the centre of the site and the Arriva services that call on them do not provide a services throughout the day.

We have therefore investigated the feasibility of diverting the 766 and 767 services into the site. Please see attached TT Drawing Number 0001 Rev P01 showing our proposed bus turning area for the M42 site. We have positioned the bus turning area between the access to the car park and lorry parking area for Unit 1 and it has been situated in a location to avoid conflict with those two accesses. We have tried to situate the bus turning area as close to the A5 as possible to reduce the length of the diversion and thereby limit the impact on existing customers to make the proposal more attractive to Stagecoach and its existing customer base. The length of the diversion from the A5 to the bus turning area and back out to the A5 is just over 400 m . We have a signalised access junction arrangement as you can see on the second attachment. The junction has designated left and right turn lanes in and a left lane out with the delay predicted to be around 10 seconds turning in and around 30 seconds at the lights to turn out.

The drawing incorporates the requisite signage and road markings at the access and exit from the bus turning area. We have shown an area of hardstanding at the south of the scheme for a bus shelter where passengers will board and alight. Footway is provided which connects to the footway already shown on the site layout.

The drawing also demonstrates that an 11.9 m bus can turn around in the bus turning area and can straighten up to the pick-up/ drop-off area before egressing. Its access and egress can be performed without the bus using the opposing carriageway and the second track also shows that an articulated lorry can access and egress the lorry park without conflict with the bus.

We are going to have improved pedestrian connections to the north to connect to Cockspur Street which will facilitate pedestrian movement from Birchmoor and Polesworth and allow them to access the bus services.

Stagecoach have agreed to divert the service into the bus turning area on its existing service frequency which has been deemed sufficient for Birch Coppice Business Park. The site is some 100,000sqft so we are hopeful that the connections to large catchment populations such as Tamworth which can be reached within an attractive journey time will yield future patronage. We know that the bus market is experiencing difficult times with regards to bus patronage and Stagecoach are pleased that there is an opportunity for further custom for a minimal diversion and therefore a minimal impact on current passengers. The developer will fund the pump priming of the service.

Would you be able to let us know if WCC support our proposal and if so, how many years the pump priming would be required for?

If you have any questions, then please do not hesitate to contact me on the number below.
Many thanks,
David

David Groves

Principal Transport Planner
Tetra Tech
4th Floor, Rotterdam House, 116 Quayside, Newcastle Upon Tyne, NE1 3DY
Tel: +44 1912499816
Mob: +44 7966298053
tetratecheurope.com
Tetra Tech Limited. Registered in England number: 1959704
Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER VAT No: 431-0326-08.
This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

This message contains confidential information and is intended only for the recipient. If you are not the recipient you should not disseminate, distribute or copy this email. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. E-mail transmission cannot be guaranteed to be secure or error-free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses. The sender therefore does not accept liability for any errors or omissions in the contents of this message, which arise as a result of e-mail transmission. If verification is required please request a hard-copy version. Tetra Tech is a trade name of the Tetra Tech Group, for our contracting entity company details please refer to our appointment documentation

This transmission is intended for the named addressee(s) only and may contain confidential, sensitive or personal information and should be handled accordingly. Unless you are the named addressee (or authorised to receive it for the addressee) you may not copy or use it, or disclose it to anyone else. If you have received this transmission in error please notify the sender immediately. All email traffic sent to or from us may be subject to recording and/or monitoring in accordance with relevant legislation.

David Groves
Principal Transport Planner
Tetra Tech
4th Floor, Rotterdam House
116 Quayside
Newcastle Upon Tyne
NE1 3DY

$9^{\text {th }}$ September 2022

Dear David

M42 Junction 10-employment site

I write to confirm that Stagecoach supports the proposed M42 Junction 10 development site and that we in principle would be happy to extend service $766 / 767$ into it based on the very latest design that has been discussed and reviewed accordingly.

The extended service would offer links to residential areas in Tamworth, Atherstone and Dordon and would run on its current daytime and evening frequency.

The proposed bus service extension would require "pump-prime" funding due to the additional resources required. This funding is necessary for the route to be sustainable and continue to operate, in an environment where the covid-19 pandemic has reduced overall bus patronage, and would come from developer contributions. The level of contribution will be discussed further in the coming months and will form part of the Section 106 Agreement. Given the acute need to reduce road traffic, it is vital that support is given to public transport options to serve new developments.

We trust this letter is sufficient to support the planning application, but please do not hesitate to contact me if you have any further queries.

Yours sincerely

Patrick Stringer

Commercial Director

M42 Junction 10, Tamworth
Figure 1
Site Location Plan
7
TETRA TECH

Proposed Employment Land NE of J10 M42

Figure 3

Source: Bancroft Figure 23

M42 Junction 10, Tamworth
Local Public Rights of Way

Figure 4
Tt tetra tech

M42 Junction 10, Tamworth
Cycling in Lichfield Map

Figure 6

M42 Junction 10, Tamworth
Proposed Footway to Barn Close
M42 Junction 10, Tamworth

Figure 7

national highways

Dordon to Atherstone project Public consultation

The need for the scheme

Warwickshire County Council and North Warwickshire Borough Council have highlighted the need for housing development and growth of businesses and logistical operations in the region. There is a need to provide adequate capacity on the A5 to accommodate increased travel demand associated with the proposed growth.

The A5 is part of a key strategic route between London and Holyhead. It forms a significant eastwest link across the South Midlands connecting the East and West Midlands and acts as a local distributor connecting a number of urban areas to the national motorway network (M1, M42, M69 and M6/M6(Toll).

The scheme is located in North Warwickshire between the Dordon roundabout (A5 Watling Street / Long Street / Gypsy Lane), Spon Lane roundabout at Grendon and Holly Lane roundabout (A5 / Holly Lane / B1143 Merevale Lane).

Initial development of the scheme

This project was developed by Warwickshire County Council through the application for a Housing Infrastructure Grant in 2019 provided by the Department for Levelling Up, Housing and Communities. The application was supported by National Highways, which was then asked to take the scheme forward to develop viable options.

National Highways deliver schemes to meet customer needs

National Highways is responsible for the management, maintenance and appropriate improvement of the strategic road network and is ideally placed to understand the development of schemes to manage current and future traffic needs.

Your views matter

This brochure provides a summary of the A5 Dordon to Atherstone project proposals currently under consideration.

It also outlines the processes used to further develop the options that may be taken forward. Information can also be found online at: https://highwaysengland.citizenspace.com/he/a5-dordon-toatherstone.

As potential schemes move forward, we are committed to ensuring all interested organisations and individuals will be able to comment on the proposals at public information events as well as online. We will ensure members of our project team are available to answer any questions and concerns.

See pages 18-19 for more information on our drop-in sessions and how to contact us for more information. We will be seeking your feedback over a six-week period, from Monday 5 September to Sunday 16 October 2022.

Scheme objectives

Improve connectivity and support economic growth

- Enable the delivery of housing development at strategic sites along the A5 that are linked to the scheme's funding.
- Consider wider economic growth.

Provide faster and more reliable journeys

- Reduce queuing on the A5 Dordon, Spon Lane and Holly Lane roundabouts.
- Improve journey time reliability along this section of the A5.

Improve safety for all

- Maintain and improve road safety on the A5 between Dordon and Atherstone.
- Improve road worker safety.

Environment

- Minimise adverse impacts on the environment.
- Seek opportunities to protect and enhance the environment.

Meeting the needs of all users

- Improve accessibility and safety for local road users, cyclists, walkers, horse riders and other vulnerable users of the network.

What you have told us so far

To support the development of options for this public consultation and encourage full and active participation in the planning process, engagement with North Warwickshire Borough Council, Warwickshire County Council and the A5 Partnership together with county, borough, town and local parish councillors has been taking place since July 2021.

These stakeholders have provided valuable insight that has enabled us to have a greater understanding of the concerns affecting road users, businesses and residents within the study area. We will continue to meet with these stakeholders throughout the life of the project. Such input is essential to help inform the development and design of the scheme.

Summary of options

We are consulting on three options which have varying levels of improvements against the scheme objectives.

Option A (Dual carriageway, signalised junction and new roundabout)

Option A introduces a dual carriageway bypass to the south of the existing A5 corridor and ties into the A5 at the Dordon roundabout. The Dordon roundabout will be upgraded to a four-way signalised junction, maintaining access to Long Street and Gypsy Lane direct from the A5 mainline. A new roundabout is proposed at the eastern end of the bypass to tie back into the existing A5. The existing bypassed section of the A5 is proposed to be de-trunked and will be accessed via the new roundabout.

Option B (Dual carriageway and two new roundabouts)

Option B introduces a dual carriageway bypass to the south of the existing A5 corridor and ties into the existing alignment of the A5 at the Dordon roundabout, with the dual carriageway replacing the existing roundabout. The existing Gypsy Lane junction with the A5 will be closed, a new roundabout will be provided to the east, along the new bypass, providing links back to Gypsy Lane, Long Street and the bypassed section of the A5. A second new roundabout is proposed at the eastern end of the bypass to tie back into the existing A5. The existing bypassed section of the A5 is proposed to be de-trunked and will also be accessible via the new eastern roundabout.

Option C (Dual carriageway, new roundabout and new junction)

Option C introduces a dual carriageway bypass to the south of the existing A5 corridor and ties into the existing A5 at the existing Dordon roundabout, with the dual carriageway replacing the existing roundabout. The existing Gypsy Lane junction with the A5 will be closed, a new left off/left on at grade junction will be provided to the east, along the new bypass, providing a link to/from Gypsy Lane. No right turns will be permitted into or out of Gypsy Lane, resulting in vehicles having to travel to the next roundabout to perform a U-turn.

A new roundabout is proposed at the eastern end of the bypass to tie back into the existing A5. The existing bypassed section of the A5 is proposed to be de-trunked and will be accessible via the new eastern roundabout. Access to Dordon/Long Street will be via the newly de-trunked section of A5 carriageway.

Holly Lane roundabout improvement

Improvements to Holly Lane will increase the size of the roundabout to provide additional capacity together with footpath and bus stop provision.

What benefits does the scheme deliver?

The section of the A5 between Dordon and Atherstone has been recognised as an area in need of improvement, in order to support housing growth being proposed by North Warwickshire Borough Council, and this forms a key element of the Housing Infrastructure Grant application. Junction and associated improvement works at A5 / Long Street, A5 / Holly Lane and A5 / Spon Lane have been identified as necessary in order to support this housing growth.

As well as supporting proposed housing growth, the scheme improvements will also aim to:

1. Improve journey time reliability
2. Contribute to enabling local and regional economic growth
3. Meet the needs of all users
4. Minimise impacts on noise and air quality
5. Maintain safety for all and improve it where possible
6. Support wider economic growth created by the capacity improvements at the housing developments
7. Minimise impacts on the natural environment and optimise environmental opportunities and mitigation
8. Provide opportunities for improved accessibility for all users

Benefits and impacts of the options

Option A Option B Option C Existing

Transport
Journey times and congestion
＊＊

Vehicle movements Gypsy Lane
水水
水水水
＊
＊

Vehicle movements Long Street	$* * * *$	$* * *$	$*$	$* *$
Road safety	$* * * *$	$* * * *$	$* * * *$	$* *$
Walking，cycling and horse－ riding provision	$* * * *$	$* * * *$	$* * * *$	$*$

Economy				
Economic growth		＊＊＊	＊＊＊	＊
Construction duration （approximate）	13 months	24 months	24 months	N／A
Construction disruption	XX	xXX	xXx	N／A
Cost	£££	£££££	££££	N／A
Environment				

Air quality（overall emissions）	＊＊	＊$㇇ ⿰ 亅 ⿱ 丿 丶 丶 ㇒ ⿻ 土 一 𧘇 ~$		＊
Greenhouse gas	＊＊	＊＊	水水	＊
Land take	X X X	XXXX	X X X	N／A
Noise	x X X	x X X	X X X	$\mathbf{X X X X}$
Cultural heritage	X X	X X X	X X X	N／A
Landscape	＊＊＊	＊＊	＊＊＊	＊＊＊＊
Biodiversity	＊＊$㇇ ⿰ 亅 ⿱ 丿 丶 丶$	＊$㇇ ⿰ 冫 ⿰ 亅 ⿱ 丿 丶 丶 ㇒ ⿻ 土 一 𧘇 ~$		＊
Road drainage and the water environment	＊＊＊	＊＊		＊＊

Key

$* * * *$	Very significant positive impact	$\mathbf{x X X X}$	Very significant negative impact
$* * *$	Significant positive impact	$\mathbf{x X X}$	Significant negative impact
$* *$	Positive impact	$\mathbf{x X}$	Negative impact
$*$	Slight positive impact	\mathbf{x}	Slight negative impact

Benefits and impacts of the options

Each of the options to upgrade the A5 between Dordon and Atherstone can deliver benefits for road users, the local economy and local residents but have differing benefits and impacts. Below is a summary of the impacts and benefits of each one.

Transport

Journey times and congestion

The A5 between Dordon and Atherstone is often heavily congested, being largely single carriageway. The junctions / roundabouts at Dordon, Spon Lane and Holly Lane are particular sources of congestion. This affects journey times.

The options proposed will all reduce journey times and congestion along this section of the road with option C providing the most benefit.

Vehicle movements around Gypsy Lane and Long Street

Option A allows vehicles to access all roads in particular Gypsy Lane and Long Street. Option B allows vehicles to access all roads however traffic would have to use a short section of the new distributor road to gain access to Gypsy Lane and Long Street. The existing roundabout allows for access to all roads but is impacted by high volumes of traffic.

Option C has access to Gypsy Lane and Long Street, however there is a longer route to allow this to take place, and measures would have to be considered to prevent U-turns at entrances to Core42 and Birch Coppice Business Parks.

Road safety

Options A and B are most likely to improve road safety. Option B provides the most benefit as it includes the traffic calming measures of a junction or roundabout. Option C has a slight disbenefit compared to the existing arrangement.

Walking, cycling and horse-riding provision

Options A, B and C all identify the need for a grade separated crossing where an existing Public Right of Way (Warwickshire footpath section 24) will be severed by the southern bypass. A footbridge is proposed at this location.

Option A severs a Public Right of Way near Gypsy Lane (Warwickshire footpath section 50) with the proposed approach road to the new Dordon roundabout. Likewise, this Public Right of Way is also severed by the Option C proposals. A public footpath realignment to facilitate a safer crossing is proposed in this location.

Economy

Economic growth

Reducing congestion along this section of the A5 would have widespread economic benefits as businesses and productivity benefit from quicker, cheaper journeys. All three options will provide a road suitable for the increase in users from the proposed housing developments adjacent to the current A5.

Construction duration

Option A is likely to take over a year to build. Options B and C will require more movement of earthworks on site and are likely to take up to two years to build.

Construction disruption

For all three scheme options, a large amount of the proposed construction works will be undertaken offline from the A5. Where existing junctions are altered proposed road works will be programmed to minimise the disruption impact. National Highways will work closely with the local community to keep them informed of the scheme works including route diversions and closures.

Cost

In comparison to the other options, Option A has the lowest cost followed by Option C with Option B being the most expensive option. This scheme will be funded via the Housing Infrastructure Fund (formerly Grant), provided by the Department for Levelling Up, Housing and Communities.

Environment

A preliminary assessment of the environmental impacts of the proposed scheme and route options has been undertaken ahead of this public consultation. Below is a summary of the key findings relating to the main environmental topics. To learn about our ambitious plan to reach net zero carbon visit: Nationalhighways.co.uk/ netzerohighways.

Air quality

During construction, impacts from construction dust will be mitigated through the implementation of best practice measures during the works. All three options will increase the distance between the traffic on the A5 and properties on Watling Street, thus improving air quality experienced at these locations. The addition of the eastern roundabout in all options, the western roundabout in Option B and the T-junction in Option C, all have the potential to decrease air quality at nearby properties. However, the overall impacts on air quality from all options are likely to be neutral to slightly significant.

Greenhouse gas

All three options have been designed to minimise greenhouse gas emissions and reduce the vulnerability of the scheme to climate change impacts. During the construction phase, the options would generate impacts to greenhouse gas emissions via site clearance and earthworks, with Option B requiring a larger area of land for the western roundabout. There would also be an increase in emissions from the production of materials required to build all of the options, fuel and water use and the treatment and transportation of waste. With this in mind, all three options will be designed to minimise greenhouse gas emissions and reduce the vulnerability of the scheme to climate change impacts.

Land take

To build any of these options, we'll need to purchase land. Some of this land would be needed permanently and other parts would only be needed temporarily. Some land would already be part of the existing strategic and local road network.

A large part of the land required to build the options is agricultural. All options would result in the loss of agricultural land. We will work with the affected landowners directly to look at how we could reduce the impact on them.

As the scheme progresses and the design is developed, we'll be able to provide more accurate information on the land we would need. Key locations to note land take impacts include:

Dordon: Options A, B \& C have no requirement to take land that is outside the current highway boundary. A number of verge areas will be used to realign junctions and roundabouts for the improvements that will take place.

Bypass: Options A, B \& C all have the requirement to take land that is outside the current highway boundary. The land has a current agricultural or industrial use.

New roundabout to tie in with existing A5: Options A, B \& C all have the requirement to take land that is outside the current highway boundary. The land has a current agricultural or industrial use.

Noise

Construction: During construction, noise levels would increase where road construction works are required. We intend to minimise this where possible through good construction practice.

Operations: Options A, B and C will aim to reduce road traffic noise by the creation of a new section of dual carriageway which has the potential to reduce the noise levels for existing properties on the north side of the scheme. We will also look into opportunities to enhance the acoustic environment of the designated Noise Important Areas associated with the scheme.

Cultural heritage

Options A, B and C will create no major impacts on heritage resources such as Listed Buildings, the Watling Street Bridge Conservation Area and the Grade II* Registered Park and Garden at Merevale Hall. There are unlikely to be significant impacts on Watling Street (Roman Road) as the modern A5 is anticipated to have removed most traces of archaeological remains.

The most likely areas where undiscovered archaeology may be found would be in areas of new land take. This can be mitigated with advanced geophysical survey or field evaluation to inform the design stage and avoid areas of highest archaeological sensitivity. This would be followed by more detailed field evaluation and archaeological monitoring to inform a suitable and proportionate programme of construction phase mitigation.

Landscape

Views from properties including along Watling Street and Swan Farm would be affected by all three options due to the elevated nature of the proposed bypass and roundabout on embankments. Views would also be affected from local Public Rights of Way and also from users of the Coventry Canal.

All of the options would permanently alter the existing topography of the area. The new road would introduce an engineered form into the landscape including the crossing over the Penmire Brook. This would alter some of the key landscape characteristics of the Arden National Character Area 97 as denoted by Natural England within which the project is located.

At detailed design stage, we will refine the horizontal and vertical alignments of the route and position of junctions and overbridges to reduce the impacts on landform, vegetation, field pattern and landscape features to reduce the effects on both the landscape character and local views.

We will replace vegetation lost during the construction phase to restore visual screening where possible, promote integration with landscape pattern and reconnect boundaries with wildlife corridors.

Biodiversity

Options A, B and C have the potential for significant ecological effects due to the construction footprint associated with the dual carriageway, roundabout and junction. The requirement for watercourse diversions and the loss and severance of woodlands and other habitats including within Penmire Brook Swamp potential Local Wildlife Site means all options would result in significant biodiversity loss with likely impacts on the remaining ecology. Option A would incur marginally fewer impacts given its smaller construction footprint.

Further ecological surveying is required before the impacts of the scheme can be fully assessed.

At the next stage of the project, we will devise detailed measures to reduce the impacts of habitat loss and review the need for additional land take to offset the impacts.

At National Highways, we're working hard to achieve our target on all current schemes of no net loss of biodiversity by the end of 2025. For schemes which start beyond 2025, as would be the case for this scheme, we will go further, aiming for a 10\% biodiversity net gain as required by the new Environment Act 2021. We'll explore ways to increase biodiversity by 10\% in and around this scheme at a later stage.

Water environment

Options A, B and C are all proposed to cross over a new section of the Penmire Brook. This will impact the current alignment of the Penmire Brook requiring culverting under the road. The design of the culvert can impact the amount of flow downstream, impacting on flow regime and peak levels. This could lead to increased flood risk and impact natural habitats. All options also have the potential to increase surface water runoff with potential impacts on the watercourse and surrounding ecology. Excavations below ground have the potential to alter groundwater flow paths.

The effects on the water environment have the potential to be significant. We will be undertaking a more detailed level of assessment and modelling of the Penmire Brook and associated tributaries at the next stage of development to enable a more accurate assessment to be undertaken. This will help us to refine the necessary mitigation and monitoring.

Long list options not taken forward

In previous stages of the study, Warwickshire County Council looked at a wide list of options and how they performed against the scheme objectives. The options not taken forward considered proposals to the north of the A5 and online widening, these were discounted due to their impacts on existing housing together with greater environmental impacts when compared to the southern options.

While there were many subtle variations of the three options that were finally selected, all long list options were compared against each other and assessed and appraised against the scheme objectives together with stakeholder opinions to create the short list to be consulted on.

What if we did nothing?

Increased traffic flows will cause additional pressure on the road and its junctions' capacity in the future.

The current levels of traffic congestion on the A5 between Dordon and Atherstone will increase without intervention. The forecasted increase in traffic together with housing that is proposed within the North Warwickshire Borough Council Local Plan means the congestion will worsen over time.

What happens next?

Having received the full range of responses to the consultation, National Highways will undertake a programme of analysis and produce a consultation report. This report will summarise and consolidate the feedback received and will be made available to the public once the consultation has concluded. Comments, concerns and expressions of support will be passed on to the project team and included as part of the ongoing project development.

How to find out more

Dordon Village Hall,

Browns Lane, Dordon, Tamworth, B78
1TR.
Thursday 8 September 2022
2pm-8pm
Thursday 6 October 2022
2pm-8pm

Grendon Community Centre,
Boot Hill, Grendon, Atherstone CV9 2EL.
Thursday 15 September 2022
3pm-8pm

Owen Street Community Arts Centre,

Owen Street, Atherstone CV9 1DG.
Wednesday 28 September 2022
11:30am-5pm

> To speak to a member of the team, call 03004700663 from 9 am to 5 pm , Monday to Friday

Webinars

We're holding two webinars, where attendees will receive a presentation about the route options from the project team and will be given opportunities to ask questions. These webinars will be held on:
Tuesday 20 September at 6pm
Thursday 13 October at 6pm

Engagement van

Our mobile engagement van will also be visiting a number of locations throughout the consultation period.

Or pick up a brochure at:

Dordon Library/Post Office, Whitehouse Road, Dordon, Tamworth, Staffordshire, B78 1QE.

Baddesley Village Hall, Community Hub

 and Library, 31, 32 Keys Hill, Baddesley Ensor, Atherstone CV9 2DF.
Atherstone Library and Information Centre,

 Long Street, Atherstone, CV9 1AX.Baddesley Store \& Post Office, 17-19 New
Street, Baddesley Ensor, Atherstone CV9 2DW.

Grendon Newsagents, 79 Watling Street,
Grendon, Atherstone, CV9 2PQ.
Coleshill Road Post Office and Convenience
Store, 90 Coleshill Rd, Atherstone CV9 2AF.

Mancetter Post Office and Mobile Shop,
1A Manor Rd, Mancetter, Atherstone, CV9 1NS.
Esso Petrol Station, A5 Watling Street,
Dordon, Tamworth, B78 1SS (eastbound and westbound).

Polesworth Library and Information Centre,
Bridge St, Polesworth, Tamworth B78 1DT.

Polesworth Post Office/Spar, 2-4 Bridge St,
Polesworth, Tamworth B78 1DT.
Costa Drive Thru, Watling St, Grendon, Atherstone CV9 2PY.

Moto Tamworth Services
M42, Junction 10.

For further details about our webinars or engagement van visit: https://highwaysengland.citizenspace. com/he/a5-dordon-to-atherstone.

How to respond

Please respond using one of the following channels, set up for the specific purpose of this consultation:
Online: https://highwaysengland.citizenspace.com/he/a5-dordon-to-atherstone.

Email: A5dordontoatherstone@nationalhighways.co.uk

Post: Please note the address is case sensitive: Freepost A5 D2A CONSULTATION

National Highways wants to hear your views.

You can find an online response form at: https://highwaysengland.citizenspace.com/he/a5-dordon-to-atherstone or post the response form at the centre of this document. National Highways is unable to guarantee that responses sent by channels other than those listed above will be included in the consultation process.

All responses should include your name and postcode and state whether you are responding as an individual or representing the views of an organisation. If responding on behalf of an organisation, please make it clear what the organisation is and how the views of members were gathered if applicable.

All responses must be received by 11.59pm on 16 October 2022. Responses after this date may not be considered.

If you are filling out our physical questionnaire please pull out of the full brochure and put it in an envelope with our Freepost address, there's no need for a stamp. If you need additional room to fill out your comments feel free to use extra paper.

Public Consultation reponse form

We'd like to understand your views on the options for highways improvements on the A5 between Dordon and Atherstone. Our consultation is running for six weeks from 5 September to 16 October 2022.

Before completing this response form we recommend you read the consultation brochure which can be found on our webpage at: https://highwaysengland.citizenspace.com/he/a5-dordon-to-atherstone.

You can also find more information about this consultation and complete this response form online. All information provided is treated in confidence. To return this form by post, please put it in an envelope, write our Freepost address on the front and put it in a post box. There is no need for a stamp. The Freepost address is: Freepost A5 D2A CONSULTATION (Please note the Freepost address is case sensitive).

To ensure that your views can be taken into account, please return this form by 16 October 2022. Please provide your name, address and either your email address or telephone number. If you'd prefer your comments to be anonymous, please just provide your postcode so we can understand where you live in relation to the scheme.

Name:

Address:
Postcode:

Email address:

Telephone number:

We may use your details to contact you in the future about your response or to provide you with updates about the scheme.

Are you happy for us to contact you about your response if required?
Yes
No \square

Do you want to receive future updates about the scheme?
Yes
No

Are you responding on behalf of an organisation?
Yes \qquad
No

[^6]Organisation name:
Role within organisation:

Section 1:

Your views on the current road

The following questions relate to your current use of the A5 between Dordon and Atherstone.

1. Which of the following best describes you?

(please tick):
I'm a local resident
I'm a local business owner
I work locally
I'm an affected landowner
I travel along the A5 between Dordon and Atherstone regularly using a private vehicle I travel along the A5 between Dordon and Atherstone regularly using a commercial vehicle i.e. HGV, van, coach

Other (please specify):

2. Please tell us why you use the A5 between Dordon and Atherstone?

(please tick):
Travelling to or from work
Travelling for business
Leisure/recreation
School pick up/drop off
Long distance journeys (greater than 10 miles)
I don't use this section of road
Other (please specify):

3. How do you normally travel along the A5 between Dordon and Atherstone?

(please tick):
Car
HGV or LGV
Bus or coach
Motorcycle
Walking / cycling / horse riding
Other (please specify):
4. How often do you travel along the A5 between Dordon and Atherstone?
(please tick):
Daily
Weekly
Fortnightly
Monthly
Quarterly
Twice-yearly
Annually
Never
5. When do you usually travel along the A5 between Dordon and Atherstone?
(tick all that apply):
Weekday morning peak (typically between 7am to 10am)
Weekday evening peak (typically between 4pm to 7pm)
Weekday off-peak (all other times)
Weekends anytime
Never

6a. How satisfied or dissatisfied are you with the following elements of the A5 between Dordon and Atherstone as it is now?
(Please tick one answer in each row):

Very dissatisfied	Dissatisfied	Neither dissatisfied nor satisfied	Satisfied	Very satisfied	
Congestion	\square	\square	\square	\square	\square
Journey time	\square	\square	\square	\square	\square
Road safety	\square	\square	\square	\square	\square
Road layout between Dordon and Atherstone	\square	\square	\square	\square	\square
Noise	\square	\square	\square	\square	\square
Air quality	\square	\square	\square	\square	\square
Visual impact	\square	\square	\square	\square	\square
Access for pedestrians, cyclists and horse riders	\square	\square	\square	\square	\square

6b. Please provide any further comments you may have on the A5 between Dordon and Atherstone as it is now.
Consider commenting on issues like safety, journey times, how it impacts on your livelihood or lifestyle.

Section 2:

Your views on the options to dual the route

These questions relate to the three options for dualling the A5 between Dordon and Atherstone. These can be seen on pages 7-9 of the consultation brochure.
7. To what extent do you agree that improvements to the A5 between Dordon and Atherstone are needed?

Strongly agree	Agree	Neither disagree nor agree	Disagree	Strongly disagree
\square	\square	\square	\square	\square

8a. Which option would you prefer when considering safety?

For more information about each of these factors, see page 12-13 of the brochure.
(Please tick):

	Option A	Option B	Option C	No preference
Safety during construction	\square	\square	\square	\square
Safety of completed improvement scheme	\square	\square	\square	\square

8b. Which option would you prefer when considering journey time?
For more information about each of these factors, see page 12-13 of the brochure.
(Please tick):

	Option A	Option B	Option C	No preference
Journey time in construction	\square	\square	\square	\square
Journey time of completed improvement scheme	\square	\square	\square	\square

8c. Which option would you prefer when considering the environment?

For more information about each of these factors, see pages 14-16 of the brochure.
(Please tick):

	Option A	Option B	Option C	No preference
Air quality	\square	\square	\square	\square
Greenhouse gas	\square	\square	\square	\square
Land take	\square	\square	\square	\square
Noise	\square	\square	\square	\square
Cultural heritage	\square	\square	\square	\square
Landscape	\square	\square	\square	\square
Biodiversity	\square	\square	\square	\square
Water environment	\square	\square	\square	\square

9a. Out of the three options proposed for dualling the A5 between Dordon and Atherstone, which option do you think would be best overall?
(Please tick):

Option A	Option B	Option C	No preference
\square	\square	\square	\square

9b. If you have selected a preferred option in question 9a, please tell us your reason(s).
(tick all that apply):

Reduced congestion
Improved journey time
Improved road safety
Least visual or noise impact
Shortest construction time
Least amount of land taken
Smallest impact on biodiversity
Don't know
Other (please specify)

9c. Please expand on your reasons for selecting the answer(s) in question 9a and 9b.

Section 3:

Your views on proposed improvements

to the A5

10a. How supportive are you of the proposed improvements to the A5?

Please tick the box that best represents your views (details on proposed improvements can be seen on pages 7-9 of the consultation brochure):

Strongly support	Support	Neither support nor oppose	Oppose	Strongly oppose
\square	\square	\square	\square	\square

10b. Please provide any further comments you may have on the A5 improvements:

Section 4:

Any additional comments

11. Do you have anything else you'd like to share in relation to the proposed dualling improvements, including how it may improve or impact your lifestyle or livelihood?

Section 5:

Working with you

To help us improve how we consult in future, we'd be grateful if you could answer the questions below.
12. How did you hear about the consultation?
(tick all that apply):

Leaflet received in the post	\square
Local media	\square
Scheme webpage alert	\square
Social media	\square
Word of mouth	\square
Poster	\square
National Highways' engagement van	\square

Other (please specify):
13. How helpful did you find our consultation materials and events?
(Please tick):

	Very helpful	Helpful	Neutral	Unhelpful	Very unhelpful
Consultation brochure	\square	\square	\square	\square	\square
Online virtual exhibition	\square	\square	\square	\square	\square
Consultation event(s)	\square	\square	\square	\square	\square

Online webinar(s)	\square	\square	\square	\square	\square
National Highways' engagement van	\square	\square	\square	\square	\square

14. What is your preferred method of communication for consultation?
(Please tick):

	Preferred communication method
Consultation brochure	\square
Online virtual exhibition	\square
In person consultation event(s)	\square
Online webinar(s)	\square
National Highways' engagement van	\square

Section 6:

Equality and diversity

We'd be grateful if you could answer the following equality and diversity questions.

We'll use this information to help understand whether our consultation has been useful to people of different backgrounds and with different requirements. We may publish a summary of the results, but no information about an individual would be revealed.

The answers you provide to this question are defined as 'special category data'. If you agree to provide this information, you can withdraw your permission for us to use it at any time. To do that, please email DataProtectionAdvice@nationalhighways.co.uk.

\square
I consent to National Highways processing my special category data for the purposes of understanding the accessibility of the A5 Dordon to Atherstone consultation. I have read National Highways' privacy notice on page 30 and understood how it will be processing this data.

15. How would you define your gender?

Male
Female
Transgender
Other
Prefer not to say

16. How would you define your ethnicity?

Asian or British Asian
White (British)
White (other)
Black African
Black Carribean
Black (British)
Mixed or multiple ethnic
Other ethnic group
Prefer not to say

17. Age:

Under 16
16-24
25-34
35-44
45-54
55-64
65+
Prefer not to say
18. Is your ability to travel limited by a health or disability which has lasted, or is expected to last, at least 12 months?

Yes, limited a lot
Yes, limited a little
No
Prefer not to say
19. Are you responsible for caring for an adult relative/partner, disabled child or other?
Yes
No
Prefer not to say
20. Are you a blue badge holder?

Data protection and you

National Highways has fully committed to compliance with the UK General Data Protection Regulation (UK-GDPR).

We collect and handle a variety of personal data so that we can deliver services to our customers and anyone using England's motorways and major A-roads.

This privacy notice applies to any personal data collected by us or on our behalf, by any format - phone, letter, email, online or face to face.

We collect and handle data to:

- provide the service you've asked for - for example, if you have a query that you need a response to, or if you use our crossing on the Dartford Tunnel
- process payments for our crossings
- stay in contact with you - for example, if you sign up to one of our newsletters to get information about traffic updates or are involved in our consultation exercises
- fulfil legal obligations
- provide information to central government, when the law says we need to
- assess our performance, ensure value for money, and set targets for departments
- provide information to the Office of Rail and Road and to Transport Focus, which are our regulatory authorities

For full details of our data protection policy please visit: www.nationalhighways.co.uk/ about-us/privacy-notice/ or contact: dataprotectionadvice@nationalhighways.co.uk.

Notes

If you need help accessing this or any other National Highways information, please call 03001235000 and we will help you.
© Crown copyright 2022.
You may re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence:
visit www.nationalarchives.gov.uk/doc/ open-government-licence/
write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email psi@nationalarchives.gsi.gov.uk

Mapping (where present): © Crown copyright and database rights 2022 OS 100030649. You are permitted to use this data solely to enable you to respond to, or interact with, the organisation that provided you with the data. You are not permitted to copy, sub-licence, distribute or sell any of this data to third parties in any form.

This document is also available on our website at www.nationalhighways.co.uk.

For an accessible version of this publication please call 03001235000 and we will help you.

If you have any enquiries about this publication email info@nationalhighways.co.uk
or call 03001235000^{*}. Please quote the National Highways publications code PR168/22.

National Highways creative job number BHM22_0120.
*alls to 03 numbers cost no more than a national rate call to an 01 or 02 number and must count towards any inclusive minutes in the same way as 01 and 02 calls.

These rules apply to calls from any type of line including mobile, BT, other fixed line or payphone. Calls may be recorded or monitored.

Printed on paper from well-managed forests and other controlled sources when issued directly by National Highways.

Registered office Bridge House, 1 Walnut Tree Close, Guildford GU1 4LZ.

National Highways Limited registered in England and Wales number 09346363.

APPENDIX I BANCROFT CONSULTING RADAR SPEED METER SURVEY RESULTS 26 APRIL 2021

observed speed mph	no. of readings	$\mathrm{n} \times \mathrm{x}$	$n \times x^{2}$
10	0	0	0
11	0	0	0
12	0	0	0
13	0	0	0
14	0	0	0
15	0	0	0
16	0	0	0
17	0	0	0
18	0	0	0
19	0	0	0
20	0	0	0
21	0	0	0
22	0	0	0
23	0	0	0
24	1	24	576
25	0	0	0
26	0	0	0
27	0	0	0
28	0	0	0
29	2	58	1682
30	1	30	900
31	0	0	0
32	3	96	3072
33	4	132	4356
34	5	170	5780
35	6	210	7350
36	14	504	18144
37	10	370	13690
38	6	228	8664
39	12	468	18252
40	12	480	19200
41	8	328	13448
42	9	378	15876
43	11	473	20339
44	18	792	34848
45	13	585	26325
46	11	506	23276
47	8	376	17672
48	5	240	11520
49	11	539	26411
50	6	300	15000
51	4	204	10404
52	5	260	13520
53	3	159	8427
54	2	108	5832
55	1	55	3025
56	3	168	9408
57	2	114	6498
58	0	0	0
59	0	0	0
60	0	0	0
61	0	0	0
62	1	62	3844
63	2	126	7938
64	0	0	0
65	1	65	4225
66	0	0	0
67	0	0	0
68	0	0	0
69	0	0	0
70	0	0	0
71	0	0	0
72	0	0	0
73	0	0	0
74	0	0	0
75	0	0	0
76	0	0	0
77	0	0	0
78	0	0	0
79	0	0	0
80	0	0	0
	$\mathrm{n}=$	$\Sigma \mathrm{v}=$	$\Sigma \mathrm{v}^{2}=$
Total Σ	200	8608	379502

SPEED READINGS FOR DUAL CARRIAGEWAYS

location: direction:	A5 Watling Street, Dordon Eastbound
day:	Monday
date	26.04.21
time:	0900 to 0946
SUMMARY	
mean	43.04 mph
85\%ile	49.68 mph

Step 1:
Mean speed
$m=\frac{\sum v}{n} \quad m=\quad 43.04 \mathrm{mph}$

Step 2:
Finding Value Σ
$\Sigma(v-m)^{2}=\Sigma v^{2}-\frac{\left(\sum v^{2}\right)}{n} \quad \Sigma(v-m)^{2}=9013.68$

Step 3
Standard deviation
$S=\sqrt{\frac{\sum(v-m)^{2}}{n-1}} \quad s=\quad 6.64 \mathrm{mph}$
Step 4:
85 percentile dry weather spot speed
$p 85=m+s \quad p=\quad 49.68$

85% ile/mean $=$
should be 1.1 to 1.25

S.D./mean $=$
should be approx $1 / 6$
:---

$\begin{array}{\|r\|} \hline \text { observed } \\ \text { speed } \\ \mathrm{mph} \end{array}$	no. of readings	$\mathrm{n} \times \mathrm{x}$	$n \times x^{2}$
10	0	0	0
11	0	0	0
12	0	0	0
13	0	0	0
14	0	0	0
15	0	0	0
16	0	0	0
17	0	0	0
18	0	0	0
19	0	0	0
20	0	0	0
21	0	0	0
22	0	0	0
23	0	0	0
24	0	0	0
25	0	0	0
26	0	0	0
27	0	0	0
28	0	0	0
29	0	0	0
30	0	0	0
31	1	31	961
32	2	64	2048
33	0	0	0
34	0	0	0
35	2	70	2450
36	5	180	6480
37	5	185	6845
38	8	304	11552
39	7	273	10647
40	10	400	16000
41	5	205	8405
42	17	714	29988
43	9	387	16641
44	5	220	9680
45	7	315	14175
46	11	506	23276
47	8	376	17672
48	12	576	27648
49	8	392	19208
50	5	250	12500
51	11	561	28611
52	7	364	18928
53	9	477	25281
54	9	486	26244
55	6	330	18150
56	5	280	15680
57	1	57	3249
58	5	290	16820
59	2	118	6962
60	7	420	25200
61	3	183	11163
62	2	124	7688
63	3	189	11907
64	1	64	4096
65	1	65	4225
66	1	66	4356
67	0	0	0
68	0	0	0
69	0	0	0
70	0	0	0
71	0	0	0
72	0	0	0
73	0	0	0
74	0	0	0
75	0	0	0
76	0	0	0
77	0	0	0
78	0	0	0
79	0	0	0
80	0	0	0
	$\mathrm{n}=$	$\Sigma \mathrm{v}=$	$\Sigma \mathrm{v}^{2}=$
Total Σ	200	9522	464736

SPEED READINGS FOR DUAL CARRIAGEWAYS
location: A5 Watling Street, Dordon
direction: Westbound
day: Monday
date 26.04.21
time: 1028 to 1113

SUMMARY

mean	47.61 mph	76.6 kph
85% ile	55.09 mph	88.6 kph

Step 1:
Mean speed
$m=\frac{\sum v}{n} \quad m=\quad 47.61 \mathrm{mph}$

Step 2:
Finding Value Σ
$\sum(v-m)^{2}=\Sigma v^{2}-\frac{\left(\sum v^{2}\right)}{n} \quad \Sigma(v-m)^{2}=11393.58$

Step 3:
Standard deviation
$S=\sqrt{\frac{\sum(v-m)^{2}}{n-1}} \quad s=\quad 7.48 \mathrm{mph}$
Step 4:
85 percentile dry weather spot speed
$p 85=m+s \quad p=\quad 55.09$
85\%ile/mean =
\quad should be 1.1 to 1.25
S.D./mean $=$
should be approx $1 / 6(0.17)$

* for simplicity, gradient will be given as zero where details of levels are unavailable and observed gradients are deemed to be insignificant in terms of the effect on vehicle braking
** 2.4 metres added to splay to allow for bonnet length of approaching vehicles

* for simplicity, gradient will be given as zero where details of levels are unavailable and observed gradients are deemed to be insignificant in terms of the effect on vehicle braking
** 2.4 metres added to splay to allow for bonnet length of approaching vehicles

APPENDIX J ROAD SAFETY DATA

AccsMap - Accident Analysis System

Accidents between dates \quad 01/01/2017 and 31/12/2019 (36) months

Selection:

Selected using Manual Selection

The accident occured at a T or staggered junction on the A5, a slip road at its junction with the A5 controlled by a give way or uncontrolled..

Special conditions and hazards: None

Vehicle 1 Car, travelling from NW to N was going ahead on a left bend on the main carriageway. The vehicle cleared junction or waiting/parked at junction exit. The female driver aged 18 lived in B77.
Vehicle 2 Car, travelling from N to S was going ahead other on the main carriageway. The vehicle was approaching junction or waiting/parked at jun approach. The female driver aged 84 lived in B77.
Casualty 1 (Vehicle 2) A female driver aged 84 suffered a serious injury.

Contributory Factors

Vehicle 1 Travelling too fast for conditions

Special conditions and hazards: None
Vehicle 1 Car, travelling from SE to NW was going ahead other on the main carriageway. The vehicle was entering roundabout. The male driver age lived in CV6.
Vehicle 2 Pedal Cycle, travelling from NE to SW was going ahead other on the main carriageway. The vehicle was mid junction - on roundabout or n road. The male driver aged 33 lived in B77.
Casualty 1 (Vehicle 2) A male rider aged 33 suffered a slight injury.
Contributory Factors
Vehicle 1 Failed to look properly
Vehicle 1 Passing too close to cyclist, horse rider or pedestrian
Vehicle 2 Cyclist wearing dark clothing at night
Vehicle 2 Not displaying lights at night or in poor visibility

AccsMap - Accident Analysis System

Accidents between dates \quad 01/01/2017 and 31/12/2019 (36) months

Selection:

Notes:

Selected using Manual Selection

The accident occured at a roundabout on the B5080, a single carriageway at its junction with the A5 controlled by a give way or uncontrolled..

Special conditions and hazards: None
Vehicle 1 Car, travelling from NW to SE was going ahead other on the main carriageway. The vehicle was entering roundabout. The female driver as 18 lived in B77.
Vehicle 2 Car, travelling from NW to SE was stopping on the main carriageway. The vehicle was entering roundabout. The male driver of an unknov age lived in B9.

Casualty 1 (Vehicle 1) A female driver aged 18 suffered a slight injury.

The accident occured on the A5, a slip road.
Special conditions and hazards: None

Vehicle 1 Car, travelling from SE to NW was stopping on the main carriageway. The vehicle was not at, or within 20M of a junction and skidded. The male driver aged 18 lived in BH31.

Casualty 1 (Vehicle 1) A male driver aged 18 suffered a slight injury.

Contributory Factors

Vehicle 1 Poor turn or manoevre

Vehicle 1 Sudden braking
Vehicle 1 Loss of control

The accident occured at a roundabout on the D66, a single carriageway at its junction with the B5404 controlled by a give way or uncontrolled.

Special conditions and hazards: None

Vehicle 1 Car, travelling from SW to NE was going ahead other on the main carriageway. The vehicle was approaching junction or waiting/parked at junction approach. The female driver aged 24 lived in NG8.
Vehicle 2 Pedal Cycle, travelling from NW to SE was going ahead other on the main carriageway. The vehicle was entering main road. The female d aged 23.
Casualty 1 (Vehicle 2) A female rider aged 23 suffered a slight injury.

Casualty 2 (Vehicle 1) A female driver aged 24 suffered a slight injury.

Contributory Factors

Vehicle 2 Illegal turn or direction of travel
Vehicle 2 Cyclist entering road from pavement

AccsMap - Accident Analysis System

Accidents between dates \quad 01/01/2017 and 31/12/2019 (36) months

Selection:

Selected using Manual Selection

The accident occured at a roundabout on the B5404, at its junction with the B5080 controlled by a give way or uncontrolled..
Special conditions and hazards: None
Vehicle 1 Car, travelling from NE to NW was turning right on the main carriageway. The vehicle was mid junction - on roundabout or main road. The male driver of an unknown age .
Vehicle 2 Car, travelling from NE to NW was stopping on the main carriageway. The vehicle was mid junction - on roundabout or main road. The fer driver aged 24 lived in B77.
Casualty 1 (Vehicle 2) A female driver aged 24 suffered a slight injury.
Contributory Factors
Vehicle 1 Failed to look properly

The accident occured on the A5, a dual carriageway .
Special conditions and hazards: None
Vehicle 1 Motorcycle over 500cc, travelling from SE to NW was going ahead other on the main carriageway. The vehicle was not at, or within 20M of junction. The male driver aged 68 lived in DA2.
Casualty 1 (Vehicle 1) A male rider aged 68 suffered a slight injury.
Contributory Factors
Vehicle 1 Dazzling sun

Acc. Ref. No: District Council	19868172	Road:	A 5			Grid Reference:	424034	300	
	Tamworth			Time: 2018 Weather: Fin		Thursday	18-July-2019		
Lighting: Da	Daylight					Weather: Fine without high winds	Speed limit:		70
Severity: S				Road surface		Dry			
Location:	B J/W STON								

The accident occured at a T or staggered junction on the A5, a slip road at its junction with the A5 controlled by a give way or uncontrolled..

Special conditions and hazards: None

Vehicle 1 Motorcycle over 500 cc , travelling from SE to W was turning left on the main carriageway. The vehicle cleared junction or waiting/parked at junction exit. The male driver aged 44 lived in CV9.
Casualty 1 (Vehicle 1) A male rider aged 44 suffered a slight injury.
Contributory Factors
Vehicle 1 Dazzling sun
Vehicle 1 Swerved

STAFFORDSHIRE

AccsMap - Accident Analysis System

Accidents between dates $\quad 01 / 01 / 2017$ and $31 / 12 / 2019$ (36) months

Selection:

Notes:

Selected using Manual Selection

The accident occured on the A5, a dual carriageway .
Special conditions and hazards: None
Vehicle 1 Car, travelling from NW to SE was going ahead other on the main carriageway. The vehicle was not at, or within 20 M of a junction. The fer driver aged 70 lived in DE13.
Vehicle 2 Car, travelling from NW to SE was going ahead but held up on the main carriageway. The vehicle was not at, or within $20 M$ of a junction. T male driver aged 53 lived in B75.
Casualty 1 (Vehicle 1) A female vehicle or pillion passenger aged 74 suffered a slight injury.

Contributory Factors

Vehicle 1 Following too close
Vehicle 1 Failed to look properly
Vehicle 1 Failed to judge other persons path or speed

ALL ROAD USERS - ACCIDENTS

Year	Fatal	Serious	Slight	Total	Time	Fatal	Serious	Slight	Total	District	Fatal	Serious	Slight	Total
2016	0	3	10	13	0000-0059	0	0	0	0	North Warwickshire	0	10	38	48
2017	0	2	10	12	0100-0159	0	0	0	0	Tamworth	0	0	2	2
2018	0	2	7	9	0200-0259	0	0	0	0					
2019	0	1	8	9	0300-0359	0	0	1	1	Road Class	Fatal	Serious	Slight	Total
2020	0	2	5	7	0400-0459	0	0	1	1	M	0	0	7	
					0500-0559	0	0	1	1	A(M)	0	0	0	
Month	Fatal	Serious	Slight	Total	0600-0659	0	1	0	1	A	0	10	31	41
January	0	1	1	2	0700-0759	0	0	1	1	B	0	0	0	0
February	0	1	5	6	0800-0859	0	0	2	2	Other	0	0	2	
March	0	2	5	7	0900-0959	0	0	1	1					
April	0	0	3	3	1000-1059	0	0	3	3	Speed Limit	Fatal	Serious	Slight	Total
May	0	1	4	5	1100-1159	0	0	1	1	20	0	0	0	0
June	0	0	4	4	1200-1259	0	1	2	3	30	0	0	11	11
July	0	3	4	7	1300-1359	0	0	1	1	40	0	1	1	2
August	0	0	3	3	1400-1459	0	1	4	5	50	0	2	14	16
September	0	0	1	1	1500-1559	0	3	2	5	60	0	3	3	6
October	0	0	5	5	1600-1659	0	2	3	5	70	0	4	11	15
November	0	1	4	5	1700-1759	0	1	7	8	Obstruction (Veh Totals)	Fatal	Serious	Slight	Total
December	0	1	1	2	1800-1859	0	1	3	4	Sign/Signal	0	0	0	
Day	Fatal	Serious	Slight	Total	1900-1959	0	0	0	0	Lamp Post	0	0	0	
Sunday	0	1	1	2	2000-2059	0	0	3	1	Pole	0	1	0	
Monday	0	0	7	7	2100-2159	0	0	3	3	Tree	0	0	0	
Tuesday	0	1	10	11	2200-2259	0	0	3	3	Bus Stop	0	0	0	
Wednesday	0	1	5	6	2300-2359	0	0	0	0	Barrier	0	1	0	
Thursday	0	2	4	6	Lighting	Fatal	Serious	Slight	Total	Other	0	0	0	0
Friday	0	4	8	12	Daylight	0	7	28	35	Junction Type	Fatal	Serious	Slight	Total
Saturday	0	1	5	6	Darkness	0	3	12	15	Not at Junction	0	3	11	14
Ped Crossing	Fatal	Serious	Slight	Total	Weather	Fatal	Serious	Slight	Total	Roundabout	0	6	23	29
Not at crossing	0	10	39	49	Fine without high winds	0	10	33	43	Mini R'about	0	0	1	
Zebra	0	0	0	0	Raining without high winds	0	0	4	4	T or Staggered	0	1	3	
Pelican	0	0	0	0	Snowing without high winds	0	0	0	0	Slip Road	0	0	0	
Ped Phase	0	0	1	1	Fine with high winds	0	0	0	0	Crossroads	0	0	0	0
Footbridge	0	0	0	0	Raining with high winds	0	0	1	1	Multiple Junct	0	0	1	
Refuge	0	0	0	0	Snowing with high winds	0	0	0	0	Private Drive	0	0	0	0
Unknown	0	0	0	0	Fog or mist - if hazard	0	0	1	1	Other Junction	0	0	1	
Bends (Veh Totals)	Fatal	Serious	Slight	Total	Other	0	0	1	1	Unknown	0	0	0	
Left Hand Bend	0	0	3	3	Unknown	0	0	0	0					
Right Hand Bend	0	0	0	0	Road Surface	Fatal	Serious	Slight	Total					
					Dry	0	8	25	33					
					Wet/Damp	0	2	14	16					
					Snow	0	0	0	0					
					Frost/lce	0	0	1	1					
					Flood	0	0	0	0					
					Unknown	0	0	0	0					

ALL ROAD USERS - CASUALTIES

Year	Fatal	Serious	Slight	Total	Casualty Age	Fatal	Serious	Slight	Total	Weather	Fatal	Serious	Slight	Total
2016	0	3	12	15	0-5	0	0	3	3	Fine without high winds	0	10	51	61
2017	0	2	15	17	6-10	0	0	1	1	Raining without high winds	0	0	5	5
2018	0	2	12	14	11-16	0	1	0	1	Snowing without high winds	0	0	0	0
2019	0	1	13	14	17-25	0	1	18	19	Fine with high winds	0	0	0	0
2020	0	2	7	9	26-35	0	1	9	10	Raining with high winds	0	0	1	1
					36-45	0	2	10	12	Snowing with high winds	0	0	0	0
Month	Fatal	Serious	Slight	Total	46-55	0	3	6	9	Fog or mist - if hazard	0	0	1	1
January	0	1	1	2	56-64	0	1	9	10	Other	0	0	1	1
February	0	1	7	8	65+	0	1	3	4	Unknown	0	0	0	0
March	0	2	6	8	Unknown	0	0	0	0					
April	0	0	4	4						Road Surface	Fatal	Serious	Slight	Total
May	0	1	6	7	Time	Fatal	Serious	Slight	Total	Dry	0	8	36	44
June	0	0	5	5	0000-0059	0	0	0	0	Wet/Damp	0	2	22	24
July	0	3	9	12	0100-0159	0	0	0	0	Snow	0	0	0	0
August	0	0	3	3	0200-0259	0	0	0	0	Frost/lce	0	0	1	1
September	0	0	2	2	0300-0359	0	0	2	2	Flood	0	0	0	0
October	0	0	8	8	0400-0459	0	0	1	1	Unknown	0	0	0	0
November	0	1	5	6	0500-0559	0	0	1	1					
December	0	1	3	4	0600-0659	0	1	0	1	District	Fatal	Serious	Slight	Total
					0700-0759	0	0	1	1	North Warwickshire	0	10	57	67
Day	Fatal	Serious	Slight	Total	0800-0859	0	0	2	2	Tamworth	0	0	2	2
Sunday	0	1	2	3	0900-0959	0	0	2	2					
Monday	0	0	9	9	1000-1059	0	0	3	3	Road Class	Fatal	Serious	Slight	Total
Tuesday	0	1	11	12	1100-1159	0	0	1	1	M	0	0	10	10
Wednesday	0	1	7	8	1200-1259	0	1	2	3	A(M)	0	0	0	0
Thursday	0	2	5	7	1300-1359	0	0	3	3	A	0	10	47	57
Friday	0	4	13	17	1400-1459	0	1	5	6	B	0	0	0	0
Saturday	0	1	12	13	1500-1559	0	3	4	7	Other	0	0	2	2
Ped Crossing	Fatal	Serious	Slight	Total	1600-1659	0	2	5	7	Speed Limit	Fatal	Serious	Slight	Total
Not at crossing	0	10	58	68	1700-1759	0	1	9	10	20	0	0	0	0
Zebra	0	0	0	0	1800-1859	0	1	7	8	30	0	0	16	16
Pelican	0	0	0	0	1900-1959	0	0	0	0	40	0	1	2	3
Ped Phase	0	0	1	1	2000-2059	0	0	2	2	50	0	2	18	20
Footbridge	0	0	0	0	2100-2159	0	0	4	4	60	0	3	6	9
Refuge	0	0	0	0	2200-2259	0	0	5	5	70	0	4	17	21
Unknown	0	0	0	0	2300-2359	0	0	0	0	Obstruction	Fatal	Serious	Slight	Total
Bends	Fatal	Serious	Slight	Total	Lighting	Fatal	Serious	Slight	Total	Sign/Signal	0	0	0	0
Left Hand Bend	0	0	3	3	Daylight	0	7	43	50	Lamp Post	0	0	0	0
Right Hand Bend	0	0	0	0	Darkness	0	3	16	19	Pole	0	1	1	2
										Tree	0	0	0	0
										Bus Stop	0	0	0	0
										Barrier	0	1	0	1
										Other	0	0	0	0

ALL ROAD USERS - CASUALTIES

Junction Type	Fatal	Serious	Slight	Total
Not at Junction	0	3	20	23
Roundabout	0	6	31	37
Mini R'about	0	0	1	1
T or Staggered	0	1	5	6
Slip Road	0	0	0	0
Crossroads	0	0	0	0
Multiple Junct	0	0	1	1
Private Drive	0	0	0	0
Other Junction	0	0	1	1
Unknown	0	0	0	0

No	Location	Severity	Date	Day	Time	Street Lighting	Road Surface	Weather	Pedestrian Direction	Facto		
5	Road No A5 Grid 424353E Section Ref 300791N	SERIOUS	13/05/2018	1	18:27	L	Dry	Fine				
	WILNECOTE BYPASS ISLAND A5 AT JN WITH GREEN LANE								North Warwickshire			
	VEHICLE 1 AND 2 HAVE TRAVELLED ALONG THE A5 FROM TAMWORTH AND APPROACHED THE M42 ROUNDABOUT. VEHICLE 2 WAS STATIONARY AT THE TRAFFIC LIGHTS WITH SEVERAL CARS BEHIND THEM HOWEVER STALLED WHEN THE LIGHTS TURNED GREEN. VEHICLE 1 HAS CHANGED LANES MOVING TO THE RIGHT HAND SIDE ATTEMPTNG TO GO AROUND THE QUE OF CARS, HOWEVER CUT IN FRONT OF VEHICLE 2 TO TRAVEL DOWN M42 SLIP ROAD CAUSING A COLLISION. VEHICLE 2 WAS TRAVELLING STRAIGHT AHEAD INTENDING TO TAKE THE A5 EXIT.						Veh1, car, NW -> NE Veh2, car, NW -> SE				$\begin{array}{ll}\text { Casualties } & 2 \\ \text { Vehicles } & 2\end{array}$	
6	Roaaivo A5 Grid 424368E Section Ref 300150 N	IGHT	28/10/2016	6	15:24	L	Dry	Fine				
	JUNCTION 10 ISLAND A5 AT JN WITH M42								North Warwickshire			
	VEH02 WAS TRAVELLING IN THE INSIDE LANE HᄃADING TOWARDS ROAD-OT THE M42 VEH01 HAS DROVE INTO THE SIDE OF VEH02						Veh1, car, Sur > NF Veh2, car, SW -> E				Casualties 1 Vehicles 2	
7	ROauivo-mM2 Grid 424370E Section Ref 300057 l	SIIGHT	10/03/2016	5	08:17	L	Dry	Fine				
	AT JCT 10 SB M42								North Warwickshire			
	THREE VEHICLE ROAD TRAFFIC COLLISION VEHOLE UO1 HAS COLLIDED INTO THE REAR OF vERICLE 002 WHICH HAD BEEN SI OLANG TUE TO TRAFFIC. VEHICLE 001 HAS PUSHED VEHICLE 002 INTO VEHICLE 003.						Veh1, car, NE \rightarrow SW Veh2, car, NE -> SW Veh3, car, NE -> SW				Casualties 1 Vehicles 3	

$\frac{2 n}{\text { Involved }}$		Street Lighting	
PED	Pedestrian	Laylight	
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS		
+VE		Positive Breath Test
R.TURN	Right Turn Manoeuvre	
O/TAKE		Overtaking Manoeuvre
S.VEH		Single Vehicle

Positive Breath Test Right Turn Manoeuvre Single Vehicle

Special Conditions

ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS \quad Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

Key	Involved			Street Lighting	
		DED		Daylight	
HGV	Heavy Goods Vehicle				
GV	Goods Vehicle	STL	Street Lights		
M/C	Motor Cycle	USL	Street Llghts Unlit		
P/C	Pedal Cycle	NSL	No Street Lights		
PSV	Bus/Coach	STU	Street Lights Unknown		

FACTORS	
lVE	
R.TURN	
Positive Breath Test Turn Manoeuvre	
O/TAKE	Overtaking Manoeuvre
S.VEH	Single Vehicle

Positive Breath Test Overtan Manoeuvre Single Vehicle

Special Conditions

ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

$\frac{2 n}{\text { Involved }}$		Street Lighting	
PED	Pedestrian	Laylight	
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS	
+VE	Positive Breath Test
R.TURN	Right Turn Manoeuvre
O/TAKE	Overtaking Manoeuvre
S.VEH	Single Vehicle

Positive Breath Test Right Turn Manoeuvre Single Vehicle

Special Conditions

ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

$\frac{2 n}{\text { Involved }}$		Street Lighting	
PED	Pedestrian	Laylight	
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS	
IVE	
Positive Breath Test	
R.TURN	Right Turn Manoeuvre
O/TAKE	Overtaking Manoeuvre
S.VEH	Single Vehicle

$\frac{\text { FACTORS }}{+V E}$ R.TURN S.VEH

Posive Bran Mest Overtaking Manoeuvre Single Vehicle

Special Conditions
ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

No	Location	Severity	Date	Day	Time	Street Lighting	Road Surface	Weather	Pedestrian Direction	Factor		
16	Road No A5 Grid 424421E Section Ref 300773 N	SLIGHT	15/07/2017	7	17:14	L	Dry	Fine				
	WATLING STREET A5 AT JN WITH M42								North Warwickshire			
	VEHICLE 1 AND VEHICLE 2 TRAVELLING ON A5 TOWARDS DORDON. WHILST NEGOTIATING ROUNDABOUT AT JUNCTION 10 M42, VEHICLE 1 HAS DRIVEN FROM 3RD LANE INTO OFFSIDE OF VEHICLE 2 TRAVELLING IN 2ND LANE CAUSING VEHICLE 2 TO MOVE INTO LANE 3. VEHICLES HAVE STOPPED IN LAYBY JUST OFF ROUNDABOUT.						Veh1, car, NW -> SE Veh2, car, NW -> SE				$\begin{array}{ll} \hline \text { Casualties } & 2 \\ \text { Vehicles } & 2 \end{array}$	
17	Road No M42 Grid 424425E Section Ref 300733 N	SLIGHT	27/12/2017	4	13:33	L	Wet/Damp	Fine				
	SB JCTS 10-9 M42 NEAR JN WITH JNCT 10 EXIT A5								North Warwickshire			
	V1 FAILS TO SEE STATIONARY TRAFFIC AHEAD AND COLLIDES WITH V2.THIS SPINS V1 INTO V3 AND THEN V4. DRIVER THEN GETS OUT OF V1 TO CHECK DAMAGE THEN MAKES OFF FROM SCENE.V1 EVENTUALLY BREAKS DOWN AT JCT 9 AND MAKES OFF ON FOOT.V1 WAS REPORTED STOLEN LATER THAT DAY						Veh1, car, NE -> SW Veh2, car, NE -> SW Veh3, car, NE -> SW Veh4, car, NE -> SW				Casualties 3 Vehicles 4	
18	Road No A5 Grid 424426E Section Ref 300577 N	SLIGHT	12/07/2019	6	03:29	DRK STL	Wet/Damp	Rain			HGV	
	A5 WATLING ST ISLAND DORDON J/W M42 JCT 10								North Warwickshire			
	It appears that vehicle02 has been driving in lane 1 of the M42 Junction 10 Island towards M42 (SW) slip when Vehicle01 has merged into lane 1 from lane 2 without noticing Vehicle02 and has collided into the o/s of Vehicle02 with its n / s. Vehicle01 has then only noticed it has been in a collision when stopped, suggesting the drive drove without due care and attention.						Veh1, goods 3.5-7.5t, NE -> SW Veh2, car, NE -> SW				Casualties 2 Vehicles 2	

Involved PED Pedestrian	Street Lighting		
HGV	Heavy Goods Vehicle		Daylight
GV	Goods Vehicle		
M/C	Motor Cycle	STL	Street Lights
P/C	Pedal Cycle	USL	Street Llghts Unlit
PSV	Bus/Coach	NSL	No Street Lights
		STU	Street Lights Unknown

FACTORS		
+VE		
R.TURN		Right Turn Manoeuvre
O/TAKE		Overtaking Manoeuvre
S.VEH		Single Vehicle

Special Conditions

ATS OUT	Traffic Lights Not Working
ATS DEF	Traffic Lights Defective
SIGNS	Road Signs Defective or Obscurred
RD WRKS	Road Works
Surface	Road Surface Defective

No	Location	Severity	Date	Day	Time	Street Lighting	Road Surface	Weather	Pedestrian Direction	Factors		
19	Roaaino A. Grid 424447E Section Ref 300011 in	OIIGHT	31/01/2020	6	17:00	DRK STL	Dry	Fine			HG	
	A5 DORDON ISLAND J/W M42 JCT 10								North Warwickshire			
	V001 WAS TRAVELLING AROUND THE ISLAND In Lifive IO GO TOWARDS THE A5. VOO2 wing in The MIDDLE LANE TRAVELLING TOMAREO KINGSBURY. V001 HAS COME ACROSS INTO THE LANE OF V002, CLIPPING THE LEFT HAND SIDE OF V002.						Veh1, goous \rightarrow 75t NE -> SW Veh2, car, NE -> SW				Casualties 1 Vehicles 2	
20	Road No A5 Grid 424473E Section Ref 300616N	SERIOUS	24/07/2019	4	16:45	L	Dry	Fine				
	WATLING STREET (A5) J/W M42 JCT 10 ISLAND								North Warwickshire			
	AT APPROXIMATELY 16:45 HRS ON 24.07.2019 RIDER OF VEH 002 HAS BEEN TRAVELLING ON THE A5, M42 ISLAND HEADING WEST, COMING FROM THE DIRECTION OF HINCKLEY, GOING TOWARDS TAMWORTH. RIDER OF VEH 002 HAS BEEN FILTERING BETWEEN LANES 3 AND 4 AT THE ISLAND ON THE APPROACH TO THE JUNCTION. THE RAFFIC LIGHTS WERE NOT WORKING WITH SIGNS DISPLAYING THIS - RIDER OF VEH 002 WAS AWARE OF THE BORKEN LIGHTS. WHILST WAITING TO PULL OUT OF THE JUNCTION, VEH 002 HAS BEEN HIT FROM BEHIND, CAUSING HIM TO FALL OFF HIS BIKE ON TO THIS LEFT SHOULDER CAUSING INJURY - HUMERAL FRACTURE.						Veh1, car, E -> W Veh2, m/cycle > 500cc, E -> W				Casualties 1 Vehicles 2	
21	Road No A5 Grid 424475E Section Ref 300615N	SLIGHT	19/11/2019	3	11:47	L	Wet/Damp	Fine				GV
	WATLING STREET (A5) JW A5 M42 JCT 10 TRAFFIC ISLAND								North Warwickshire			
	Veh 2 struck veh 1 from behind whilst stationary at traffic lights on A5 dordon tamworth.						Veh1, car, E -> W Veh2, goods < 3.5t, E -> W				Casualties 1 Vehicles 2	

$\frac{\text { Involved }}{}$		Street Lighting	
PED	Pedestrian	L	Daylight
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS	
+VE	
R.TURN	Rigitive Turn Manoeuvre
O/TAKE	Overtaking Manoeuvre
S.VEH	Single Vehicle

Positive Breath Test Right Turn Manoeuvre Single Vehicle

Special Conditions

ATS OUT	Traffic Lights Not Working
ATS DEF	Traffic Lights Defective
SIGNS	Road Signs Defective or Obscurred
RD WRKS	Road Works
Surface	Road Surface Defective

$\frac{2 n}{\text { Involved }}$		Street Lighting	
PED	Pedestrian	Laylight	
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS		
PVE		Positive Breath Test
R.TURN	Right Turn Manoeuvre	
O/TAKE		Overtaking Manoeuvre
S.VEH		Single Vehicle

Positive Breath Test Right Turn Manoeuvre Single Vehicle

Special Conditions
ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

No	Location	Severity	Date	Day	Time	Street Lighting	Road Surface	Weather	Pedestrian Direction	Facto		
25	Road No A5 Grid 424478E Section Ref 300735 N	SLIGHT	01/09/2018	7	09:30	L	Dry	Fine				
	TAMWORTH ISLAND A5 AT JN WITH JCT 10 SLIP OFF M42								North Warwickshire			
	Ambo are travelling around the roundabout on blue with sirens activated. V1 \& V2 travelling onto the roundabout from M42 south, V2 has slowed to allow ambo to pass and V1 has bumped into the rear						Veh1, car, NE -> NW Veh2, car, NE -> NW Veh3, , NW -> SE				Casualties 2 Vehicles 3	
26	RoadNo_45 Grid 424480E Section Ref 300010 N	SIIGHT	02/03/2016	4	08:55	L	Wet/Damp	Rain				
	WATLING STREET A5 AT JN WITH M42								North Warwickshire			
	PERSON REPORTING WAS STATIONARY AT TRAEEICLIGTIS OF J10. M42 WHILST STATIONARY HASFEET TIVIPACT FROM VEHICLE BEHIND. PERSON REPORIING HAS ALIGHTED FROM VEHICLE AS HAS VEHICLE NO 2 DRIVER.						$\begin{aligned} & \hline \text { Vent, can, SE } \rightarrow \text { W } \\ & \text { Veh2, car, SE } \rightarrow N W \end{aligned}$				 Casualties 1 Vehicles 2	
27	Road No A5 Grid 424482E Section Ref 300620 N	SLIGHT	29/10/2018	2	15:30	L	Wet/Damp	Fine				
									North Warwickshire			
	VEHICLE 2 STATIONARY IN TRAFFIC QUEUE. VEHICLE 1 APPROACHED FROM BEHIND AND HIT VEHICLE 2. DRIVER OF VEHICLE 1 REFUSED TO EXCHANGE DETAILS.						Veh1, goods unknown weight, E -> W Veh2, car, E -> W				Casualtie Vehicles	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$

$\frac{2 n}{\text { Involved }}$		Street Lighting	
PED	Pedestrian	Laylight	
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS		
+VE		
R.TURN		Right Turn Manoeuvre
O/TAKE		Overtaking Manoeuvre
S.VEH	Single Vehicle	

Special Conditions
ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

$\frac{\text { Involved }}{}$		Street Lighting	
PED	Pedestrian	L	Daylight
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

Special Conditions

ATS OUT	Traffic Lights Not Working
ATS DEF	Traffic Lights Defective
SIGNS	Road Signs Defective or Obscurred
RD WRKS	Road Works
Surface	Road Surface Defective

$\frac{\text { Involved }}{}$		Street Lighting	
PED	Pedestrian	L	Daylight
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS	
+VE	Positive Breath Test
R.TURN	Right Turn Manoeuvre
O/TAKE	Overtaking Manoeuvre
S.VEH	Single Vehicle

Special Conditions
ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

$\frac{\text { Involved }}{}$		Street Lighting	
PED	Pedestrian	L	Daylight
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS		
+VE		
R.TURN		Right Turn Manoeuvre
O/TAKE		Overtaking Manoeuvre
S.VEH		Single Vehicle

Positive Breath Test Right Turn Manoeuvre Single Vehicle

Special Conditions
ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

Involved PED $n n$ Pedestrian	Ltreet Lighting		
HGV	Heavy Goods Vehicle	Daylight	
GV	Goods Vehicle		
M/C	Motor Cycle	STL	Street Lights
P/C	Pedal Cycle	USL	Street Llghts Unlit
PSV	Bus/Coach	NSL	No Street Lights
		STU	Street Lights Unknown

FACTORS	
+VE	Positive Breath Test
R.TURN	Right Turn Manoeuvre
O/TAKE	Overtaking Manoeuvre
S.VEH	Single Vehicle

Positive Breath Test Right Turn Manoeuvre Single Vehicle

Special Conditions

ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

No	Location	Severity	Date	Day	Time	Street Lighting	Road Surface	Weather	Pedestrian Direction	Factors		Involved
43	RoadiNe 15 Grid 425803E Section Ref 300240 Na	SIIGHT	14/10/2016	6	14:26	L	Dry	Fine		O/TAK	S.VEH	M/C
	AMBO STATION DORDON A5								North Warwickshire			
	VEH 01 HEADING SOUTH EAST OF THE A5 TOWADPO-̄ORDON ISLAND. VEH 01 HAS HIT THE OFESID COT THE CURB ON THE MIDDLE CARPInOEVVAYDURING AN OVERTAKING MANOUVRE. THIS HAS CAUSED VEH 01 TO SWERVE ACROSS THE CARRIAGEWAY. VEH 01 HAS COME TO A HALT AND THE RIDER HAS BEEN EJECTED OVER THE HANDLEBARS CAUSING INJURY.										Casualties 1 Vehicles 1	
44	Road No A5 Grid 425871E Section Ref 300225N	SLIGHT	24/07/2018	3	16:34	L	Dry	Fine				
	NEAR TO VICARAGE CLOSE A5								North Warwickshire			
	VEHICLE 2 WAS TRAVELLING ALONG THE A5 TOWARDS NUNEATON WHILST VEHICLE 1 WAS TRAVELLING ALONG THE A5 IN THE OPPOSITE DIRECTION ON THE OPPOSITE CARRIAGEWAY. VEHICLE 1 HAS THEN DONE A U TURN THROUGH A GAP IN THE CENTRAL RESERVATION CAUSING VEHICLE 2 TO TAKE EVASIVE ACTION. THE VEHICLES HAVEN'T COLLIDED BUT VEHICLE 2 HAS BUMPED INTO THE KERB ON THE LEFT SIDE CAUSING DAMAGE TO HER NEARSIDE FRONT TYRE AND HER EXHAUST. VEHICLE 1 HAS FAILED TO STOP AT THE SCENE						Veh1, car, SE -> SE Veh2, car, NW -> SE				Casualties Vehicles	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$

$\frac{2 n}{\text { Involved }}$		Street Lighting	
PED	Pedestrian	Laylight	
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS	
+VE	Positive Breath Test
R.TURN	Right Turn Manoeuvre
O/TAKE	Overtaking Manoeuvre
S.VEH	Single Vehicle

Positive Breath Test Right Turn Manoeuvre Single Vehicle

Special Conditions
ATS OUT Traffic Lights Not Working
ATS DEF Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred RD WRKS Road Works
Surface Road Surface Defective

Key	Involved		Street Lighting		FACTORS		Special Conditions		
	PED	Pedestrian	L	Daylight	+VE	Positive Breath Test	ATS OUT	Traffic Lights Not Working	
	HGV	Heavy Goods Vehicle			R.TURN	Right Turn Manoeuvre	ATS DEF	Traffic Lights Defective	
	GV	Goods Vehicle	STL	Street Lights	O/TAKE	Overtaking Manoeuvre	SIGNS	Road Signs Defective or Obscurred	
	M/C	Motor Cycle	USL	Street LIghts Unlit	S.VEH	Single Vehicle	RD WRKS	Road Works	
	P/C	Pedal Cycle	NSL	No Street Lights			Surface	Road Surface Defective	
	PSV	Bus/Coach	STU	Street Lights Unknown					Page 16

$\frac{\text { Involved }}{}$		Street Lighting	
PED	Pedestrian	L	Daylight
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS	
+VE	
R.TURN	Pigitive Turn Manoeuvre Test
O/TAKE	Overtaking Manoeuvre
S.VEH	Single Vehicle

Special Conditions
ATS OUT
ATS DEF Traffic Lights Not Working
SIGNS Traffic Lights Defective
RD WRKS Road Signs Defective or Obscurred
Road Works
Surface Road Surface Defective

$\frac{2 n}{\text { Involved }}$		Street Lighting	
PED	Pedestrian	L	Daylight
HGV	Heavy Goods Vehicle		
GV	Goods Vehicle	STL	Street Lights
M/C	Motor Cycle	USL	Street Llghts Unlit
P/C	Pedal Cycle	NSL	No Street Lights
PSV	Bus/Coach	STU	Street Lights Unknown

FACTORS	
+VE	Positive Breath Test
R.TURN	Right Turn Manoeuvre
O/TAKE	Overtaking Manoeuvre
S.VEH	Single Vehicle

Positive Breath Test Right Turn Manoeuvre Single Vehicle

Special Conditions

ATS DEF Traffic Lights Not Working
SIGNS Traffic Lights Defective
SIGNS Road Signs Defective or Obscurred
RD WRKS Road Works
Surface Road Surface Defective

APPENDIX L DRAWINGS


```
- StTE bownoary2
```

- Proposeo 5 S SHARED USE Crcewway
- - Protective tiner fence or simiar approved

PRELIMINARY ISSUE
TE TETRA TECH

HODGETTS
ESTATES
M42 JUNCTION 10 CYOLIEWAY IMPROVEMENT
PROPOSED LAYOUT
PROPOSE
SHEET3

Community Integration Route Plan: Birchmoor to Dordon

Commuter Point-to-Point Plan: Dordon to Relay Park

[^7]
Commuter Point-to-Point Plan: Stonydelph to Core 42

[^8]
Commuter Point-to-Point Plan: Polesworth to St. Modwen Park

[^9]

Rail Terminal Connectivity
Statement

November 2021

Ref: 220053r_rail_final

CONTENTS

1. Introduction
2. Planning Policy - Support for Rail Freight
3. Rail-Served Logistics Warehousing
4. Rail Connectivity - Logistics Operator Benefits
5. Wider Sustainability Benefits
6. Summary and Conclusions

The contents of this document must not be copied or reproduced in whole or in part without the written consent of MDS Transmodal

1. INTRODUCTION

1.1 This technical report has been prepared to support Hodgetts Estates who are submitting proposals for a new strategic industrial warehousing scheme on land to the north-east of Junction 10 of the M42. Up to 100,000 square metres of new high-bay logistics and industrial floor space is proposed for the site. The scheme has been planned from the outset to operate successfully as a standalone road-based logistics warehousing facility, and accompanying documents demonstrate market need for such and that it is acceptable and deliverable in planning application traffic terms. The logic for locating the facility in this location is clear, J10 of the M42 being the nexus of the M42 motorway and the A5 trunk road, both major freight corridors, as well as its close proximity to Birmingham Intermodal Freight Terminal (BIFT) at Birch Coppice Business Park (around 500m) and Hams Hall Rail Freight Terminal (15km)
1.2 Notwithstanding this position, due to its close proximity to Birch Coppice Business Park, the proposed warehouse development can also in practice be classified as rail-served. Occupiers will be able to access the BIFT facilities on the same basis as those currently located within the business park. A higher proportion of the resultant traffic can therefore be expected to arrive or depart using rail via Birch Coppice than might otherwise be the case. The purpose of this technical note, therefore, is to explain why this situation arises, and to demonstrate the benefits of rail connectivity that will potentially accrue to future warehouse occupiers at the planned development and wider society. These added benefits, while not central to the planning justification, provide additional support for the proposed development.
1.3 The significance of this position is that Government planning policy promotes the location of logistics facilities at sites which offer genuine modal choice to shippers. This is for two principal reasons:

- It creates the conditions where rail freight can become cost competitive when compared with road haulage. Shippers utilising rail freight under these conditions can therefore expect to accrue financial (productivity) benefits (so called user benefits); and
- It promotes mode shift to rail freight. Rail freight is recognised as being a substantially more sustainable mode of transport, which generates wider societal benefits when compared with road haulage. Emissions of greenhouse gases (GHG), for example, are significantly lower on tonne-km basis, which is particularly important given internationally binding national commitments to reduce and ultimately become a net-zero GHG emitter.
1.4 The proposed development will therefore conform with the Government's current policy with respect to promoting modal choice and the location of large scale logistics facilities.

2. PLANNING POLICY - SUPPORT FOR RAIL FREIGHT

2.1 Planning policy alongside the proposed scheme's acceptability and deliverability in planning terms is addressed in accompanying documents. However, by way of background it is worth briefly setting out current planning policy with respect to rail-served freight/logistics developments.

National Planning Policy Framework

2.2 National planning policy for England is set out in the National Planning Policy Framework (NPPF). This was originally published by the Department for Communities and Local Government (DCLG) in March 2012 and then revised and reissued reissued in February 2019 and July 2021 (by the renamed Ministry of Housing, Communities and Local Government or MHCLG).
2.3 Section 9 of the NPPF provides for transport policies that facilitate sustainable development but also contribute towards wider sustainability objectives. In particular, it notes that significant development should be focused on locations which are or can be made sustainable, through limiting the need to travel and offering a genuine choice of transport modes (Para 105). This can help to reduce congestion and emissions, and improve air quality and public health. It notes that plans and decisions should identify and protect, where there is robust evidence, sites and routes which could be critical in developing infrastructure to widen transport choice and realise opportunities for large scale development (Para 106c). It also stipulates that plans and decisions should recognise the importance of providing adequate overnight lorry parking facilities, taking into account any local shortages, to reduce the risk of parking in locations that lack proper facilities or could cause a nuisance (Para 109).

National Planning Statement for National Networks

2.4 On a similar basis, the National Planning Statement (NPS) for National Networks, published by the Department for Transport (DfT) in December 2014, includes the Government's current policies concerning the development of Strategic Rail Freight Interchanges (SRFIs). It is considered to be the principal policy document concerning the development of rail-served warehousing and logistics facilities. While the proposed Junction 10 scheme is being progressed through the planning system as a stand-alone road-based development, as will be demonstrated below it would in practice be a rail-served site (it will be able to access Birch Coppice's rail terminal facilities at BIFT on the same basis as those currently located within the business park).
2.5 The NPS states that the aim of SRFIs is to optimise the use of rail in the freight journey through the co-location of freight and distribution activities (Para 2.44). Further, the NPS states that the users of warehousing and distribution services are increasingly looking to integrate rail into their
transport operations. This will require the logistics industry to develop new facilities that need to be located alongside the major rail routes, close to major trunk roads as well as near the conurbations that consume the goods (Paragraph 2.45).
2.6 The NPS notes that the Government's vision is for a sustainable transport system that is an engine for economic growth. The NPS consequently states that the transfer of freight from road to rail has an important part to play in reducing greenhouse gas emissions and addressing climate change (Paragraph 2.53). To facilitate this modal transfer, the NPS concludes that a network of SRFIs is needed across the regions, to serve regional, sub-regional and cross-regional markets. The NPS concludes that a reliance on existing rail freight interchanges and on roadonly based logistics is neither viable nor desirable. The Government has therefore concluded that there is a compelling need for an expanded network of SRFIs (Paragraphs 2.54-2.56 and Table 4).

3. RAIL-SERVED LOGISTICS WAREHOUSING

3.1 Rail-served logistics warehouses fall into two types. The first type involves the installation of rail sidings along one side of the warehouse (normally one of the long sides) or even into the warehouse itself. Cargo is transferred directly between railway wagons positioned in the sidings and the warehouse using fork-lift trucks or similar lifting equipment, thereby avoiding the need to use road transport. Such facilities are only suitable (and economic) when handling commodities which tend to move in full train-load volumes (train of at least 400 m length). Consequently, their use is fairly niche and normally associated with semi-bulk cargoes such as steel or forest products moved in conventional box or flat wagons. Consumer goods normally move in much smaller (less than train-load) volumes but more frequently. ProLogis Park in Coventry (Kerseley), due to a condition of its planning consent, had such sidings installed alongside a number of the warehouses. The site has never handled regular services and is currently not receiving trains.
3.2 The second type of rail-served logistics warehousing is where they are located within close proximity to an intermodal terminal, and connected to the terminal by 'internal' roads which tend to be privately owned and maintained (although this is not the case at Hams Hall where the internal site roads are adopted by the local highway authority).
3.3 An intermodal terminal is a set of railway sidings where containers and other types of intermodal units are lifted to and from railway wagons using fixed overhead or mobile lifting equipment. Goods conveyed in intermodal units arrive by train at the terminal, from where they are subsequently transferred to the warehousing by means of a short distance shunt via the internal roads using yard tractors and skeletal semi-trailer equipment. Yard tractors are designed to haul semi-trailers away from the public road network, such as within port estates, at large distribution centres and rail terminals. They are highly manoeuvrable and can lift/drop trailers quickly and efficiently. An example of such equipment is provided in the picture below.

Picture 1: Yard Tractor and Semi-trailer

3.4 This type of rail connectivity is possible due to the 'off public highway' connectivity and generates the following benefits:

- Vehicles which operate entirely within private land are currently able to operate with lower operating costs, meaning terminal to warehouse transfer costs are lower (see below);
- Drivers of yard tractors do not need to be fully qualified HGV licence holders (though operators would need to provide training), meaning wage rates are generally lower. It also means operators are not impacted by the current significant shortage of HGV drivers;
- Yard tractor equipment is cheaper to purchase or lease when compared with road-legal HGVs; and
- As the container is already 'on-site', there is no public highway network congestion to negotiate. Consequently, there is no requirement to build in any buffer time to ensure 'just-in-time' delivery time-windows are met, meaning the yard tractor equipment can be utilised more intensively when compared with road-legal HGVs serving off-site origins/destinations.
3.4 The implications of this position are explored in the following section. Developments over the past two decades have seen multiple warehouse new-builds 'cluster' around an intermodal terminal within a single rail-served site. In planning terms these have become known as Strategic Rail Freight Interchanges (SRFIs), and include facilities at DIRFT (near Crick, Northants), East Midlands Gateway (Kegworth, Notts), Hams Hall and Birch Coppice Business Park. This clustering has the effect of concentrating large freight volumes at one location, thereby generating a critical mass capable of attracting viable intermodal rail freight services from a variety of origins (rail freight is generally only economically viable in train lengths over 400 m).
3.5 For consumer cargo (i.e. that which passes through warehouses of the type proposed), intermodal rail is the more attractive option. As these goods generally move in smaller volumes, intermodal rail allows individual shippers to move goods at less than train-load volumes (e.g. single or a few containers at one time); a full-length train comprising containers from multiple shippers. For this reason, warehouses which are rail-served by means of being within close proximity to an intermodal terminal are the preferred type of connectivity. In contrast to directly rail-connected warehouses, where SRFIs have been developed, intermodal train services have been quickly established. For example, East Midlands Gateway, which officially opened in February 2020, has recently announced a fifth daily service (to/from Felixstowe, to complement the existing services from Felixstowe, Southampton and Liverpool).
3.6 Birch Coppice Business Park was originally developed by IM Properties at the end of the 1990s. It initially consisted of a single directly rail-connected warehouse (VW spare parts), though today it is a full-scale SRFI accommodating a modern intermodal terminal operated by Maritime Transport (known as BIFT) and a significant quantum of warehouse floor space. On a typical weekday, the terminal receives three trains/day from the Port of Felixstowe and two trains/day from the Port of Southampton. The table below summarises the key characteristics of the site.

	Birmingham International Rail Terminal (BIFT), Birch Coppice Business Park, Tamworth.
Railway Line	Birmingham-Derby Main Line
Loading Gauge	W10
Terminal Operator	Maritime Transport
Number sidings and train length	$6 \times$ reception sidings - varying length up to 530m
	$4 \times 340 \mathrm{~m}$ terminal sidings
On-site warehousing	Circa 450,000 sqm across +25 occupiers, including at
	Core 42 Business Park
Additional Information	Loading using overhead gantry cranes.

3.7 It is interesting to note that the original directly rail-connected warehouse, designed to handle cargo in conventional box wagons rather than intermodal, resulted from a planning consent condition, albeit it never received regular train services. Since the development of the intermodal terminal, the SRFI has grown to handle 5 trains/day as described
3.8 The proposals are on the opposite side of the A5 to the existing Birch Coppice SRFI. The gate-to-gate public road network distance between the two sites is likely to be around 500 m (i.e., the distance on the public road network connecting the respective private estate roads).
3.9 The site is also a short distance from the Hams Hall SRFI (circa 15 km via the M42). Originally developed by Powergen in the late 1990s, it accommodates a modern intermodal terminal operated by $A B P$ Connect. The table below summarises the key characteristics of the site. On
a typical weekday, the terminal receives three trains/day from the Port of Felixstowe and daily trains from the ports of Southampton and London Gateway.

Terminal Name and Location	Hams Hall, near Coleshill.
Railway Line	Birmingham to Nuneaton/Derby
Loading Gauge	W10
Terminal Operator	ABP Connect
Number sidings and train length	$2 \times$ reception sidings 775 m
	$4 \times 400 \mathrm{~m}$ terminal sidings
On-site warehousing	Circa 320,000 sqm
Additional Information	Loading using mobile reach stackers. Internal site roads
	are adopted highway.

3.10 However, given the distance from the application site via the public road network (M42), transfers of containers to/from Hams Hall would need to be undertaken by road-legal HGVs. In this case, it would be a standard articulated HGV, comprising a tractor unit hauling a skeletal semi-trailer. An example is provided in the picture below.

Picture 2: Tractor Unit and Semi-trailer

3.11 When compared with yard tractors within an SRFI, the terminal to off-site warehouse transfer process (whether in this case to Hams Hall or more generally) has the following disadvantages:

- Drivers need to be fully licenced and qualified HGV drivers (significantly higher wage rates and current recruitment issues due to shortages of fully qualified drivers);
- Road-legal HGV equipment is more expensive to purchase or lease when compared with yard tractors; and
- Buffer time has to be built into schedules to ensure 'just-in-time' delivery time-windows are met therefore meaning the equipment is potentially utilised less intensively.
3.12 Overall, transfer costs from terminal to warehousing which is not rail-served are substantially higher. This issue is addressed in the following section of this report.

4. RAIL CONNECTIVITY - LOGISTICS OPERATOR BENEFITS

Use of Yard Tractors on the Public Road Network

4.1 While yard tractors (as described in the previous section) have been designed to haul semitrailers on private land (such as between intermodal terminals and warehousing within SRFIs), under limited circumstances they can also be operated on the public highway (defined as roads maintained at public expense). In these situations, they are classed as 'works trucks' and are defined under the Construction and Use Regulation as:
"A motor vehicle (other than a straddle carrier) designed for use in private premises and used on a road only in delivering goods from or to such premises, to or from a vehicle on a road in the immediate neighbourhood, or in passing from one part of any such premises to another or to other private premises in the immediate neighbourhood"
4.2 When operated on the public highway, a works truck needs to be licenced with the DVLA and pay Vehicle Excise Duty (VED). While certain derogations exist for 'works trucks', by and large they must conform to the requirements of the Construction and Use Regulations when operating on the public highway, particularly with respect to being within gross vehicle weight limits, having a speedometer (if they can exceed 25 mph), fitment of suitable brakes and appropriate lighting (headlights, indicators etc..). Note that the definition requires the vehicle to be 'designed for use in private premises', meaning that former road-going vehicles used as 'shunters', such as old tractor units, cannot be classed as works trucks.
4.3 The term 'immediate neighbourhood' in the works truck description is not defined in terms of distance. It is regarded as a matter of judgement for the operator and ultimately would be for a Court to determine. However, given the location of the application site on the opposite side of the A5 to Birch Coppice (gate-to-gate around 500m) and that Revenue and Customs have to date adopted 1 km when permitting the use of rebated fuels on public roads (see below), the proposed warehouse development clearly falls within the description of the term 'immediate neighbourhood'. On that basis, yard tractors which operate internally within the Birch Coppice Business Park (to/from BIFT) will also be able to access the site on the same terms (under the works truck conditions).
4.4 In addition to their lower purchase/lease costs, there are currently two important exemptions for works trucks when used on the public highway which when compared with the use of standard road-legal HGVs can generate a significant operating cost advantage.
4.5 Firstly, works trucks can be legally driven on a standard Category B 'car' driving licence when on the public highway. They are classed as an 'exempted goods vehicle'; the driver must be aged 21 or older and have held a Category B driving licence for at least two years (albeit for health
and safety reasons operators would need to ensure adequate training had been provided to the driver). Drivers of road-legal HGVs must hold a vocational driving licence (Category C+E for articulated HGVs) and possess a Driver Certificate of Professional Competence (Driver CPC) qualification. Consequently, wage rates for fully qualified HGV drivers (C+E licence plus Driver CPC) are significantly higher than for yard tractor operatives. This is significant in light of the identified (and well publicised) shortage of qualified HGV drivers nationally ${ }^{1}$.
4.6 Secondly, VED rates are significantly lower for a works truck. Currently it is only $£ 165$ per annum, compared with the full rate of $£ 1,200$ for a standard articulated HGV.
4.7 Vehicles such as yard tractors which operate entirely within private land have also been able to use fuel where a much lower rate of excise duty has been charged. For diesel powered vehicles, the fuel is referred to as 'rebated diesel' or 'red diesel' (after the colour of the dye which is added to distinguish it from the full duty paid version). However, the Chancellor of the Exchequer announced in the March 2021 Budget that most rebated diesel exemptions are to be removed from April 2022 onwards, even on vehicles operating entirely on private land. That includes yard tractors.
4.8 Drawing the above together, it can be concluded that the proposed warehouse development adjacent to Junction 10 can in practice be classified as rail-served (effectively it will be 'inside' the SRFI). Occupiers will be able to access BIFT on the same basis as those currently located within the SRFI (i.e., using work trucks). The implications of this position in terms of transport/transfer costs are explored below.

[^10]
Transfer Costs to and from BIFT

4.9 The internal shunting operation between BIFT and the surrounding warehousing (within the SRFI and the application site) would most likely adopt the 'drop trailer' method. A loaded container on a skeletal semi-trailer would be shunted from the rail terminal to its destination warehouse, and positioned at the appropriate loading dock. The yard tractor/works truck would then leave the container/semi-trailer combination at the loading dock for discharge, and subsequently collect an empty container/semi-trailer combination, ideally from another loading dock or nearby warehouse, before returning to the rail terminal. The yard tractor therefore 'keeps moving' and a round-trip out from and back to the rail terminal is able to shunt two containers.
4.10 Occupiers with a sufficiently high volume of incoming/outgoing freight via the BIFT may elect to invest their own yard tractor/works truck, either purchase outright or lease. The annual leasing costs (including maintenance) for a typical yard tractor/works truck that is used in ports and rail terminals is around $£ 25,000$. Vehicle Excise Duty (so that it can operate as a 'Works Truck' on the public highway network, as per above) is $£ 165$ per year. Annual driver wages, including oncosts, would be around $£ 32,000$ per driver. It is assumed that overheads would equate to around 25% of the yard tractor fixed costs. Total annual fixed costs would therefore total around $£ 111,500$ per annum for each yard tractor operated, assuming two drivers per vehicle. A skeletal semi-trailer would cost around $£ 6,000$ per annum to lease. Duty paid diesel (excluding VAT) currently costs around $£ 1.19$ per litre and fuel consumption is around $1.4 \mathrm{~km} / \mathrm{I}$ $(4 \mathrm{mpg})$ for a yard tractor. Once tyre wear is accounted for, the running costs for the yard tractor/works truck and semi-trailer combination would be around $£ 0.90$ per km.
4.11 Given the scale of the Birch Coppice SRFI, it is likely that a driver would be able to undertake 7 x drop/collect round-trips as described within an 11 hour shift (i.e., between 1.25-1.5 hours per round trip once shunting, waiting time, paperwork and statutory breaks etc. are accounted for). This equates to 14 round-trips per 24 hour period for each yard tractor/works truck, shunting a total of 28 containers to or from BIFT. Assuming a dwell time of around 4 hours at each warehouse, a skeletal semi-trailer would therefore undertake 2 x round-trips per driver shift. Terminals such as BIFT generally operate 5.5 days per week (i.e., Saturday AM), equating to 275 days per annum.
4.12 On that basis, the total costs per round-trip (assuming an average round-trip distance is 6 km) will be approximately $£ 40$ or $£ 20$ per container shunted. Once the operator's margin is accounted for, this would equate to a rate per shunt of around $£ 22$. This is shown in the table below.

Table 4.1: Yard Tractor/Works Truck Transfer Costs with SRFIs

Red Diesel			
Yard Tractor/Works Truck		Days pa	275
Annual lease inc maint \& ins	£25,000	Round trips/day - yard tractor	14
VED	£165	Round trips/day - semi-trailer	4
Driver wages - 2 x £ 32 k inc NIC	£64,000		
Overheads (25\%)	£22,291	Fixed cost round trip	
Total pa	£111,456	Yard tractor	£29
		Semi-trailer	£5
Skeletal semi-trailer		Total	£34
Annual lease inc maintenance	£6,000		
		Running costs per km	£0.90
		Distance/round trip (km)	6
		Running costs	£6
		Total cost per round trip	£40
		Total cost per container	£20

4.13 In contrast, for a road-legal 6×2 tractor unit the annual leasing costs (including maintenance) is around $£ 33,000$. Vehicle Excise Duty is $£ 1,200$ per year. Annual driver’s wages, including oncosts, in this case would be around $£ 42,000$ per driver. Once other operating costs are accounted for and overheads (again, it is assumed that overheads would equate to around 25% of the tractor unit fixed costs), annual fixed costs would therefore total around $£ 154,000$ per annum for each tractor unit operated $-£ 42,500$ more than the yard tractor option. The lease of the skeletal semi-trailer would again be on top of this. Assuming fuel consumption is around $2.5 \mathrm{~km} / \mathrm{l}(7 \mathrm{mpg})$, once tyre wear is accounted for the running costs for the road legal tractor unit and semi-trailer combination would actually be lower at around $£ 0.54$ per km.
4.14 Consider a transfer operation from BIFT to warehousing within the vicinity of the SRFI but beyond the 'works truck' limitations (as described). Such an operation would see a container road haulier collect the unit from the rail terminal and transport it to the destination warehouse. It would then wait with the container at the loading dock while it is discharged before returning it to the terminal. Assuming this round-trip operation takes 3.5 hours (waiting, travel time, discharge etc..), the total costs per round-trip (assuming an average round-trip distance is 15 km) will be around $£ 116$ per container. Once the operator's margin is accounted for, this would equate to a rate per container moved of around $£ 130$. This is shown in the table below.
4.15 Clearly, being rail-served 'results in significantly lower transfer costs between rail terminal and warehouse.

Table 4.2: Road Legal-HGV Transfer Costs Beyond SRFIs

Road Legal HGV			
Tractor			
Annual lease inc maint \& ins	$£ 33,000$	Days pa	275
VED	$£ 1,200$	Hours pa	5,000
Driver wages $-2 \times £ 42 \mathrm{k}$ inc NIC	$£ 84,000$		$£ 30.75$
Overheads (25%)	$£ 29,550$	Fixed cost per hour	$£ 0.54$
Total pa	$£ 147,750$	Running costs per km	$£ 108$
			Fixed cost (3.5 hours)
Skeletal semi-trailer	$£ 6,000$	Running cost (15km)	$£ 116$
Annual lease inc maintenance		Total	
Total Fixed Costs pa			

User Benefits

4.16 Consider the example of deep-sea maritime containers being transported from the Port of Southampton to a distribution centre in the Tamworth area. The shipper would have the option of using intermodal rail freight (via BIFT) or road haulage direct from the port to warehouse.
4.17 A typical intermodal freight trains costs around $£ 12$ per train-km to operate (fixed costs plus fuel) on a siding-to-siding basis. Based on this rate plus a further $£ 1,500$ per train to account for other fixed costs (shunting, wagon down-time etc..), the total train cost for the 240 km trip between Southampton and BIFT would be in the region of $£ 4,400$. Assuming a mean loading of 36 containers per train, that equates to a port gate to BIFT sidings rate of $£ 122$ per container. The port at Southampton would charge around $£ 35$ per container to load to rail. Terminal lift charges at BIFT are around $£ 25$ per container, plus $£ 22$ for a local shunt within or close by to the Birch Coppice estate. Assuming the destination warehouse is within the Birch Coppice SRFI (and by extension the application site), total port to warehouse costs are therefore estimated to be in the region of $£ 204$ per container.
4.18 For a destination beyond Birch Coppice, a local road haul is estimated (from above) to be around £120. For an off-site destination, total port to warehouse costs are therefore estimated to be in the region of $£ 300$ per container.
4.19 The same trip by road haulage would most likely take around 6.5 hours once waiting time at the port and warehouse are accounted for. On the basis of the fixed and running costs stated
above, the total port to warehouse costs are also estimated to be in the region of $£ 290$ per container. This is shown in the table below.

Table 4.3: Estimated Intermodal and Road Haulage Costs Southampton to Tamworth

Rail			Road		
Cost per train-km	£12		Travel time + waiting	6.5	hrs
Distance	240	km	Distance	240	km
Containers/train	36				
Train cost	£2,880		Fixed cost	£200	
Other fixed costs	£1,500		Running cost	£94	
Total Costs	£4,380		Total cost	£293	
SRFI Rail-served					
Train cost/container	£122				
Port handling - rail	£35				
Terminal lift	£25				
Internal shunt	£22				
Total cost	£204				
Off-site					
Cost/container	£122				
Port handling - rail	£35				
Terminal lift	£25				
Local road haul	£120				
Total cost	£302				

4.20 This analysis demonstrates that one of the main factors which renders rail freight cost competitive against road haulage is the ability to locate distribution centres in rail-served locations. Where this occurs, shippers are able to accrue financial benefits (which in transport economics and appraisal are termed user benefits). In the costed example above, rates to a railserved warehouse from a deep-sea port (in this case Southampton) are around $£ 80$ per container less when compared with road haulage. For a warehouse located away from a railserved site, transport rates are broadly comparable. Given that future occupiers at the application site will be able to access BIFT on the same basis as those currently located within the SRFI (as described), they will consequently be able to accrue these user benefits. A proportion of the resultant traffic at the planned development can therefore be expected to arrive or depart using rail via Birch Coppice (BIFT), and this is addressed in the following section.
4.21 Shippers will therefore consider other factors (speed, delivery times, etc..) when deciding which mode to use. For reference, intermodal rail's market share into the Midlands from the Port of Southampton is currently around 45%. It is also worth noting that 250 km is the approximate 'break even' distance above which intermodal rail freight should offer a more cost competitive solution where one end of the trip is rail-served (in this example the Port of Southampton, but several of the UK's main container ports including London Gateway, Teesport and Felixstowe all also exceed this distance).
4.22 It is worth noting that Maritime Transport already runs several yard tractors/works trucks from BIFT so in reality there will be no cost associated with leasing these, making the option much more cost effective for prospective site occupiers. Furthermore, given the short distance journeys involved in shunting between BIFT and the application site, the work load involved allows the yard tractors/works trucks to be adapted to low cardon technologies such as fully electric (EVs) or hybrid electric vehicles, which have a limited range at present. This, in turn, would save on VED making the use of BIFT even more cost effective whilst also saving carbon.

5. WIDER SUSTAINABILITY BENEFITS

5.1 In addition to the potential user benefits described above, rail freight is recognised as being a more sustainable mode of transport, generating wider societal benefits when compared with road haulage. Modal switch to rail from road generates lower levels of pollutants (improved air quality), causes fewer accidents and leads to less wear/tear on road surfaces. Emissions of greenhouse gases (GHG), in particular, are significantly lower on tonne-km basis, which is particularly important given internationally binding national commitments to reduce and ultimately become a net-zero GHG emitter.
5.2 The Department for Transport (DfT) has monetised the wider societal benefits of moving goods by rail freight rather than road haulage (which in transport appraisals are termed mode shift benefits (MSBs) or non-user benefits). On a weighted average basis, MSBs are currently valued by the DfT at $£ 0.34$ per HGV-km removed from the road network. For the Port of Southampton to BIFT example flow presented above, moving the container by rail rather than road haulage would therefore generate around $£ 82$ in wider non-user benefits. This section of the report has therefore estimated the potential mode-shift to rail resulting from the proposed development being 'rail-served' (as described) alongside the wider non-user benefits, with a particular focus on the estimated reduction in GHG emissions.

Traffic Volumes and Distribution

5.3 The starting point of this assessment was the forecast HGV trip generation to/from the proposed warehouse units during the peak hours, as agreed by Bancroft Consulting with the various highway authorities. Then using TRICS data, these were expanded upon to estimate that over the 12-hour period 07:00 to 19:00, 627 HGVs will depart the site, as follows:

- 157 HGVs to the South East of the site (A5);
- 33 HGVs to the North East of the site (M42);
- 338 HGVs to the North West of the site (A5); and
- 99 HGVs to the South West of the site (M42).
5.4 An equivalent level for incoming traffic is also forecast. For the purposes of this wider benefits exercise, these 12 -hour figures needed to be translated into an estimated 24 -hour total ${ }^{2}$. This was based on observed traffic flows (by means of a survey) at the Swan Valley warehousing development in Northampton, data which subsequently formed the basis of the accepted trip generation analysis for the East Midlands Gateway SRFI Development Consent Order

[^11]examination. This suggests that 56.8% of observed HGV arrivals and departures took place during the 07:00 to 19:00 time period. Consequently, the agreed 12-hour figure has been scaled by $1 / 0.568$ to establish an estimated 24 -hour total. On this basis, the planned warehousing at the application site can expect to despatch 1,104 HGVs per 24-hour period (with an equivalent level for incoming traffic).
5.5 The Swan Valley traffic survey was utilised as that particular development has a broadly similar quantum of floor space (c135,000 sqm) to that planned for the application site, a range of warehouse and manufacturer occupiers and that the 24 -hour distribution of traffic subsequently formed the basis of the accepted traffic generation rates at the East Midlands Gateway examination. Also, for the avoidance of doubt, these 24-hour traffic figures (as described) have been estimated purely to establish the potential mode shift to rail and the wider non-user benefits. As noted, Bancroft Consulting's previously agreed peak-hour rates should be adopted for any highway capacity assessments.
5.6 The total HGV arrivals and departures over the 24 -hour period will include both loaded and empty re-positioning movements (Bancroft Consulting's figures include both loaded and empty HGVs). For example, a loaded outbound departure to a retail outlet or another distribution centre might return empty (albeit conveying empty roll cages/pallets or waste packaging). Likewise, a loaded arrival from a supplier would realistically depart empty, potentially to collect a backload from another warehouse in the vicinity.
5.7 The table below therefore shows the total estimated 24-hour flows to and from the application site once empty arrivals and departures are accounted for. In this case, we have assumed that 75% of loaded inbound HGVs subsequently depart empty (25% collecting a backload directly from the site), and likewise that 75% of loaded outbound HGVs will return to the site empty. On this basis, the Junction 10 site is estimated to attract 631 loaded HGVs per 24-hour period (and likewise a similar level of departing loaded HGVs).

Table 5.1: Summary of Estimated 24-hour HGV Arrivals and Departures

HGVs			
Loaded inbound	631	Empty Outbound	473
Empty inbound	473	Loaded outbound - backload Loaded outbound - empty in	158
Total inbound	1,104	Total outbound	473
Total per 24-hours	$\mathbf{2 , 2 0 9}$		1,104

Source: Bancroft Consulting (agreed peak-hour flows), expanded to 24-hour based on TRICS data and Swan Valley observed traffic flows
5.8 The MDS Transmodal GB Freight Model (GB Freight Model) ${ }^{3}$ provides an origin-destination matrix of loaded warehousing traffic to/from the site's zone (MSOA: E02006469; North Warwickshire 002: Dordon, Hurley \& Wood End). This includes both domestic and unitised port traffic. The imported proportion of incoming cargo to the zone in this case is set at 33%. This is potentially conservative as some warehouses, particularly those operating as National Distribution Centres typical of the area (e.g., Aldi National Distribution Centre at Atherstone), will be handling significantly higher proportions of imported cargo; this is typically more suitable to rail, particularly if moved through one of the rail-served deep-sea container ports.
5.9 The estimated loaded 24-hour HGV traffic in each of the 4 directions has subsequently been distributed nationally in-line with the GB Freight Model's origin-destination matrix of loaded warehousing traffic for the Dordon zone. This is shown in the table below differentiated by standard geographical regions.

Table 5.2: Estimated Distribution of Application Site Loaded Warehouse Traffic by Region

GB Region	Loaded HGVs	
	From Dordon	To Dordon
	2	
North East	127	2
North West	11	144
Yorkshire \& the Humber	111	14
East Midlands	238	67
West Midlands	40	168
Eastern	25	86
Greater London	29	7
South East	12	95
South West	14	10
Wales	23	22
Scotland		15
	$\mathbf{6 3 1}$	$\mathbf{6 3 1}$

Source: GB Freight Model, based on Table 5.1
5.10 On the basis that all loaded traffic moves by road haulage i.e., assuming initially that no traffic arrives/depart by rail via BIFT (this is 'corrected' below), derived from the GB Freight Model's highway assignment module the total daily loaded HGV-km is estimated to be as follows:

- 98,180 HGV-km for loaded inbound HGVs;

[^12]- 70,933 HGV-km for loaded outbound HGVs; and
- 169,113 HGV-km total for loaded HGVs.
5.11 This represents an average length of haul (ALOH) of 156 km for loaded inbound HGVs and 112 km for loaded outbound HGVs. For the empty HGVs arriving and departing (Table 5.1 above), these are assumed to have repositioned empty for 25 km prior to arriving or following departure from the site. This equates to $23,663 \mathrm{HGV}$-km per 24 -hour period (i.e., 473×2 directions x 25 km). The total HGV-km are therefore 192,776 HGV-km per 24-hour period (i.e., $169,113 \mathrm{~km}+23,663 \mathrm{~km}$).
5.12 However, as described above future occupiers at the application site site will be able to access BIFT on the same basis as those currently located within the SRFI, and subsequently accrue user-benefits for some flows. A proportion of the traffic estimated in Table 5.2 above can therefore be expected to arrive or depart using rail freight via BIFT (modal shift). Using the GB Freight Model's mode assignment module, the level of traffic that could be expected to arrive or depart by rail freight has subsequently been estimated (including the origin and destinations). One of the main components of GB Freight Model is the cost-based mode choice calculation which, for every origin to destination, works out the cheapest rail route (including local road hauls at either end). It then calculates the road versus rail trunk haul mode share based on a Logit model. This mode share calculation approach has therefore been applied to the loaded traffic distribution described above. This is shown in the table below.

Table 5.3: Estimated Mode Split at the Proposed Junction 10 Warehouse Development

GB Region	Loaded HGV-equivalent units				Rail mode share
	By Rail		Remaining by Road		
	From Dordon	To Dordon	From Dordon	To Dordon	(Both directions together)
North East	1	0	1	2	20\%
North West	8	8	119	136	6\%
Yorkshire \& the Humber	1	0	10	14	5\%
East Midlands	2	1	109	66	2\%
West Midlands	3	2	235	166	1\%
Eastern	4	38	36	48	33\%
Greater London	2	0	23	6	8\%
South East	3	12	26	83	12\%
South West	2	1	10	9	13\%
Wales	1	1	13	21	7\%
Scotland	19	11	4	4	79\%
Total	46	76	585	555	10\%

Source: GB Freight Model
5.13 On that basis, around 76 loaded inbound HGV-equivalent units can be expected to arrive by rail via BIFT across the 24 -hour period. The equivalent for loaded outbound is 46 HGVequivalent units. Combined, rail therefore equates to 122 loaded HGV-equivalent units (sum of both directions) across the 24 -hour period. This suggests just over 3 'works trucks' shuttle movements per hour between BIFT and the application site when spread evenly across the 24hour period (as described in Section 4, in each case delivering a loaded container and returning to BIFT with a loaded outbound or empty container). Overall, the rail mode share for all cargo, when simply measured in terms of the number of HGV-equivalent units passing through the gate, is 7% for outgoing traffic and 12% for incoming traffic (10% for both directions combined). When measured in terms of unit-km i.e., also accounting for distance moved, the rail mode share is estimated to be around 21%.

Reduction in GHG Emissions

5.14 The Department of Business, Energy and Industrial Strategy (BEIS) publishes conversion factors in order that those organisations required to can calculate and report their GHG emissions ${ }^{4}$. The current figure for an average laden articulated HGV is $0.91569 \mathrm{~kg} \mathrm{CO}_{2} \mathrm{e}$ per HGV-km. Therefore, on the basis that all cargo moves by road haulage, the total of 192,776 HGV-km per 24 -hour period (as per above) equates to GHG emissions of $176,523 \mathrm{~kg} \mathrm{CO}_{2} \mathrm{e}$ (i.e., $192,776 \mathrm{~km} x$ 0.91569). Assuming the equivalent of 300 operating days per year, this equates to 53,000 tonnes of CO_{2} e per year.
5.15 On a per tonne-km basis, rail transport has lower carbon emissions than the equivalent road transport. Therefore, a switching of appropriate movements from road to rail can be expected to result in a reduction in GHG emissions. For rail freight, the BEIS conversion factors only provides a per tonne-km value. This is 3.1 times lower than that for the average laden articulated HGV, meaning that the like-for-like figure for movements by rail freight is 0.29492 kg $\mathrm{CO}_{2} \mathrm{e}$ per HGV-equivalent km. The total of 122 loaded HGV-equivalent units (sum of both directions) across the 24 -hour period equates to $34,915 \mathrm{HGV}$-equivalent km , with an ALOH of 286 km . This equates to GHG emissions of $10,297 \mathrm{~kg} \mathrm{CO}_{2}$ e per 24 -hour period directly associated with rail freight transport or just under 3,100 tonnes CO_{2} e per annum assuming 300 operating days. However, for rail freight the estimation also needs to consider the emissions derived from:

- Lifting equipment at the terminals and ports; and
- Local road hauls and 'works truck' shunting between BIFT and the application site.

[^13]5.16 Container lifting operations (to/from rail wagons) at each end of the journey will involve either a reach stacker or a terminal gantry crane. Compared to the transport legs, the GHG emissions will be very small and these have been estimated these to be the equivalent of 1 km of HGV haulage (at the BEIS conversion factor for average laden HGV).
5.17 We have assumed 6 km of 'works truck' shunting at BIFT per unit moved (at the BEIS conversion factor for an average laden HGV). For non-port rail traffic, a local road haul from the destination terminal to the cargo's final destination is assumed at a distance of 40 km . As with road journeys direct from the application site, it is assumed that there will be an additional 75 empty movements associated with every 100 loaded movements, each travelling 25 km . Therefore, for each non-port loaded rail unit moved there are 65.75 HGV-km of GHG emissions to include in the calculation (i.e., $6 \mathrm{~km}+1 \mathrm{~km}+40 \mathrm{~km}+(75 \% \times 25 \mathrm{~km})=65.75 \mathrm{HGV}-\mathrm{km})$, again at the BEIS conversion factor for an average laden HGV. For each port loaded rail unit moved, there are $7 \mathrm{HGV}-\mathrm{km}$ of GHG emissions to include (i.e., $6 \mathrm{~km}+1 \mathrm{~km}=7 \mathrm{~km}$).
5.18 Due to the estimated modal shift from road to rail, the GB Freight Model forecasts that the remaining loaded road journeys to and from the application site are as follows:

- 555 HGVs inbound to the site with an ALOH of 141 km , equating to $77,981 \mathrm{HGV}-\mathrm{km}$ daily;
- 585 HGV outbound from the site with an ALOH of 96 km , equating to $56,217 \mathrm{HGV}-\mathrm{km}$ daily; and
- Daily total of 134,198 loaded HGV-km.
5.19 The associated empty HGV movements are $21,375 \mathrm{HGV}-\mathrm{km}$, calculated on the same basis as the 'road only' served site (i.e. ($585+554$) x $75 \% \times 25 \mathrm{~km}$). The total HGV-km are therefore 155,573 HGV-km per 24 -hour day (i.e., $134,198 \mathrm{~km}+21,375 \mathrm{~km}$). The estimated GHG emissions associated with the forecast road and rail freight volumes (Table 5.3) is therefore shown in the table below, and subsequently compared with the 'road only' figure calculated earlier.

Table 5.4: Estimated GHG Emissions at Junction 10 Site

		GHG Emissions ($\mathrm{CO}_{2} \mathrm{e}$) per 24-hours
Road and Rail		
Rail	34,915 HGV-equiv $\mathrm{km} \times 0.29492 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}$	$10,297 \mathrm{~kg} \mathrm{CO}_{2} \mathrm{e}$
Non-port	72 HGV-equiv units $\times 65.75 \mathrm{~km} \times 0.91569 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}$	$4,335 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}$
Port	50 HGV-equiv units $\times 7 \mathrm{~km} \times 0.91569 \mathrm{~kg} \mathrm{CO}_{2} \mathrm{e}$	320 kg CO 2 e
Remaining Road	155,575 HGV-km x 0.91569 kg CO 2 e	$142,458 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e}$
Total		$157,410 \mathrm{~kg} \mathrm{CO} 2 e$
Road Only		
Road	192,776 HGV-km $\times 0.91569 \mathrm{kgCO}_{2} \mathrm{e}$	$176,523 \mathrm{~kg} \mathrm{CO} 2 e$
missions ($\mathrm{CO}_{2} \mathrm{e}$) per annum*		
Road		52,957 tonnes $\mathrm{CO}_{2} e$
Road and Rail		47,223 tonnes $\mathrm{CO}_{2} \mathrm{e}$
Saving		5,734 tonnes $\mathrm{CO}_{2} \mathrm{e}$

*300 operating days per annum
Source: GB Freight Model and BEIS Conversion Factors
5.20 On this basis, it is estimated that the modal shift from road to rail will generate a saving of just under 5,800 tonnes of carbon dioxide equivalent per annum. To put that figure into context, it is broadly the same amount of carbon dioxide equivalent produced by around 2,750 typical mid-sized diesel powered cars during the course of a year (on the basis that a typical mid-sized diesel car generates around $130 \mathrm{~g} \mathrm{CO}_{2} \mathrm{e}$ per km and will on average cover $16,000 \mathrm{~km} / \mathrm{c} 10,000$ miles per annum) ${ }^{5}$.

Non-User Benefits

5.21 Further, from the above forecasts the overall reduction in loaded HGV-km to and from the application site resulting from this modal shift is estimated to be around 34,915 HGV-km per 24 -hour period (i.e., 169,113 HGV-km - 134, 198 HGV-km). Assuming 300 operating days per annum, this represents a reduction of 10.4 million HGV-km over the course of a year. Based on the current MSB rate (weighted average) of $£ 0.34$ per HGV-km removed from the road network, this represents total non-user benefits to the country of around $£ 3.5$ million per annum.

[^14]
6. SUMMARY AND CONCLUSIONS

6.1 The proposed road-based warehouse development is justifiable and deliverable in both planning and road traffic terms, based on the overarching identified need for logistics development in this location. However, due to the application site's close proximity to Birmingham Intermodal Freight Terminal, the proposed development can also in practice be classified as rail-served, and a proportion of the resultant traffic can therefore be expected to arrive or depart using rail freight. The purpose of this technical note is to explain why this situation arises, and to demonstrate the benefits of rail connectivity that will would be accrued by future warehouse occupiers at the application site and wider society.
6.2 Government planning policy (NPPF and NPS for National Networks) promotes the location of logistics facilities at sites which offer genuine modal choice to shippers. This is for two principal reasons:

- It creates the conditions where rail freight can become cost competitive when compared with road haulage, generating so called user benefits; and
- Rail freight is recognised as being a more sustainable mode of transport, generating wider societal benefits (non-user benefits) when compared with road haulage.
6.3 Developments over the past two decades have seen multiple warehouse new-builds 'cluster' around an intermodal terminal. In planning terms, these have become known as Strategic Rail Freight Interchanges (SRFIs) and it includes the warehousing and rail terminal developed at Birch Coppice Business Park. The proposed scheme is on the opposite side of the A5 to the existing Birch Coppice SRFI; the gate-to-gate distance via the public road network will be around 500 m .
6.4 While yard tractors have been designed to haul semi-trailers on private land (such as between intermodal terminals and warehousing within SRFIs), under limited circumstances they can also be operated on the public road network. In these situations, they are classed as 'works trucks'. It was demonstrated that the proposed warehouse development falls within the 'works truck' conditions and can therefore in practice be classified as rail-served (effectively it will be 'inside' the SRFI). Occupiers will be able to access BIFT on the same basis as those currently located within the SRFI.
6.5 It was subsequently shown that, for certain flows, future occupiers located at the application site would be able to accrue user benefits when using rail freight via BIFT. A proportion of the resultant traffic at the planned development can therefore be expected to arrive or depart using rail via BIFT. Given that position, analysis has forecast (using the GB Freight Model) that around 10% of loaded inbound and outbound traffic could be expected to move by rail freight via BIFT. It was subsequently estimated that the forecast modal shift from road to rail will, in
terms of GHG emissions, generate a saving of just under 5,800 tonnes of carbon dioxide equivalent per annum. Based on the current MSB rate (weighted average) of $£ 0.34$ per HGVkm removed from the road network, the forecast modal shift equates to annual non-user benefits of around $£ 3.5$ million to the nation but focused locally to the site.
6.6 It is therefore concluded that while the proposed road-based warehouse development is not dependent on access to BIFT, the plans conform with the Government's current policy with respect to the location of large scale logistics facilities, promoting modal choice and the transition to net-zero GHG emissions and as such, will generate several user and non-user benefits planning benefits, when compared to a site that is not rail-served.

[^0]: 1) App Types: $0=$ Always Appears, $1=$ Appears if dem'd prior to interstage, $2=$ If dem'd, $3=$ If dem'd before end of window time
[^1]: Template - Detector items.txt issue 1.0

[^2]: Tetra Tech Limited. Registered in England number: 1959704
 Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER VAT No: 431-0326-08.

[^3]: This message contains confidential information and is intended only for the recipient. If you are not the recipient you should not disseminate, distribute or copy this email. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. E-mail transmission cannot be guaranteed to be secure or error-free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses. The sender therefore does not accept liability for any errors or omissions in the contents of this message, which arise as a result of e-mail transmission. If verification is required please

[^4]: There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
 Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Arm and junction delays are averages for all movements, including movements with zero delay.

[^5]: Tetra Tech Limited. Registered in England number: 1959704
 Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER VAT No: 431-0326-08.

[^6]: If Yes please provide the name of your organisation and your role within it.

[^7]: Note:
 Plan showing existing and proposed tarmac surfaced route options accessible by a typical road bike and Equalities Act 2010 compliant, therefore suitable for all commuters. It should be noted that with the benefit of specialist equipment, such as an off-road bike, other existing route options would be open to some (but not all) commuters. However, the use of these existing routes is not practicable for all commuters (such as those with physical and mobility impairments) or certain jobs/positions where there is an imperative to arrive clean and/or shower facilities are not readily available.

 The existing and proposed routes shown are in excess of the typical $\mathbf{2 k m}$ maximum walking distance for commuters, so possible walking routes are therefore not shown on this plan.

[^8]: Note:
 Plan showing existing and proposed tarmac surfaced route options accessible by a typical road bike and Equalities Act 2010 compliant, therefore suitable for all commuters. It should be noted that with the benefit of specialist equipment, such as an off-road bike, other existing route options would be open to some (but not all) commuters. However, the use of these existing routes is not practicable for all commuters (such as those with physical and mobility impairments) or certain jobs/positions where there is an imperative to arrive clean and/or shower facilities are not readily available.

 The existing and proposed routes shown are in excess of the typical 2 km maximum walking distance for commuters, so possible walking routes are therefore not shown on this plan.

[^9]: Note:
 Plan showing existing and proposed tarmac surfaced route options accessible by a typical road bike and Equalities Act 2010 compliant, therefore suitable for all commuters. It should be noted that with the benefit of specialist equipment, such as an off-road bike, other existing route options would be open to some (but not all) commuters. However, the use of these existing routes is not practicable for all commuters (such as those with physical and mobility impairments) or certain jobs/positions where there is an imperative to arrive clean and/or shower facilities are not readily available.

 The existing and proposed routes shown are in excess of the typical 2km maximum walking distance for commuters, so possible walking routes are therefore not shown on this plan.

[^10]: ${ }^{1}$ Letter to Prime Minister from Road Haulage Association, 23 June 2021

[^11]: ${ }^{2}$ Warehouses such as that planned for the application site will receive and despatch HGVs 24 hours per day, whereas the highway traffic assessment is principally concerned with daytime traffic flows measured against network capacity during the busy daytime period.

[^12]: ${ }^{3}$ Comprehensive freight analytical tool developed/maintained by MDST that models current and forecasts future freight flows by mode, Origin-Destination and commodity grouping. Produces forecasts for, amongst others, DfT, Network Rail, TfN and Midlands Connect.

[^13]: ${ }^{4}$ www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2020
 Outputs are reported as kilograms of carbon dioxide equivalent ($\mathrm{kg} \mathrm{CO}_{2} \mathrm{e}$)

[^14]: ${ }^{5} 0.130 \mathrm{~kg} \mathrm{CO} 2 \mathrm{e} \times 16,000 \mathrm{~km}=2,080 \mathrm{~kg}$ per annum (i.e., 2.08 tonnes) for each car. 5,734 tonnes/ 2.08 tonnes $=$ 2,756 cars

